1
|
Liu Q, Zhao Y, Yang J, Xiao F, Wang X. Study on the physiological mechanism and transcriptional regulatory network of early fruit development in Gleditsia sinensis Lam. (Fabaceae). BMC PLANT BIOLOGY 2024; 24:1213. [PMID: 39701956 DOI: 10.1186/s12870-024-05895-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/29/2024] [Indexed: 12/21/2024]
Abstract
BACKGROUND Gleditsia sinensis Lam. (Fabaceae) is a medicinal legume characterized by its spines and pods, which are rich in saponins, polysaccharides, and various specialized metabolites with potential medicinal and industrial applications. The low fruit set rate in artificially cultivated economic forests significantly impedes its development and utilization. A comprehensive understanding of the cellular events, physiological and biochemical processes, and molecular regulatory mechanisms underlying fruit initiation and early fruit development is essential for enhancing yield. However, such information for G. sinensis remains largely unexplored. RESULTS In this study, we identified that the early fruit development process in G. sinensis can be categorized into three distinct stages: pollination, the critical period of fertilization, and the initial fruit development followed by subsequent growth. The dynamic changes in non-structural carbohydrates and endogenous plant hormones within the ovary were found to play a significant role during fruit set and the early stages of fruit development. Additionally, the high activity of gibberellin, cytokinin, and sucrose-metabolizing enzymes in the ovary was conducive to early fruit development. Furthermore, we generated high-resolution spatiotemporal gene expression profiles in the ovary from the stage of efflorescence to early fruit development. Comparative transcriptomics and weighted gene co-expression network analysis revealed specific genes and gene modules predominant at distinct developmental stages, thereby highlighting unique genetic programming. Overall, we identified the potential regulatory network governing fruit initiation and subsequent development, as well as the sets of candidate genes involved, based on the aforementioned results. CONCLUSIONS The results offer a valuable reference and resource for the application of exogenous substances, such as hormones and sugars, during critical fruit development periods, and for the development of molecular tools aimed at improving yield.
Collapse
Affiliation(s)
- Qiao Liu
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Yang Zhao
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Ju Yang
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Feng Xiao
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Forest Cultivation in Plant Mountainous of Guizhou Province, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Xiurong Wang
- College of forestry, Guizhou University, Guiyang550025, Guizhou, China.
- Institute for Forest Resources & Environment of Guizhou, Guizhou University, Guiyang, Guizhou, China.
| |
Collapse
|
2
|
Tang Y, Schiestl-Aalto P, Saurer M, Sahlstedt E, Kulmala L, Kolari P, Ryhti K, Salmon Y, Jyske T, Ding Y, Bäck J, Rinne-Garmston KT. Tree organ growth and carbon allocation dynamics impact the magnitude and δ13C signal of stem and soil CO2 fluxes. TREE PHYSIOLOGY 2022; 42:2404-2418. [PMID: 35849053 PMCID: PMC10101690 DOI: 10.1093/treephys/tpac079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/08/2022] [Accepted: 07/02/2022] [Indexed: 05/14/2023]
Abstract
Incomplete knowledge of carbon (C) allocation dynamics in trees hinders accurate modeling and future predictions of tree growth. We studied C allocation dynamics in a mature Pinus sylvestris L. dominated forest with a novel analytical approach, allowing the first comparison of: (i) magnitude and δ13C of shoot, stem and soil CO2 fluxes (Ashoot, Rstem and Rsoil), (ii) concentration and δ13C of compound-specific and/or bulk non-structural carbohydrates (NSCs) in phloem and roots and (iii) growth of stem and fine roots. Results showed a significant effect of phloem NSC concentrations on tracheid growth, and both variables significantly impacted Rstem. Also, concentrations of root NSCs, especially starch, had a significant effect on fine root growth, although no effect of root NSC concentrations or root growth was detected on Rsoil. Time series analysis between δ13C of Ashoot and δ13C of Rstem or δ13C of Rsoil revealed strengthened C allocation to stem or roots under high C demands. Furthermore, we detected a significant correlation between δ13C of Rstem and δ13C of phloem sucrose and glucose, but not for starch or water-soluble carbohydrates. Our results indicate the need to include C allocation dynamics into tree growth models. We recommend using compound-specific concentration and δ13C analysis to reveal C allocation processes that may not be detected by the conventional approach that utilizes bulk organic matter.
Collapse
Affiliation(s)
| | - Pauliina Schiestl-Aalto
- Institute for Atmospheric and Earth System Research
(INAR)/Physics, Faculty of Science, University of
Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland
| | - Matthias Saurer
- Forest Dynamics, Swiss Federal Institute for Forest, Snow and Landscape
Research WSL, Zürcherstrasse 111, 8903 Birmensdorf, Switzerland
| | - Elina Sahlstedt
- Bioeconomy and Environment Unit, Natural Resources Institute
Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| | - Liisa Kulmala
- Institute for Atmospheric and Earth System Research (INAR)/Forest
Sciences, Faculty of Agriculture and Forestry, University
of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
- Finnish Meteorological Institute, P.O. Box 503, FI-00101
Helsinki, Finland
| | - Pasi Kolari
- Institute for Atmospheric and Earth System Research
(INAR)/Physics, Faculty of Science, University of
Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland
| | - Kira Ryhti
- Institute for Atmospheric and Earth System Research (INAR)/Forest
Sciences, Faculty of Agriculture and Forestry, University
of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | - Yann Salmon
- Institute for Atmospheric and Earth System Research (INAR)/Forest
Sciences, Faculty of Agriculture and Forestry, University
of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
- Institute for Atmospheric and Earth System Research
(INAR)/Physics, Faculty of Science, University of
Helsinki, P.O. Box 68, FI-00014 Helsinki, Finland
| | - Tuula Jyske
- Production Systems Unit, Natural Resources Institute Finland,
Tietotie 2, FI-02150 Espoo, Finland
| | - Yiyang Ding
- Department of Forest Sciences, Faculty of Agriculture and
Forestry, University of Helsinki, P.O. Box 27, FI-00014
Helsinki, Finland
| | - Jaana Bäck
- Institute for Atmospheric and Earth System Research (INAR)/Forest
Sciences, Faculty of Agriculture and Forestry, University
of Helsinki, P.O. Box 27, FI-00014 Helsinki, Finland
| | - Katja T Rinne-Garmston
- Bioeconomy and Environment Unit, Natural Resources Institute
Finland, Latokartanonkaari 9, FI-00790 Helsinki, Finland
| |
Collapse
|
3
|
Patono DL, Said‐Pullicino D, Eloi Alcatrāo L, Firbus A, Ivaldi G, Chitarra W, Ferrandino A, Ricauda Aimonino D, Celi L, Gambino G, Perrone I, Lovisolo C. Photosynthetic recovery in drought-rehydrated grapevines is associated with high demand from the sinks, maximizing the fruit-oriented performance. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:1098-1111. [PMID: 36209488 PMCID: PMC9828513 DOI: 10.1111/tpj.16000] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/20/2022] [Accepted: 10/05/2022] [Indexed: 05/08/2023]
Abstract
To understand how grapevine sinks compete with each other during water stress and subsequent rehydration, carbon (C) allocation patterns in drought-rehydrated vines (REC) at the beginning of fruit ripening were compared with control vines maintained under drought (WS) or fully irrigated (WW). In the 30 days following rehydration, the quantity and distribution of newly fixed C between leaves, roots and fruits was evaluated through 13 CO2 pulse-labeling and stable isotope ratio mass spectrometry. REC plants diverted the same percentage of fixed C towards the berries as the WS plants, although the percentage was higher than that of WW plants. Net photosynthesis (measured simultaneously with root respiration in a multichamber system for analysis of gas exchange above- and below-ground) was approximately two-fold greater in REC compared to WS treatment, and comparable or even higher than in WW plants. Maximizing C assimilation and delivery in REC plants led to a significantly higher amount of newly fixed C compared to both control treatments, already 2 days after rehydration in root, and 2 days later in the berries, in line with the expression of genes responsible for sugar metabolism. In REC plants, the increase in C assimilation was able to support the requests of the sinks during fruit ripening, without affecting the reserves, as was the case in WS. These mechanisms clarify what is experienced in fruit crops, when occasional rain or irrigation events are more effective in determining sugar delivery towards fruits, rather than constant and satisfactory water availabilities.
Collapse
Affiliation(s)
- Davide L. Patono
- Department of Agricultural, Forest and Food SciencesUniversity of TurinGrugliascoItaly
| | - Daniel Said‐Pullicino
- Department of Agricultural, Forest and Food SciencesUniversity of TurinGrugliascoItaly
| | - Leandro Eloi Alcatrāo
- Department of Agricultural, Forest and Food SciencesUniversity of TurinGrugliascoItaly
| | - Andrea Firbus
- Department of Agricultural, Forest and Food SciencesUniversity of TurinGrugliascoItaly
| | - Giorgio Ivaldi
- Department of Agricultural, Forest and Food SciencesUniversity of TurinGrugliascoItaly
| | - Walter Chitarra
- Institute for Sustainable Plant ProtectionNational Research CouncilTurinItaly
- Council for Agricultural Research and Economics‐Research Centre for Viticulture and Enology (CREA‐VE)ConeglianoItaly
| | - Alessandra Ferrandino
- Department of Agricultural, Forest and Food SciencesUniversity of TurinGrugliascoItaly
| | | | - Luisella Celi
- Department of Agricultural, Forest and Food SciencesUniversity of TurinGrugliascoItaly
| | - Giorgio Gambino
- Institute for Sustainable Plant ProtectionNational Research CouncilTurinItaly
| | - Irene Perrone
- Institute for Sustainable Plant ProtectionNational Research CouncilTurinItaly
| | - Claudio Lovisolo
- Department of Agricultural, Forest and Food SciencesUniversity of TurinGrugliascoItaly
- Institute for Sustainable Plant ProtectionNational Research CouncilTurinItaly
| |
Collapse
|
4
|
Yue Y, Sun S, Li J, Yu H, Wu H, Sun B, Li T, Han T, Jiang B. GmFULa improves soybean yield by enhancing carbon assimilation without altering flowering time or maturity. PLANT CELL REPORTS 2021; 40:1875-1888. [PMID: 34272585 PMCID: PMC8494661 DOI: 10.1007/s00299-021-02752-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 07/04/2021] [Indexed: 05/27/2023]
Abstract
KEY MESSAGE GmFULa improved soybean yield by enhancing carbon assimilation. Meanwhile, different from known yield-related genes, it did not alter flowering time or maturity. Soybean (Glycine max (L.) Merr.) is highly demanded by a continuously growing human population. However, increasing soybean yield is a major challenge. FRUITFULL (FUL), a MADS-box transcription factor, plays important roles in multiple developmental processes, especially fruit and pod development, which are crucial for soybean yield formation. However, the functions of its homologs in soybean are not clear. Here, through haplotype analysis, we found that one haplotype of the soybean homolog GmFULa (GmFULa-H02) is dominant in cultivated soybeans, suggesting that GmFULa-H02 was highly selected during domestication and varietal improvement of soybean. Interestingly, transgenic overexpression of GmFULa enhanced vegetative growth with more biomass accumulated and ultimately increased the yield but without affecting the plant height or changing the flowering time and maturity, indicating that it enhances the efficiency of dry matter accumulation. It also promoted the yield factors like branch number, pod number and 100-seed weight, which ultimately increased the yield. It increased the palisade tissue cell number and the chlorophyll content to promote photosynthesis and increase the soluble sugar content in leaves and fresh seeds. Furthermore, GmFULa were found to be sublocalized in the nucleus and positively regulate sucrose synthases (SUSs) and sucrose transporters (SUTs) by binding with the conserved CArG boxes in their promoters. Overall, these results showed GmFULa promotes the capacity of assimilation and the transport of the resultant assimilates to increase yield, and provided insights into the link between GmFULa and sucrose synthesis with transport-related molecular pathways that control seed yield.
Collapse
Affiliation(s)
- Yanlei Yue
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Shi Sun
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiawen Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Haidong Yu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Hongxia Wu
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China
| | - Baiquan Sun
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tao Li
- College of Life Sciences, Henan Agricultural University, Zhengzhou, 450002, China.
| | - Tianfu Han
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| | - Bingjun Jiang
- MARA Key Lab of Soybean Biology (Beijing), Institute of Crop Sciences, The Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|