1
|
Wei T, Zhang H, Wang S, Wu C, Tu T, Wang Y, Qian X. Divergent altitudinal patterns of arbuscular and ectomycorrhizal fungal communities in a mid-subtropical mountain ecosystem. IMA Fungus 2025; 16:e140187. [PMID: 40225017 PMCID: PMC11986432 DOI: 10.3897/imafungus.16.e140187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/10/2025] [Indexed: 04/15/2025] Open
Abstract
Arbuscular mycorrhizal fungi (AMF) and ectomycorrhizal fungi (EMF) form ubiquitous symbiotic relationships with plants through co-evolutionary processes, providing multiple benefits for plant growth, productivity, health, and stress mitigation. Mountain ecosystem multifunctionality is significantly influenced by mycorrhizal responses to climate change, highlighting the importance of understanding the complex interactions between these fungi and environmental variables. In this study, we investigated five vegetation zones across an altitudinal gradient (675-2157 m a.s.l.) in Wuyi Mountain, one of the most well-preserved mid-subtropical mountain ecosystems in eastern China. Using high-throughput sequencing, we examined the altitudinal distribution patterns, community assembly mechanisms, and network interactions of soil AMF and EMF. Our analyses demonstrated significant altitudinal variations in the composition and diversity of mycorrhizal fungal communities. AMF richness peaked in the subalpine dwarf forest at intermediate elevations, whereas EMF richness was highest in the low-altitude evergreen broad-leaved forest, showing a marked decrease in the alpine meadow ecosystem. β-diversity decomposition revealed that species turnover constituted the primary mechanism of community differentiation for both fungal types, explaining >56% of the observed variation. Stochastic processes dominated community assembly, with the relative importance of dispersal limitation and drift showing distinct altitudinal patterns. Network analysis indicated that AMF networks reached maximum complexity in evergreen broad-leaved forests, while EMF networks showed similar complexity levels in coniferous forests. Among the examined factors, soil properties emerged as the predominant driver of altitudinal variations in ecosystem multifunctionality, followed by AMF communities and climatic variables. These findings provide critical insights into the ecological functions and environmental adaptations of mycorrhizal fungi, advancing our understanding of their responses to environmental changes in mountain ecosystems and informing evidence-based conservation strategies.
Collapse
Affiliation(s)
- Taotao Wei
- College of Forestry, Fujian Agriculture and Forestry University, Fujian, China
| | - Huiguang Zhang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fujian, China
| | - Shunfen Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fujian, China
| | - Chunping Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fujian, China
| | - Tieyao Tu
- Fujian Provincial Forestry Survey and Planning Institute, Fujian, China
| | - Yonglong Wang
- South China Botanical Garden, Chinese Academy of Sciences, Guangdong, China
| | - Xin Qian
- College of Forestry, Fujian Agriculture and Forestry University, Fujian, China
| |
Collapse
|
2
|
He L, Sun X, Li S, Zhou W, Yu J, Zhao G. Biogeographic and co-occurrence network differentiation of fungal communities in warm-temperate montane soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174911. [PMID: 39038676 DOI: 10.1016/j.scitotenv.2024.174911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 07/16/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Studying the biogeographic patterns of fungal communities across altitudinal and soil depth gradients is essential for understanding how environmental variations shape the diversity and functionality of these complex ecological assemblages. Here, we evaluated the response and assembly patterns of fungal communities to altitude and soil depth, and the co-occurrence patterns influencing soil fungal metabolic preferences on Dongling Mountain. We observed significant variations in fungal β-diversity, driven by elevation and soil depth, with climatic parameters (MAT and MAP) and nutrient concentrations (TOC, TP, and TN) serving as prominent influencers. Additionally, we found that the multiple substrate-induced respiration rate of fungi degrading various carbon substrates was diminished in high-altitude and subsurface soils compared to low-altitude and surface soils. Stochastic processes play a more important role in controlling fungal community assembly than deterministic processes, with dispersal limitation emerging as the main driver of community assembly. While greater network complexity was evident in the topsoil compared to the subsoil, both layers harbored altitude-sensitive OTUs (asOTUs) that belonging to distinct modules. Moreover, fungal groups sensitive to the same altitude exhibited similar metabolic preferences. The asOTUs designated for lower altitude areas favored unstable carbon substrates (glucose and sucrose), while those designated as higher altitude areas exhibited a preference for recalcitrant carbon (xylan and lignin). This evidence suggests that soil fungal communities respond to environmental changes by trading off their life strategies and metabolic characteristics.
Collapse
Affiliation(s)
- Libing He
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Xiangyang Sun
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China.
| | - Suyan Li
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Wenzhi Zhou
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Jiantao Yu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| | - Guanyu Zhao
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, College of Forestry, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
3
|
Hong W, Mei H, Shi X, Lin X, Wang S, Ni R, Wang Y, Song L. Viral community distribution, assembly mechanism, and associated hosts in an industrial park wastewater treatment plant. ENVIRONMENTAL RESEARCH 2024; 247:118156. [PMID: 38199475 DOI: 10.1016/j.envres.2024.118156] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 12/02/2023] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
Viruses manipulate bacterial community composition and impact wastewater treatment efficiency. Some viruses pose threats to the environment and human populations through infection. Improving the efficiency of wastewater treatment and ensuring the health of the effluent and receptor pools requires an understanding of how viral communities assemble and interact with hosts in wastewater treatment plants (WWTPs). We used metagenomic analysis to study the distribution, assembly mechanism, and sensitive hosts for the viral communities in raw water, anaerobic tanks, and returned activated sludge units of a large-scale industrial park WWTP. Uroviricota (53.42% ± 0.14%) and Nucleocytoviricota (26.1% ± 0.19%) were dominant in all units. Viral community composition significantly differed between units, as measured by β diversity (P = 0.005). Compared to raw water, the relative viral abundance decreased by 29.8% in the anaerobic tank but increased by 9.9% in the activated sludge. Viral community assembly in raw water and anaerobic tanks was predominantly driven by deterministic processes (MST <0.5) versus stochastic processes (MST >0.5) in the activated sludge, indicating that differences in diffusion limits may fundamentally alter the assembly mechanisms of viral communities between the solid and liquid-phase environments. Acidobacteria was identified as the sensitive host contributing to viral abundance, exhibiting strong interactions and a mutual dependence (degree = 59). These results demonstrate the occurrence and prevalence of viruses in WWTPs, their different assembly mechanism, and sensitive hosts. These observations require further study of the mechanisms of viral community succession, ecological function, and roles in the successive wastewater treatment units.
Collapse
Affiliation(s)
- Wenqing Hong
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Hong Mei
- East China Engineering Science and Technology Co., Ltd, Hefei, 230024, China
| | - Xianyang Shi
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China.
| | - Xiaoxing Lin
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Shuijing Wang
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Renjie Ni
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China
| | - Yan Wang
- East China Engineering Science and Technology Co., Ltd, Hefei, 230024, China
| | - Liyan Song
- School of Resources and Environmental Engineering, Anhui University, Hefei, 230601, China; Anhui Shengjin Lake Wetland Ecology National Long-term Scientific Research Base, Dongzhi, 247230, China.
| |
Collapse
|
4
|
Gacura MD, Zak DR, Blackwood CB. From individual leaves to forest stands: importance of niche, distance decay, and stochasticity vary by ecosystem type and functional group for fungal community composition. FEMS Microbiol Ecol 2024; 100:fiae016. [PMID: 38373845 PMCID: PMC10913062 DOI: 10.1093/femsec/fiae016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 01/26/2024] [Accepted: 02/16/2024] [Indexed: 02/21/2024] Open
Abstract
Community assembly is influenced by environmental niche processes as well as stochastic processes that can be spatially dependent (e.g. dispersal limitation) or independent (e.g. priority effects). Here, we sampled senesced tree leaves as unit habitats to investigate fungal community assembly at two spatial scales: (i) small neighborhoods of overlapping leaves from differing tree species and (ii) forest stands of differing ecosystem types. Among forest stands, ecosystem type explained the most variation in community composition. Among adjacent leaves within stands, variability in fungal composition was surprisingly high. Leaf type was more important in stands with high soil fertility and dominated by differing tree mycorrhizal types (sugar maple vs. basswood or red oak), whereas distance decay was more important in oak-dominated forest stands with low soil fertility. Abundance of functional groups was explained by environmental factors, but predictors of taxonomic composition within differing functional groups were highly variable. These results suggest that fungal community assembly processes are clearest for functional group abundances and large spatial scales. Understanding fungal community assembly at smaller spatial scales will benefit from further study focusing on differences in drivers for different ecosystems and functional groups, as well as the importance of spatially independent factors such as priority effects.
Collapse
Affiliation(s)
- Matthew D Gacura
- Department of Biological Sciences, Kent State University, 800 E. Summit St., Kent, OH 44242, United States
- Biology Department, Gannon University, 109 University Square, Erie, PA 16541, United States
| | - Donald R Zak
- School for Environment and Sustainability, University of Michigan, 440 Church St., Ann Arbor, MI 48109, United States
| | - Christopher B Blackwood
- Department of Biological Sciences, Kent State University, 800 E. Summit St., Kent, OH 44242, United States
- Department of Plant, Soil, and Microbial Sciences and Department of Plant Biology, Michigan State University, 1066 Bogue St., East Lansing, MI 48842, United States
| |
Collapse
|
5
|
Mishcherikova V, Lynikienė J, Marčiulynas A, Gedminas A, Prylutskyi O, Marčiulynienė D, Menkis A. Biogeography of Fungal Communities Associated with Pinus sylvestris L. and Picea abies (L.) H. Karst. along the Latitudinal Gradient in Europe. J Fungi (Basel) 2023; 9:829. [PMID: 37623600 PMCID: PMC10455207 DOI: 10.3390/jof9080829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 08/04/2023] [Indexed: 08/26/2023] Open
Abstract
We assessed the diversity and composition of fungal communities in different functional tissues and the rhizosphere soil of Pinus sylvestris and Picea abies stands along the latitudinal gradient of these tree species distributions in Europe to model possible changes in fungal communities imposed by climate change. For each tree species, living needles, shoots, roots, and the rhizosphere soil were sampled and subjected to high-throughput sequencing. Results showed that the latitude and the host tree species had a limited effect on the diversity and composition of fungal communities, which were largely explained by the environmental variables of each site and the substrate they colonize. The mean annual temperature and mean annual precipitation had a strong effect on root fungal communities, isothermality on needle fungal communities, mean temperature of the warmest quarter and precipitation of the driest month on shoot fungal communities, and precipitation seasonality on soil fungal communities. Fungal communities of both tree species are predicted to shift to habitats with a lower annual temperature amplitude and with increasing precipitation during the driest month, but the suitability of these habitats as compared to the present conditions is predicted to decrease in the future.
Collapse
Affiliation(s)
- Valeriia Mishcherikova
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Jūratė Lynikienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Adas Marčiulynas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Artūras Gedminas
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Oleh Prylutskyi
- Department of Mycology and Plant Resistance, V.N. Karazin Kharkiv National University, Svobody Sq., 61022 Kharkiv, Ukraine;
| | - Diana Marčiulynienė
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, Girionys, 53101 Kaunas, Lithuania; (V.M.); (J.L.); (A.M.); (A.G.)
| | - Audrius Menkis
- Department of Forest Mycology and Plant Pathology, Uppsala BioCenter, Swedish University of Agricultural Sciences, 75007 Uppsala, Sweden;
| |
Collapse
|
6
|
Wang M, Wang C, Yu Z, Wang H, Wu C, Masoudi A, Liu J. Fungal diversities and community assembly processes show different biogeographical patterns in forest and grassland soil ecosystems. Front Microbiol 2023; 14:1036905. [PMID: 36819045 PMCID: PMC9928764 DOI: 10.3389/fmicb.2023.1036905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 01/16/2023] [Indexed: 02/04/2023] Open
Abstract
Soil fungal community has been largely explored by comparing their natural diversity. However, there is a relatively small body of literature concerned with fungal community assembly processes and their co-occurrence network correlations carried out across large spatial-temporal scales with complex environmental gradients in natural ecosystems and different habitats in China. Thus, soil fungal community assembly processes were assessed to predict changes in soil function in 98 different forest and grassland sites from the Sichuan, Hubei, and Hebei Provinces of China using high-throughput sequencing of nuclear ribosomal internal transcribed spacer 2 (ITS-2). The 10 most abundant fungal phyla results showed that Ascomycota was the most abundant phylum in forests from Sichuan province (64.42%) and grassland habitats from Hebei province (53.46%). Moreover, core fungal taxa (487 OTUs) represented 0.35% of total fungal OTUs. We observed higher fungal Shannon diversity and richness (the Chao1 index) from diverse mixed forests of the Sichuan and Hubei Provinces than the mono-cultured forest and grassland habitats in Hebei Province. Although fungal alpha and beta diversities exhibited different biogeographical patterns, the fungal assembly pattern was mostly driven by dispersal limitation than selection in different habitats. Fungal co-occurrence analyses showed that the network was more intense at Saihanba National Forest Park (SNFP, Hebei). In contrast, the co-occurrence network was more complex at boundaries between forests and grasslands at SNFP. Additionally, the highest number of positive (co-presence or co-operative) correlations of fungal genera were inferred from grassland habitat, which led fungal communities to form commensalism relationships compared to forest areas with having higher negative correlations (mutual exclusion or competitive). The generalized additive model (GAM) analysis showed that the association of fungal Shannon diversity and richness indices with geographical coordinates did not follow a general pattern; instead, the fluctuation of these indices was restricted to local geographical coordinates at each sampling location. These results indicated the existence of a site effect on the diversity of fungal communities across our sampling sites. Our observation suggested that higher fungal diversity and richness of fungal taxa in a particular habitat are not necessarily associated with more complex networks.
Collapse
|
7
|
Xu S, Yuan Y, Song P, Cui M, Zhao R, Song X, Cao M, Zhang Y, Yang J. The spatial patterns of diversity and their relationships with environments in rhizosphere microorganisms and host plants differ along elevational gradients. Front Microbiol 2023; 14:1079113. [PMID: 36910236 PMCID: PMC9996296 DOI: 10.3389/fmicb.2023.1079113] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/01/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Identifying spatial patterns of biodiversity along elevational gradients provides a unified framework for understanding these patterns and predicting ecological responses to climate change. Moreover, microorganisms and plants are closely interconnected (e.g., via the rhizosphere) and thus may share spatial patterns of diversity and show similar relationships with environments. Methods This study compared diversity patterns and relationships with environments in host plants and rhizosphere microorganisms (including various functional groups) along elevational gradients across three climatic zones. Results We found that above-and belowground diversity decreased monotonically or showed a hump-shaped or U-shaped pattern along elevation gradients. However, the diversity patterns of plants, bacteria, and fungi varied depending on the taxon and climatic zone. Temperature and humidity strongly contribute to above-and belowground diversity patterns and community composition along elevational gradients. Nonetheless, soil factors might be important regulators of diversity patterns and the community composition of plants and microorganisms along these gradients. Structural equation modeling revealed that environmental factors had a stronger direct effect on rhizosphere microbial diversity than host plant diversity. Discussion In sum, spatial patterns of diversity and their relationships with environments in rhizosphere microorganisms and their host plants differed at the regional scale. Different functional groups (e.g., pathogen, mycorrhiza and nitrifier) of soil microorganisms may have divergent elevational patterns and environmental responses. These data improve our understanding of elevational diversity patterns, and provide new insights into the conservation of biodiversity and ecosystem management, especially under climate change.
Collapse
Affiliation(s)
- Shijia Xu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,School of Ethnic Medicine, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education of China, Yunnan Minzu University, Kunming, Yunnan, China
| | - Yan Yuan
- School of Ethnic Medicine, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education of China, Yunnan Minzu University, Kunming, Yunnan, China
| | - Pengfei Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,School of Ethnic Medicine, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education of China, Yunnan Minzu University, Kunming, Yunnan, China
| | - Mufeng Cui
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,School of Ethnic Medicine, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education of China, Yunnan Minzu University, Kunming, Yunnan, China
| | - Rensheng Zhao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China.,School of Ethnic Medicine, Key Laboratory of Chemistry in Ethnic Medicinal Resources, State Ethnic Affairs Commission and Ministry of Education of China, Yunnan Minzu University, Kunming, Yunnan, China
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Yazhou Zhang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
| |
Collapse
|
8
|
Zhao Y, Luo M, Zhou Y, Jia X, Kang S, Yang S, Mu Q. Spatial patterns of dominant bacterial community components and their influential factors in the southern Qinling Mountains, China. Front Microbiol 2022; 13:1024236. [PMID: 36620000 PMCID: PMC9816149 DOI: 10.3389/fmicb.2022.1024236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 11/15/2022] [Indexed: 12/24/2022] Open
Abstract
Introduction Soil bacteria not only maintain the biodiversity of forest ecosystems but also affect soil nutrient cycling and ecosystem function. Nonetheless, the spatial pattern and patchy distribution of dominant bacterial community components in soil are still rarely explored. Method The spatial pattern and distribution of the dominant bacterial community components and their influential factors were investigated using traditional statistics, geostatistics, and kriging spatial interpolation methods in the Huoditang region of the Qinling Mountains, China. Results The dominant bacterial phyla were Proteobacteria, Acidobacteria, Chloroflexi, Rokubacteria, Actinobacteria, and Verrucomicrobia in this region. Among the bacterial phyla, Proteobacteria occupied an area of 2.56 km2 (the greatest) in the highest patch category, followed by Planctomycetes. Moreover, among the lowest patch category, Firmicutes occupied the lowest area (11.93 km2). The results of kriging maps showed that the dominant bacterial group presented "peak," "bimodal," and "multimodal" distributions in Huoditang. Proteobacteria, Acidobacteria, Chloroflexi, Gemmatimonadetes, Nitrospirae, and ASV (amplicon sequence variants) had significant spatial autocorrelation (< 0.68 km). Variance partitioning analysis confirmed that soil nutrients (36.5%) were the significant driving factors shaping the bacterial community structure, followed by environmental factors (28.2%) and topographic factors (7.8%). Furthermore, pH (9.1%), soil organic carbon (SOC, 6.6%), available phosphorus (AP, 4.7%), and elevation (3.9%) were the most important driving factors for the spatial distribution of bacterial community groups in the Huoditang Forest of the Qinling Mountains. The findings provide a new perspective for studying the spatial distribution characteristics and driving factors of dominant soil bacterial community components in subtropical forest ecosystems.
Collapse
|
9
|
Cao Y, Li N, Lin J, Zhang Y, Ma X, Wu P. Root system-rhizosphere soil-bulk soil interactions in different Chinese fir clones based on fungi community diversity change. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.1028686] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The diversity of the rhizosphere arbuscular mycorrhizal fungi (AMF) community is a crucial factor affecting root-soil interaction. They can absorb carbohydrates from the host body and return the nutrient elements from the soil to the host. Using 15 Chinese fir (Cunninghamia lanceolata Lamb. Hook.) clones, the AMF richness, abundance and community structure in “Root system-Rhizosphere soil-Bulk soil” were obtained by Real-time quantitative PCR (qPCR) and Illumina Miseq sequencing techniques. The results showed that under the same Chinese fir clone, the total amount of AMF was in the order of rhizosphere soil > root system > bulk soil. The species diversity and uniqueness of AMF were in the order of root system > rhizosphere soil > bulk soil. There was a significant correlation between soil-available phosphorus and AMF diversity and its dominant genera and species. Regarding AMF abundance, Chinese fir clone S18 is the highest, followed by clones Y061 and P17. There was a significant difference in AMF richness among different clones, and Glomus was the dominant genus of AMF. The AMF species diversity of P17 and S2 in roots and rhizosphere soil was high, indicating a good symbiosis between roots and the AMF community. However, the AMF diversity of clones P11 and P41 was low, and the variation of AMF community composition in the group was small. The root-soil interaction caused the AMF community to gather in the rhizosphere but had less symbiosis present with roots. Still, the AMF diversity of the rhizosphere soil of both clones was high. There was a significant correlation between the soil-available phosphorus content and the species diversity of AMF and its dominant genera and species. In conclusion, Clone P17 has high AMF richness and abundance and forms a good symbiosis with AMF, which could be a nutrient-efficient clone of Chinese fir.
Collapse
|
10
|
Wang Y, Wang J, Qu M, Li J. Root attributes dominate the community assembly of soil fungal functional guilds across arid inland river basin. Front Microbiol 2022; 13:938574. [PMID: 35935189 PMCID: PMC9355615 DOI: 10.3389/fmicb.2022.938574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Plant attributes are increasingly acknowledged as key drivers shaping soil fungal communities, but considerable uncertainty exists over fungal community assembly mechanisms and their plant drivers based only on inferences from plant aboveground attributes. To date, empirical evidences of how root attributes are integrated into microbiome-plant linkages remain limited. Using 162 soil samples from a typical arid inland river basin in China, we assessed the drivers that regulate the distribution patterns and assembly processes of total, mycorrhizal, saprotrophic and pathotrophic fungi in surface (0-15 cm) and subsurface soils (15-30 cm). Total fungi and fungal functional guilds exhibited similar distribution patterns in arid inland river basins. Null-model and variance partitioning analysis revealed that the heterogeneous selection induced by root attributes, rather than dispersal limitation, predominated the fungal community assembly. Multiple regressions on matrices further demonstrated that specific root length were the most important predictors of fungal community assembly, which mediated the balance of assembly processes of soil fungal communities. Heterogeneous selection decreased for total, mycorrhizal and saprotrophic fungi, but increased for pathotrophic fungi with increasing specific root length. Additionally, fine-root biomass exerted important effects on fungal assembly processes in subsurface soil but not in surface soil, suggesting root attributes differently affected fungal community assembly between surface and subsurface soil. Collectively, our study highlights the importance of considering root attributes in differentiating the balance of stochastic and deterministic processes in microbial community assembly.
Collapse
Affiliation(s)
- Yin Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Beijing, China
| | - Jianming Wang
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Beijing, China
| | - Mengjun Qu
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Beijing, China
| | - Jingwen Li
- School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
- Ejina Institute of Populus euphratica, Beijing Forestry University, Beijing, China
| |
Collapse
|
11
|
Liu W, Yang X, Jiang L, Guo L, Chen Y, Yang S, Liu L. Partitioning of beta-diversity reveals distinct assembly mechanisms of plant and soil microbial communities in response to nitrogen enrichment. Ecol Evol 2022; 12:e9016. [PMID: 35784037 PMCID: PMC9205676 DOI: 10.1002/ece3.9016] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 01/27/2022] [Accepted: 02/07/2022] [Indexed: 11/11/2022] Open
Abstract
Nitrogen (N) deposition poses a serious threat to terrestrial biodiversity and alters plant and soil microbial community composition. Species turnover and nestedness reflect the underlying mechanisms of variations in community composition. However, it remains unclear how species turnover and nestedness contribute to different responses of taxonomic groups (plants and soil microbes) to N enrichment. Here, based on a 13-year consecutive multi-level N addition experiment in a semiarid steppe, we partitioned community β-diversity into species turnover and nestedness components and explored how and why plant and microbial communities reorganize via these two processes following N enrichment. We found that plant, soil bacterial, and fungal β-diversity increased, but their two components showed different patterns with increasing N input. Plant β-diversity was mainly driven by species turnover under lower N input but by nestedness under higher N input, which may be due to a reduction in forb species, with low tolerance to soil Mn2+, with increasing N input. However, turnover was the main contributor to differences in soil bacterial and fungal communities with increasing N input, indicating the phenomenon of microbial taxa replacement. The turnover of bacteria increased greatly whereas that of fungi remained within a narrow range with increasing N input. We further found that the increased soil Mn2+ concentration was the best predictor for increasing nestedness of plant communities under higher N input, whereas increasing N availability and acidification together contributed to the turnover of bacterial communities. However, environmental factors could explain neither fungal turnover nor nestedness. Our findings reflect two different pathways of community changes in plants, soil bacteria, and fungi, as well as their distinct community assembly in response to N enrichment. Disentangling the turnover and nestedness of plant and microbial β-diversity would have important implications for understanding plant-soil microbe interactions and seeking conservation strategies for maintaining regional diversity.
Collapse
Affiliation(s)
- Weixing Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Xian Yang
- State Key Laboratory of Biocontrol, School of EcologySun Yat‐sen UniversityGuangzhouChina
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Lin Jiang
- School of Biological Sciences, Georgia Institute of TechnologyAtlantaGeorgiaUSA
| | - Lulu Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yaru Chen
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Sen Yang
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Lingli Liu
- State Key Laboratory of Vegetation and Environmental Change, Institute of BotanyChinese Academy of SciencesBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
12
|
Shao P, Han H, Sun J, Yang H, Xie H. Salinity Effects on Microbial Derived-C of Coastal Wetland Soils in the Yellow River Delta. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.872816] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microorganisms play a crucial role in regulating the turnover and transformation of soil organic carbon (SOC), whereas microbial contribution to SOC formation and storage is still unclear in coastal wetlands. In this study, we collected topsoil (0–20 cm) with 7 salinity concentrations and explored the shifts in microbial residues [represented by amino sugar (AS)] and their contribution to the SOC pool of coastal wetlands in the Yellow River delta. The gradually increasing soil salinity reduced soil water content (SWC), SOC, and soil nitrogen (N), especially in high salinity soils of coastal wetlands. Total ASs and their ratio to SOC, respectively, decreased by 90.56 and 66.35% from low salinity to high salinity soils, indicating that coastal wetlands with high salinity restrained microbial residue accumulation and microbial residue-C retention in the SOC pool. Together with redundancy analysis and path analysis, we found that SWC, pH, SOC, soil N, and glucosamine/muramic arid were positively associated with the ratio of ASs to SOC. The higher available soil resource (i.e., water, C substrate, and nutrient) increased microbial residue accumulation, promoting microbial derived-C contribution to SOC in low salinity coastal wetlands. The greatly decreased microbial residue contribution to SOC might be ascribed to microbial stress strategy and low available C substrate in coastal wetlands with high salinity concentration. Additionally, the gradually increasing salinity reduced fungal residue contribution to SOC but did not change bacterial residue contribution to SOC. These findings indicated that changed fungal residues would substantially influence SOC storage. Our study elucidates microbial contribution to SOC pool through residue reservoir in coastal wetlands and pushes microbial metabolites to a new application in global wetland SOC cycling.
Collapse
|