1
|
Deng YJ, Duan AQ, Li T, Tan SS, Liu SS, Wang YH, Ma J, Li JW, Liu H, Xu ZS, Liang Y, Zhou JH, Xiong AS. Altering Carotene Hydroxylase Activity of DcCYP97C1 Affects Carotenoid Flux and Changes Taproot Colour in Carrot. PLANT, CELL & ENVIRONMENT 2025; 48:3118-3135. [PMID: 39692072 DOI: 10.1111/pce.15331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/02/2024] [Accepted: 12/02/2024] [Indexed: 12/19/2024]
Abstract
CYP97C1 as a haem-containing cytochrome P450 hydroxylase (P450-type) is important for carotene hydroxylation and xanthophyll biosynthesis. Research about this type of hydroxylase was mainly reported in several model plant species which have no specialized tissues accumulating massive carotenoids. The function of CYP97C1 in the horticultural plant, like carrots, was not fully studied. In this study, we focused on the role of DcCYP97C1 in carotenoid flux and colour formation in carrot. DcCYP97C1 was found highly expressed in the 'turning stage' of carrot taproot. Using stable transformation and CRISPR/Cas9-mediated gene knockout technology, DcCYP97C1 was confirmed the rate-limiting enzyme for lutein biosynthesis and important for taproot colour formation. Overexpression of DcCYP97C1 in an orange carrot KRD (Kurodagosun) resulted in five times overproduction of lutein accompanied by dramatic reduction of carotenes. Knockout of DcCYP97C1 in orange KRD and yellow carrot QTH (Qitouhuang) reduced all kinds of carotenoids including lutein, α-carotene and β-carotene reflecting the key role of DcCYP97C1 for total carotenoid accumulation in taproot 'turning stage'. Our study demonstrated that manipulation of DcCYP97C1 was sufficient to influence carotenoid flux, change carrot colour and for high lutein production. The uncovered role of DcCYP97C1 may be helpful for understanding plant carotenoid metabolism and breeding colourful carrot cultivars.
Collapse
Affiliation(s)
- Yuan-Jie Deng
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ao-Qi Duan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Tong Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shan-Shan Tan
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Shan-Shan Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Ya-Hui Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing Ma
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jing-Wen Li
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yi Liang
- Beijing Vegetable Research Center, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Jian-Hua Zhou
- Institute of Agricultural Science and Technology of Zhengzhou, Zhengzhou, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
2
|
Wang J, Ma Q, Zhang Y, Duan Q, Zhen X, Zhang Y, Li H, Han Y, Zhang B. Gene mapping and identification of candidate genes controlling carotenoid accumulation of yellow kernels in foxtail millet. BMC PLANT BIOLOGY 2025; 25:529. [PMID: 40281394 PMCID: PMC12023638 DOI: 10.1186/s12870-025-06585-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 04/18/2025] [Indexed: 04/29/2025]
Abstract
BACKGROUND Kernel color is an important characteristic of foxtail millet (Setaria italica) associated with its market ability, quality, and nutritional value, which is mainly due to the accumulation of carotenoids. Despite its importance, the genetic basis of carotenoid variation in foxtail millet remains largely unexplored. Herein, the molecular mechanisms governing carotenoid accumulation in the kernel of foxtail millet were investigated by an exhaustive methodology encompassing Genome-Wide Association Study (GWAS), Bulk Segregant Analysis sequencing (BSA-seq), and integrated transcriptomic and metabolomic analyses. RESULTS The total carotenoid content in kernels across 201 foxtail millet germplasms showed a spectrum of variations, which indicated that the kernel color is a quantitative genetic trait controlled by multiple genes. Using GWAS on these germplasms and BSA-seq on an F6 generation Recombinant Inbred Line (RIL) population derived from the GBS (yellow kernel) and NMB (white kernel) cross, we identified genome regions linked with total carotenoid content in foxtail millet kernels. Integrated transcriptomic and metabolomic profiling during grain filling in both yellow and white varieties pinpointed SiPSY1 and SiCCD1 as key genes controlling carotenoid accumulation. Notably, the SNP (G/A) at 364 bp and the Indel (29 bp insertion) at 856 bp within the SiPSY1 promoter predominantly contributed to the variance in promoter activity. These variations markedly affected SiPSY1 expression levels, ultimately determining the phenotypic difference between yellow and white kernels. CONCLUSIONS These findings provide crucial genetic insights for the molecular mechanisms involved in carotenoid metabolism and lay a solid foundation for millet color breeding in foxtail millet.
Collapse
Affiliation(s)
- Junjie Wang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Qi Ma
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuyang Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Qian Duan
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Xiaoxi Zhen
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yaoyuan Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Hongying Li
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yuanhuai Han
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China.
| | - Bin Zhang
- College of Agriculture, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
- Houji Laboratory in Shanxi Province, Taiyuan, 030031, Shanxi, China.
| |
Collapse
|
3
|
Ángeles R, Carvalho J, Hernández-Martínez I, Morales-Ibarría M, Fradinho JC, Reis MAM, Lebrero R. Harnessing nature's palette: Exploring photosynthetic pigments for sustainable biotechnology. N Biotechnol 2025; 85:84-102. [PMID: 39788285 DOI: 10.1016/j.nbt.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 12/27/2024] [Accepted: 01/03/2025] [Indexed: 01/12/2025]
Abstract
Photosynthetic microorganisms such as cyanobacteria, microalgae, and anoxygenic phototrophic bacteria (APB) have emerged as sustainable and economic biotechnology platforms due to their ability to transform energy from light into chemicals through photosynthesis. The light is absorbed by photosynthetic pigment-protein antenna complexes which are composed of pigments such as bacteriochlorophylls (BChl) and carotenoids in APB, and chlorophylls (Chl), phycobiliproteins (PBP), and carotenoids in cyanobacteria and microalgae. These photosynthetic pigments are essential in the physiology of photosynthetic microorganisms and offer significant health benefits due to their potent antioxidant activity, with properties that include anticancer, antiaging, antiproliferative, anti-inflammatory, and neuroprotective effects. This review first provides an overview of current advances in photosynthetic pigment synthesis and the latest strategies to increase pigment content in cyanobacteria, microalgae, and APB. It then delves into the pigment production process, covering biosynthetic pathways, critical environmental parameters, and extraction methods. Finally, the potential marketability of photosynthetic pigments together with current limitations are discussed.
Collapse
Affiliation(s)
- Roxana Ángeles
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal.
| | - João Carvalho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Ingrid Hernández-Martínez
- Doctorate in Natural Sciences and Engineering, Metropolitan Autonomous University-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Mexico 05348, Mexico
| | - Marcia Morales-Ibarría
- Department of Processes and Technology. Metropolitan Autonomous University-Cuajimalpa, Av. Vasco de Quiroga 4871, Santa Fe Cuajimalpa, Mexico 05348, Mexico
| | - Joana C Fradinho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Maria A M Reis
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal; UCIBIO - Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, NOVA University Lisbon, Caparica 2829-516, Portugal
| | - Raquel Lebrero
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain; Department of Chemical Engineering and Environmental Technology, University of Valladolid, Dr. Mergelina s/n, Valladolid 47011, Spain.
| |
Collapse
|
4
|
Li Y, Yan X, Luo L, Tong J, Zhao C. The Effects of Experimental Warming on Phyllosphere Microbial Communities of Picea asperata and Fargesia nitida in Eastern Tibetan Plateau, China. Curr Microbiol 2025; 82:202. [PMID: 40116955 DOI: 10.1007/s00284-025-04186-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
Phyllosphere microbiomes play a crucial role in leaf physiological functions, yet their responses to climate warming remain unclear. In this study, we examined the effects of a 3-year experimental warming on the composition and potential functions of phyllosphere bacterial and fungal communities, as well as leaf physiochemical properties of two dominant species (Picea asperata and Fargesia nitida) in the eastern Tibetan Plateau. The results indicated that the phyllosphere bacterial diversity in P. asperata was higher than in F. nitida, but the fungal diversity showed no significant difference between the two species under unwarmed conditions. Warming decreased bacterial and fungal diversity in P. asperata, while increased these parameters in F. nitida. The compositions of the phyllosphere microbial community differed between the two species (p < 0.05), but Rhizobiales and Capnodiales remained the dominant orders within the bacterial and fungal community for both species, respectively. The bacterial community composition of P. asperata needles and the fungal community composition of F. nitida leaves were more sensitive to warming. Additionally, the two species exhibited significant differences in most leaf physiochemical properties, including leaf water content, C, N, P, and photosynthetic pigment content (p < 0.05). The compositions and predictive functions of the phyllosphere microbial communities were significantly correlated with the leaf physiochemical properties. In summary, phyllosphere microbial communities and their responses to warming were significantly affected by host plant species and were closely related to the distinct physiochemical traits of their leaves.
Collapse
Affiliation(s)
- Yunyi Li
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Xiaoyan Yan
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Lin Luo
- Chengdu Institute of Biology, Chinese Academy of Sciences, P.O. Box 416, Chengdu, 610041, People's Republic of China
| | - Jin Tong
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China
| | - Chunzhang Zhao
- State Key Laboratory of Geohazard Prevention and Geoenvironment Protection, College of Ecology and Environment, Chengdu University of Technology, Chengdu, 610059, People's Republic of China.
| |
Collapse
|
5
|
Sandmann G. Origin and evolution of yeast carotenoid pathways. Biochim Biophys Acta Mol Cell Biol Lipids 2025; 1870:159586. [PMID: 39667662 DOI: 10.1016/j.bbalip.2024.159586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 12/09/2024] [Indexed: 12/14/2024]
Abstract
Carotenoid pathways exist in nature in all domains. Comparison of the genes involved and their distribution allowed the elucidation of the origin and evolution of carotenoid biosynthesis from an early common ancestor of prokaryotes to Bacteria and Archaea. From the latter domain, carotenogenic genes are inherited by fungi as the only phylum of Eukarya. Carotenoid biosynthesis in the algal-plant lineage emerged independently by endosymbiotic gene transfer from an engulfed carotenogenic cyanobacterium. The early set of carotenogenic genes included crtB of phytoene synthase, the desaturase gene crtI, and the lycopene cyclase gene crtYcd for the synthesis of β-carotene. This carotenoid is further metabolised either to zeaxanthin and retinal due to the presence of crtZ and ccd or elongated to a C50 carotenoids by the crtEb gene product. The diversified pathways, especially in bacteria and fungi, result from gene modifications altering the substrate and product specificities of the corresponding enzymes or from the acquisition of novel genes. This was highlighted in more detail for the carotenoid pathways in the red yeasts of Basidiomycota leading to torularhodin, 2'-plectaniaxanthin, and astaxanthin.
Collapse
Affiliation(s)
- Gerhard Sandmann
- Biosynthesis Group, Institute for Molecular Biosciences, Fachbereich Biowissenschaften, Goethe Universität Frankfurt, D-60438 Frankfurt, Germany.
| |
Collapse
|
6
|
Zhang Y, Han P, Zhao R, Yu S, Liu H, Ji S, Chen W. Transcriptome and Metabolome Analyses Reveal the Mechanism of Color Differences in Pomegranate ( Punica granatum L.) Red and White Petals. PLANTS (BASEL, SWITZERLAND) 2025; 14:652. [PMID: 40094520 PMCID: PMC11901741 DOI: 10.3390/plants14050652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Pomegranate (Punica granatum L.) is an important economic tree, possessing both edible and ornamental value. Flower color is an important ornamental trait of pomegranate, but the color formation pattern and related molecular mechanisms of pomegranate petals are still unclear. In this study, we conducted physiological, transcriptomic, and metabolomic studies on the petals of Tunisia and White pomegranate varieties during the blooming stage. The results showed that compared to White petals, the contents of anthocyanin, carotenoid, and sucrose in Tunisia petals were significantly increased, while the flavonoid content was significantly decreased. Through RNA-seq, 23 DEGs were identified in the anthocyanin synthesis, and 3 DEGs were identified in the carotenoid synthesis. Transcription factor genes such as MYB, bHLH, WRKY, and MADS were identified as key candidates for regulating anthocyanin metabolism. Metabolomic analysis revealed that eight DEMs are associated with anthocyanin synthesis and three DEMs are associated with carotenoid synthesis. In addition, caffeic acid and its derivatives were significantly upregulated in Tunisia petals. In summary, we propose the following hypothesis: the accumulation of anthocyanins and carotenoids is the reason for the red color of Tunisian petals, and the upregulation of structural genes, including PAL, C4H, 4CL, CHS, CHI, F3H, F3'H, DFR, ANS, PSY, and LCYB, leads to an increase in their content. Transcription factor genes such as MYB, bHLH, bZIP, MADS, and WRKY may also play a positive role in anthocyanin accumulation. The research results provide a basis for the theory of pomegranate petal color formation.
Collapse
Affiliation(s)
- Yong Zhang
- School of Landscape Architecture and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.Z.); (H.L.)
| | - Peng Han
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (P.H.); (R.Z.)
| | - Ruijie Zhao
- College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing 210095, China; (P.H.); (R.Z.)
| | - Shuhan Yu
- College of Landscape Architecture, Zhejiang A&F University, Hangzhou 311300, China;
| | - Hang Liu
- School of Landscape Architecture and Horticulture, Jiangsu Agri-Animal Husbandry Vocational College, Taizhou 225300, China; (Y.Z.); (H.L.)
| | - Shuren Ji
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| | - Wei Chen
- College of Landscape Architecture, Jiangsu Vocational College of Agriculture and Forestry, Jurong 212400, China;
| |
Collapse
|
7
|
Rieseberg TP, Dadras A, Darienko T, Post S, Herrfurth C, Fürst-Jansen JMR, Hohnhorst N, Petroll R, Rensing SA, Pröschold T, de Vries S, Irisarri I, Feussner I, de Vries J. Time-resolved oxidative signal convergence across the algae-embryophyte divide. Nat Commun 2025; 16:1780. [PMID: 39971942 PMCID: PMC11840003 DOI: 10.1038/s41467-025-56939-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 02/06/2025] [Indexed: 02/21/2025] Open
Abstract
The earliest land plants faced a significant challenge in adapting to environmental stressors. Stress on land is unique in its dynamics, entailing swift and drastic changes in light and temperature. While we know that land plants share with their closest streptophyte algal relatives key components of the genetic makeup for dynamic stress responses, their concerted action is little understood. Here, we combine time-course stress profiling using photophysiology, transcriptomics on 2.7 Tbp of data, and metabolite profiling analyses on 270 distinct samples, to study stress kinetics across three 600-million-year-divergent streptophytes. Through co-expression analysis and Granger causal inference we predict a gene regulatory network that retraces a web of ancient signal convergences at ethylene signaling components, osmosensors, and chains of major kinases. These kinase hubs already integrated diverse environmental inputs since before the dawn of plants on land.
Collapse
Affiliation(s)
- Tim P Rieseberg
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
| | - Armin Dadras
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Tatyana Darienko
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Albrecht Haller Institute of Plant Science, Experimental Phycology and Culture Collection of Algae at Göttingen University (EPSAG), Nikolausberger Weg 18, 37073, Göttingen, Germany
| | - Sina Post
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
| | - Cornelia Herrfurth
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
- University of Göttingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Goettingen Metabolomics and Lipidomics, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Janine M R Fürst-Jansen
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Nils Hohnhorst
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Romy Petroll
- Department of Algal Development and Evolution, Max Planck Institute for Biology Tübingen, Tübingen, Germany
| | - Stefan A Rensing
- University of Freiburg, Centre for Biological Signalling Studies (BIOSS), Freiburg, Germany
| | - Thomas Pröschold
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Innsbruck, Research Department for Limnology, 5310, Mondsee, Austria
| | - Sophie de Vries
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
| | - Iker Irisarri
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany
- University of Göttingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Göttingen, Germany
- Section Phylogenomics, Centre for Molecular Biodiversity Research, Leibniz Institute for the Analysis of Biodiversity Change (LIB), Museum of Nature, Hamburg, Martin-Luther-King Platz 3, 20146, Hamburg, Germany
- Museo Nacional de Ciencias Naturales (MNCN-CSIC), Department of Biodiversity and Evolutionary Biology, José Gutiérrez Abascal 2, 28006, Madrid, Spain
| | - Ivo Feussner
- University of Göttingen, Albrecht Haller Institute of Plant Science, Department of Plant Biochemistry, Justus-von-Liebig-Weg, 37077, Göttingen, Germany
- University of Göttingen, Goettingen Center for Molecular Biosciences (GZMB), Service Unit for Goettingen Metabolomics and Lipidomics, Justus-von-Liebig Weg 11, 37077, Göttingen, Germany
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, Justus- von-Liebig Weg 11, 37077, Göttingen, Germany
| | - Jan de Vries
- University of Göttingen, Institute of Microbiology and Genetics, Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
- University of Göttingen, Campus Institute Data Science (CIDAS), Goldschmidtstr. 1, 37077, Göttingen, Germany.
- University of Göttingen, Göttingen Center for Molecular Biosciences (GZMB), Department of Applied Bioinformatics, Goldschmidtstr. 1, 37077, Göttingen, Germany.
| |
Collapse
|
8
|
Takaichi S. Distribution, Biosynthesis, and Function of Carotenoids in Oxygenic Phototrophic Algae. Mar Drugs 2025; 23:62. [PMID: 39997186 PMCID: PMC11857680 DOI: 10.3390/md23020062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Revised: 01/23/2025] [Accepted: 01/26/2025] [Indexed: 02/26/2025] Open
Abstract
For photosynthesis, oxygenic phototrophic organisms necessarily contain not only chlorophylls but also carotenoids. Various carotenoids have been identified in algae and taxonomic studies of algae have been conducted. In this review, the relationship between the distribution of chlorophylls and carotenoids and the phylogeny of sea and freshwater oxygenic phototrophs, including cyanobacteria, red algae, brown algae, and green algae, is summarized. These phototrophs contain division- or class-specific chlorophylls and carotenoids, such as fucoxanthin, peridinin, diadinoxanthin, and siphonaxanthin. The distribution of β-carotene and its derivatives, including β-carotene, zeaxanthin, violaxanthin, neoxanthin, diadinoxanthin, fucoxanthin, and peridinin (β-branch carotenoids), are limited to divisions of a part of Rhodophyta, Cryptophyta, Heterokontophyta, Haptophyta, and Dinophyta. Meanwhile, the distribution of α-carotene and its derivatives, such as lutein, loroxanthin, and siphonaxanthin (α-branch carotenoids), are limited to divisions of a part of Rhodophyta (macrophytic type), Cryptophyta, Euglenophyta, Chlorarachniophyta, and Chlorophyta. In addition, carotenogenesis pathways are also discussed based on the chemical structures of carotenoids and the known characteristics of carotenogenesis enzymes in other organisms. The specific genes and enzymes for carotenogenesis in algae are not yet known. Most carotenoids bind to membrane-bound pigment-protein complexes, such as reaction centers and light-harvesting complexes. Some carotenoids function in photosynthesis and are briefly summarized. Water-soluble peridinin-chlorophyll a-protein (PCP) and orange carotenoid protein (OCP) have also been characterized. This review is a summary and update from the previous review on the distribution of major carotenoids, primary carotenogenesis pathways, and the characteristics of carotenogenesis enzymes and genes.
Collapse
Affiliation(s)
- Shinichi Takaichi
- Department of Molecular Microbiology, Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Setagaya, Tokyo 156-8502, Japan
| |
Collapse
|
9
|
Łaska G, Matejczyk M, Dauksza U. The expression of different gene constructs in Escherichia coli SM lux biosensor after exposure to drugs. Sci Rep 2024; 14:31899. [PMID: 39738597 PMCID: PMC11685396 DOI: 10.1038/s41598-024-83190-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Accepted: 12/12/2024] [Indexed: 01/02/2025] Open
Abstract
The research used bacterial biosensors containing bacterial luciferase genes to monitor changes in the environment in real-time. In this work to express four different gene constructs: recA:luxCDABE, soxS:luxCDABE, micF:luxCDABE, and rpoB:luxCDABE in Escherichia coli SM lux biosensor after exposure to three different antibiotics (nalidixic acid, ampicillin, kanamycin) and diclofenac was determined. It was found that incubation of the E. coli SM strain in various concentrations of analytes results in differentiation in gene expression at each of the tested concentrations (from 0.625 to 10 µg/mL) and during all three measurements, in "time 0", after 30 min. and after 1 h. The measurable signal is created as a result of the action of reporter genes (bacterial luciferase genes luxCDABE), present in genetically modified bacterial cells. E. coli luminescent bioreporters in the stationary phase were used. In the analysis of the induction of the promoter (regulatory proteins) to the control (0 µg/ml), the highest biosensor response was shown in the case of kanamycin concentration equal to 0.625 µg/mL after 1-h incubation. The highest increase express gene construct was found for micF:luxCDABE in E. coli SM343 lux biosensor, where the micF promoter induction relative to the control at a concentration of 0.625 µg/mL is 73.9%.
Collapse
Affiliation(s)
- Grażyna Łaska
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, 15-351, Białystok, Poland.
| | - Marzena Matejczyk
- Department of Chemistry, Biology and Biotechnology, of Natural Products Chemistry, Bialystok University of Technology, 15-351, Białystok, Poland
| | - Urszula Dauksza
- Department of Agri-Food Engineering and Environmental Management, Bialystok University of Technology, 15-351, Białystok, Poland
| |
Collapse
|
10
|
Wang M, Zhang S, Li R, Zhao Q. Unraveling the specialized metabolic pathways in medicinal plant genomes: a review. FRONTIERS IN PLANT SCIENCE 2024; 15:1459533. [PMID: 39777086 PMCID: PMC11703845 DOI: 10.3389/fpls.2024.1459533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Accepted: 12/04/2024] [Indexed: 01/11/2025]
Abstract
Medicinal plants are important sources of bioactive specialized metabolites with significant therapeutic potential. Advances in multi-omics have accelerated the understanding of specialized metabolite biosynthesis and regulation. Genomics, transcriptomics, proteomics, and metabolomics have each contributed new insights into biosynthetic gene clusters (BGCs), metabolic pathways, and stress responses. However, single-omics approaches often fail to fully address these complex processes. Integrated multi-omics provides a holistic perspective on key regulatory networks. High-throughput sequencing and emerging technologies like single-cell and spatial omics have deepened our understanding of cell-specific and spatially resolved biosynthetic dynamics. Despite these advancements, challenges remain in managing large datasets, standardizing protocols, accounting for the dynamic nature of specialized metabolism, and effectively applying synthetic biology for sustainable specialized metabolite production. This review highlights recent progress in omics-based research on medicinal plants, discusses available bioinformatics tools, and explores future research trends aimed at leveraging integrated multi-omics to improve the medicinal quality and sustainable utilization of plant resources.
Collapse
Affiliation(s)
- Mingcheng Wang
- Institute for Advanced Study, Chengdu University, Chengdu, China
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
| | - Shuqiao Zhang
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Rui Li
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| | - Qi Zhao
- Engineering Research Center of Sichuan-Tibet Traditional Medicinal Plant, Chengdu University, Chengdu, China
- School of Food and Biological Engineering, Chengdu University, Chengdu, China
| |
Collapse
|
11
|
Singh R, Borlace GN, Sringam P, Thongkham E, Aiemsaard J. Phytochemical composition and antimicrobial potential of Stevia rebaudiana Bertoni extract and its topical spray formulation against animal skin pathogens. Vet World 2024; 17:2975-2984. [PMID: 39897348 PMCID: PMC11784044 DOI: 10.14202/vetworld.2024.2975-2984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 11/26/2024] [Indexed: 02/04/2025] Open
Abstract
Background and Aim The rise of antimicrobial resistance in veterinary medicine is a significant concern, particularly for pathogens responsible for skin infections. Although Stevia rebaudiana Bertoni (stevia) has demonstrated effective antimicrobial properties, there is limited research on its efficacy against animal skin pathogens. This study aimed to identify natural compounds in stevia extract, develop a topical spray formulation, and assess its effectiveness against six common bacterial and fungal pathogens associated with animal skin infections. Materials and Methods The aerial parts of stevia plants were extracted using hexane in a Soxhlet apparatus. Total phenolic and flavonoid contents were quantified using colorimetric assays. The volatile oil content was analyzed using gas chromatography-mass spectrometry (GC-MS). The antimicrobial activity of stevia extract against Staphylococcus pseudintermedius, Malassezia pachydermatis, Microsporum canis, Microsporum gypseum, Microsporum gallinae, and Trichophyton mentagrophytes was evaluated using broth microdilution and time-kill tests. Environmental scanning electron microscopy (E-SEM) and leakage studies were conducted to assess the extract's impact on microbial morphology and cell membrane integrity. The antimicrobial efficacy and stability of a topical spray formulation containing stevia extract were evaluated using time-kill and freeze-thaw testing. Results The stevia extract yield was 3.59% of the dry plant weight with 259.96 ± 23.66 mg gallic acid equivalent (GAE)/g extract of total phenolics and 247.41 ± 19.92 mg quercetin equivalent (QE)/g extract of total flavonoids. GC-MS analysis identified major volatile components, including N-acetyl-14, 15, 16-trinorlabd-8(17)-en-13-amine (37.70% of peak area), phytol (11.02% of peak area), (-)-spathulenol (9.46% of peak area), n-hexadecanoic acid (8.01% of peak area), and (diphenylphosphinoyloxymethyl) dimethylsilane (7.59% of peak area). The minimum inhibitory concentration of the extract against the tested microorganisms ranged from 0.25 to 128.00 mg/mL. Time-kill kinetics exhibited time- and concentration-dependent germicidal effects. E-SEM and cell leakage analyses indicated that stevia extract compromised microbial cell membrane integrity. A spray formulation containing 10% w/w stevia extract displayed excellent eradication efficacy, achieving a 99.9999% reduction of S. pseudintermedius and a 99.999% reduction of M. pachydermatis and dermatophytes, with good stability after six freeze-thaw cycles. Conclusion Stevia extract is an effective antimicrobial against S. pseudintermedius, M. pachydermatis, Mi. canis, Mi. gypseum, Mi. gallinae, and T. mentagrophytes in vitro. Future research will investigate the pharmaceutical properties and toxicity profiles of purified compounds and determine appropriate dosages and clinical efficacy.
Collapse
Affiliation(s)
- Ranee Singh
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Glenn Neville Borlace
- Department of Pharmaceutical Chemistry, Faculty of Pharmaceutical Sciences, Khon Kaen University, Khon Kaen, Thailand
| | - Patchanee Sringam
- Division of Physiology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Eakachai Thongkham
- Department of Pharmacology, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, Thailand
| | - Jareerat Aiemsaard
- Division of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
12
|
Rieseberg TP, Holzhausen A, Bierenbroodspot MJ, Zhang W, Abreu IN, de Vries J. Conserved carotenoid pigmentation in reproductive organs of Charophyceae. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230372. [PMID: 39343025 PMCID: PMC11449214 DOI: 10.1098/rstb.2023.0372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/10/2024] [Accepted: 06/19/2024] [Indexed: 10/01/2024] Open
Abstract
Sexual reproduction in Charophyceae abounds in complex traits. Their gametangia develop as intricate structures, with oogonia spirally surrounded by envelope cells and richly pigmented antheridia. The red-probably protectant-pigmentation of antheridia is conserved across Charophyceae. Chara tomentosa is, however, unique in exhibiting this pigmentation and also in vegetative tissue. Here, we investigated the two sympatric species, C. tomentosa and Chara baltica, and compared their molecular chassis for pigmentation. Using reversed phase C30 high performance liquid chromatography (RP-C30-HPLC), we uncover that the major pigments are β-carotene, δ-carotene and γ-carotene; using headspace solid-phase microextraction coupled to gas chromatography equipped with a mass spectrometer (HS-SPME-GC-MS), we pinpoint that the unusually large carotenoid pool in C. tomentosa gives rise to diverse volatile apocarotenoids, including abundant 6-methyl-5-hepten-2-one. Based on transcriptome analyses, we uncover signatures of the unique biology of Charophycaee and genes for pigment production, including monocyclized carotenoids. The rich carotenoid pool probably serves as a substrate for diverse carotenoid-derived metabolites, signified not only by (i) the volatile apocarotenoids we detected but (ii) the high expression of a gene coding for a cytochrome P450 enzyme related to land plant proteins involved in the biosynthesis of carotenoid-derived hormones. Overall, our data shed light on a key protection strategy of sexual reproduction in the widespread group of macroalgae. The genetic underpinnings of this are shared across hundreds of millions of years of plant and algal evolution. This article is part of the theme issue 'The evolution of plant metabolism'.
Collapse
Affiliation(s)
- Tim P Rieseberg
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Anja Holzhausen
- Department of Crop Physiology, Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Betty Heimann-Str. 5 , Halle (Saale) 06120, Germany
| | - Maaike J Bierenbroodspot
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Wanchen Zhang
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
| | - Ilka N Abreu
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Plant Biochemistry, Albrecht Haller Institute of Plant Science, Justus-von-Liebig-Weg, University of Goettingen , Goettingen 37077, Germany
- Goettingen Center for Molecular Biosciences (GZMB), Goettingen Metabolomics and Lipidomics Laboratory, Justus-von-Liebig Weg 11, University of Goettingen , Goettingen 37077, Germany
| | - Jan de Vries
- Department of Applied Bioinformatics, Institute of Microbiology and Genetics, Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), Goldschmidtstr. 1, University of Goettingen , Goettingen 37077, Germany
- Department of Applied Bioinformatics, Campus Institute Data Science, University of Goettingen , Goettingen 37077, Germany
| |
Collapse
|
13
|
Sun Q, He Z, Feng D, Wei R, Zhang Y, Ye J, Chai L, Xu J, Cheng Y, Xu Q, Deng X. The abscisic acid-responsive transcriptional regulatory module CsERF110-CsERF53 orchestrates citrus fruit coloration. PLANT COMMUNICATIONS 2024; 5:101065. [PMID: 39164970 PMCID: PMC11589302 DOI: 10.1016/j.xplc.2024.101065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 08/15/2024] [Indexed: 08/22/2024]
Abstract
Carotenoid biosynthesis is closely associated with abscisic acid (ABA) during the ripening process of non-climacteric fruits, but the regulatory mechanism that links ABA signaling to carotenoid metabolism remains largely unclear. Here, we identified two master regulators of ABA-mediated citrus fruit coloration, CsERF110 and CsERF53, which activate the expression of carotenoid metabolism genes (CsGGPPS, CsPSY, CsPDS, CsCRTISO, CsLCYB2, CsLCYE, CsHYD, CsZEP, and CsNCED2) to facilitate carotenoid accumulation. Further investigations showed that CsERF110 not only activates the expression of CsERF53 by binding to its promoter but also interacts with CsERF53 to form the transcriptional regulatory module CsERF110-CsERF53. We also discovered a positive feedback regulatory loop between the ABA signal and carotenoid metabolism regulated by the transcriptional regulatory module CsERF110-CsERF53. Our results reveal that the CsERF110-CsERF53 module responds to ABA signaling, thereby orchestrating citrus fruit coloration. Considering the importance of carotenoid content for citrus and many other carotenoid-rich crops, the revelation of molecular mechanisms that underlie ABA-mediated carotenoid biosynthesis in plants will facilitate the development of transgenic/gene-editing approaches, further contributing to improving the quality of citrus and other carotenoid-rich crops.
Collapse
Affiliation(s)
- Quan Sun
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; National Research Center for Apple Engineering and Technology, Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, College of Horticulture Science and Engineering, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Zhengchen He
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Di Feng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Ranran Wei
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yingzi Zhang
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Junli Ye
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Lijun Chai
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Juan Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan 430070, China; Hubei Hongshan Laboratory Wuhan, Hubei 430070, China.
| |
Collapse
|
14
|
Kim M, Jung J, Kim W, Park Y, Jeon CO, Park W. Extensive Genomic Rearrangement of Catalase-Less Cyanobloom-Forming Microcystis aeruginosa in Freshwater Ecosystems. J Microbiol 2024; 62:933-950. [PMID: 39377859 DOI: 10.1007/s12275-024-00172-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/11/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
Many of the world's freshwater ecosystems suffer from cyanobacteria-mediated blooms and their toxins. However, a mechanistic understanding of why and how Microcystis aeruginosa dominates over other freshwater cyanobacteria during warmer summers is lacking. This paper utilizes comparative genomics with other cyanobacteria and literature reviews to predict the gene functions and genomic architectures of M. aeruginosa based on complete genomes. The primary aim is to understand this species' survival and competitive strategies in warmer freshwater environments. M. aeruginosa strains exhibiting a high proportion of insertion sequences (~ 11%) possess genomic structures with low synteny across different strains. This indicates the occurrence of extensive genomic rearrangements and the presence of many possible diverse genotypes that result in greater population heterogeneities than those in other cyanobacteria in order to increase survivability during rapidly changing and threatening environmental challenges. Catalase-less M. aeruginosa strains are even vulnerable to low light intensity in freshwater environments with strong ultraviolet radiation. However, they can continuously grow with the help of various defense genes (e.g., egtBD, cruA, and mysABCD) and associated bacteria. The strong defense strategies against biological threats (e.g., antagonistic bacteria, protozoa, and cyanophages) are attributed to dense exopolysaccharide (EPS)-mediated aggregate formation with efficient buoyancy and the secondary metabolites of M. aeruginosa cells. Our review with extensive genome analysis suggests that the ecological vulnerability of M. aeruginosa cells can be overcome by diverse genotypes, secondary defense metabolites, reinforced EPS, and associated bacteria.
Collapse
Affiliation(s)
- Minkyung Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jaejoon Jung
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Wonjae Kim
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yerim Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Che Ok Jeon
- Department of Life Science, Chung-Ang University, Seoul, 06974, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
15
|
Huang Y, Weng Z, Li S, Zhang S, Chen H, Luo Q, Yang R, Liu T, Wang T, Zhang P, Chen J. The photosynthetic performance and photoprotective role of carotenoids response to light stress in intertidal red algae Neoporphyra haitanensis. JOURNAL OF PHYCOLOGY 2024; 60:942-955. [PMID: 39016211 DOI: 10.1111/jpy.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/21/2024] [Accepted: 05/02/2024] [Indexed: 07/18/2024]
Abstract
Neoporphyra haitanensis, a red alga harvested for food, thrives in the intertidal zone amid dynamic and harsh environments. High irradiance represents a major stressor in this habitat, posing a threat to the alga's photosynthetic apparatus. Interestingly, N. haitanensis has adapted to excessive light despite the absence of a crucial xanthophyll cycle-dependent photoprotection pathway. Thus, it is valuable to investigate the mechanisms by which N. haitanensis copes with excessive light and to understand the photoprotective roles of carotenoids. Under high light intensities and prolonged irradiation time, N. haitanensis displayed reduction in photosynthetic efficiency and phycobiliproteins levels, as well as different responses in carotenoids. The decreased carotene contents suggested their involvement in the synthesis of xanthophylls, as evidenced by the up-regulation of lycopene-β-cyclase (lcyb) and zeaxanthin epoxidase (zep) genes. Downstream xanthophylls such as lutein, zeaxanthin, and antheraxanthin increased proportionally to light stress, potentially participating in scavenging reactive oxygen species (ROS). When accompanied by the enhanced activity of ascorbate peroxidase (APX), these factors resulted in a reduction in ROS production. The responses of intermediates α-cryptoxanthin and β-cryptoxanthin were felt somewhere between carotenes and zeaxanthin/lutein. Furthermore, these changes were ameliorated when the organism was placed in darkness. In summary, down-regulation of the organism's photosynthetic capacity, coupled with heightened xanthophylls and APX activity, activates photoinhibition quenching (qI) and antioxidant activity, helping N. haitanensis to protect the organism from the damaging effects of excessive light exposure. These findings provide insights into how red algae adapt to intertidal lifestyles.
Collapse
Affiliation(s)
- Yongbo Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Ziyu Weng
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Shuang Li
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Shuyu Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Haimin Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Qijun Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Rui Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| | - Tao Liu
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen, China
- State Key Laboratory of Mariculture Breeding, Xiamen University, Xiamen, China
| | - Tiegan Wang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
| | - Peng Zhang
- Zhejiang Mariculture Research Institute, Wenzhou, Zhejiang, China
| | - Juanjuan Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Ningbo University, Ningbo, Zhejiang, China
| |
Collapse
|
16
|
Huang B, Li Y, Jia K, Wang X, Wang H, Li C, Sui X, Zhang Y, Nie J, Yuan Y, Jia D. The MdMYB44-MdTPR1 repressive complex inhibits MdCCD4 and MdCYP97A3 expression through histone deacetylation to regulate carotenoid biosynthesis in apple. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:540-556. [PMID: 38662911 DOI: 10.1111/tpj.16782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 04/03/2024] [Accepted: 04/12/2024] [Indexed: 07/01/2024]
Abstract
Carotenoids are photosynthetic pigments and antioxidants that contribute to different plant colors. However, the involvement of TOPLESS (TPL/TPR)-mediated histone deacetylation in the modulation of carotenoid biosynthesis through ethylene-responsive element-binding factor-associated amphiphilic repression (EAR)-containing transcription factors (TFs) in apple (Malus domestica Borkh.) is poorly understood. MdMYB44 is a transcriptional repressor that contains an EAR repression motif. In the present study, we used functional analyses and molecular assays to elucidate the molecular mechanisms through which MdMYB44-MdTPR1-mediated histone deacetylation influences carotenoid biosynthesis in apples. We identified two carotenoid biosynthetic genes, MdCCD4 and MdCYP97A3, that were confirmed to be involved in MdMYB44-mediated carotenoid biosynthesis. MdMYB44 enhanced β-branch carotenoid biosynthesis by repressing MdCCD4 expression, whereas MdMYB44 suppressed lutein level by repressing MdCYP97A3 expression. Moreover, MdMYB44 partially influences carotenoid biosynthesis by interacting with the co-repressor TPR1 through the EAR motif to inhibit MdCCD4 and MdCYP97A3 expression via histone deacetylation. Our findings indicate that the MdTPR1-MdMYB44 repressive cascade regulates carotenoid biosynthesis, providing profound insights into the molecular basis of histone deacetylation-mediated carotenoid biosynthesis in plants. These results also provide evidence that the EAR-harboring TF/TPL repressive complex plays a universal role in histone deacetylation-mediated inhibition of gene expression in various plants.
Collapse
Affiliation(s)
- Benchang Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Yuchen Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Kun Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xinyuan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Huimin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Chunyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Xiuqi Sui
- Yantai Modern Fruit Development limited company, Yantai, 264003, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| | - Dongjie Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao, 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao, 266109, China
| |
Collapse
|
17
|
Jia D, Li Y, Jia K, Huang B, Dang Q, Wang H, Wang X, Li C, Zhang Y, Nie J, Yuan Y. Abscisic acid activates transcription factor module MdABI5-MdMYBS1 during carotenoid-derived apple fruit coloration. PLANT PHYSIOLOGY 2024; 195:2053-2072. [PMID: 38536032 DOI: 10.1093/plphys/kiae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 02/11/2024] [Indexed: 06/30/2024]
Abstract
Carotenoids are major pigments contributing to fruit coloration. We previously reported that the apple (Malus domestica Borkh.) mutant fruits of "Beni Shogun" and "Yanfu 3" show a marked difference in fruit coloration. However, the regulatory mechanism underlying this phenomenon remains unclear. In this study, we determined that carotenoid is the main factor influencing fruit flesh color. We identified an R1-type MYB transcription factor (TF), MdMYBS1, which was found to be highly associated with carotenoids and abscisic acid (ABA) contents of apple fruits. Overexpression of MdMYBS1 promoted, and silencing of MdMYBS1 repressed, β-branch carotenoids synthesis and ABA accumulation. MdMYBS1 regulates carotenoid biosynthesis by directly activating the major carotenoid biosynthetic genes encoding phytoene synthase (MdPSY2-1) and lycopene β-cyclase (MdLCYb). 9-cis-epoxycarotenoid dioxygenase 1 (MdNCED1) contributes to ABA biosynthesis, and MdMYBS1 enhances endogenous ABA accumulation by activating the MdNCED1 promoter. In addition, the basic leucine zipper domain TF ABSCISIC ACID-INSENSITIVE5 (MdABI5) was identified as an upstream activator of MdMYBS1, which promotes carotenoid and ABA accumulation. Furthermore, ABA promotes carotenoid biosynthesis and enhances MdMYBS1 and MdABI5 promoter activities. Our findings demonstrate that the MdABI5-MdMYBS1 cascade activated by ABA regulates carotenoid-derived fruit coloration and ABA accumulation in apple, providing avenues in breeding and planting for improvement of fruit coloration and quality.
Collapse
Affiliation(s)
- Dongjie Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yuchen Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Kun Jia
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Benchang Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Qingyuan Dang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Huimin Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Xinyuan Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Chunyu Li
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yugang Zhang
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs/National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao)/Qingdao Key Lab of Modern Agriculture Quality and Safety Engineering, Qingdao 266109, China
| |
Collapse
|
18
|
Mussagy CU, Farias FO, Tropea A, Santi L, Mondello L, Giuffrida D, Meléndez-Martínez AJ, Dufossé L. Ketocarotenoids adonirubin and adonixanthin: Properties, health benefits, current technologies, and emerging challenges. Food Chem 2024; 443:138610. [PMID: 38301562 DOI: 10.1016/j.foodchem.2024.138610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 12/08/2023] [Accepted: 01/26/2024] [Indexed: 02/03/2024]
Abstract
Given their multifaceted roles, carotenoids have garnered significant scientific interest, resulting in a comprehensive and intricate body of literature that occasionally presents conflicting findings concerning the proper characterization, quantification, and bioavailability of these compounds. Nevertheless, it is undeniable that the pursuit of novel carotenoids remains a crucial endeavor, as their diverse properties, functionalities and potential health benefits make them invaluable natural resources in agri-food and health promotion through the diet. In this framework, particular attention is given to ketocarotenoids, viz., astaxanthin (one of them) stands out for its possible multifunctional role as an antioxidant, anticancer, and antimicrobial agent. It has been widely explored in the market and utilized in different applications such as nutraceuticals, food additives, among others. Adonirubin and adonixanthin can be naturally found in plants and microorganisms. Due to the increasing significance of natural-based products and the remarkable opportunity to introduce these ketocarotenoids to the market, this review aims to provide an expert overview of the pros and cons associated with adonirubin and adonixanthin.
Collapse
Affiliation(s)
- Cassamo U Mussagy
- Escuela de Agronomía, Facultad de Ciencias Agronómicas y de los Alimentos, Pontificia Universidad Católica de Valparaíso, Quillota 2260000, Chile.
| | - Fabiane O Farias
- Department of Chemical Engineering, Polytechnique Center, Federal University of Paraná, Curitiba/PR, Brazil
| | - Alessia Tropea
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy
| | - Luca Santi
- Department of Agriculture and Forest Sciences (DAFNE), University of Tuscia, Via S. Camillo de Lellis, Viterbo, Italy
| | - Luigi Mondello
- Messina Institute of Technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc 98168 - Messina, Italy; Chromaleont s.r.l., c/o Messina Institute of technology c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, Former Veterinary School, University of Messina, Viale G. Palatucci snc, 98168 - Messina, Italy
| | - Daniele Giuffrida
- Department of Biomedical, Dental, Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, 98125 Messina, Italy
| | | | - Laurent Dufossé
- Chemistry and Biotechnology of Natural Products, CHEMBIOPRO, ESIROI Agroalimentaire, Université de La Réunion, 15 Avenue René Cassin, CS 92003, CEDEX 9, F-97744 Saint-Denis, France
| |
Collapse
|
19
|
Lahbouki S, Hashem A, Kumar A, Abd_Allah EF, Meddich A. Integration of Horse Manure Vermicompost Doses and Arbuscular Mycorrhizal Fungi to Improve Fruit Quality, and Soil Fertility in Tomato Field Facing Drought Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1449. [PMID: 38891258 PMCID: PMC11174961 DOI: 10.3390/plants13111449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/05/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Climate change poses major challenges for agriculture in arid and semi-arid regions, with drought conditions severely affecting water-intensive crops such as tomatoes. This study evaluates the efficacy of organic amendments, derived from horse manure, and arbuscular mycorrhizal fungi (AMF) on enhancing tomato (Solanum lycopersicum L.) fruit quality and soil health under semi-arid field conditions. The experimental design included two irrigation regimes (well-watered and drought stress) and two levels of vermicompost application (C1 5 t ha-1 and C2 10 t ha-1), applied individually or in combination with AMF. The results indicate that drought stress reduced tomato fruit growth and yield, while osmoprotectant accumulation, antioxidant enzyme activity, and bioactive compound levels increased, and the 2,2-diphenyl-1-picrylhydrazyl radical scavenging activity of tomato fruit also increased. Notably, the biostimulants application, especially (C1+AMF), counteracted the adverse effects of drought, compared to the control, by significantly enhancing fruit yields (60%), as well as increasing ascorbic acid levels (59%) and free amino acids content (90%). These treatments also improved the activity of bioactive compounds and nutrient uptake in the fruit. Furthermore, biostimulant application positively affected the physicochemical properties of soil. The results obtained confirm that the application of biostimulants can be suitable for improving crop sustainability and adaptability under conditions of water stress in semi-arid field regions.
Collapse
Affiliation(s)
- Soufiane Lahbouki
- “Physiology of Abiotic Stresses” Team, Research Unit Labeled CNRST (Centre AgroBiotech-URL-CNRST-05), Center of Agrobiotechnology and Bioengineering, Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| | - Abeer Hashem
- Botany and Microbiology Department, College of Science, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Ajay Kumar
- Amity Institute of Biotechnology, Amity University, Sector-125, Noida 201313, Uttar Pradesh, India;
| | - Elsayed Fathi Abd_Allah
- Plant Production Department, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia;
| | - Abdelilah Meddich
- “Physiology of Abiotic Stresses” Team, Research Unit Labeled CNRST (Centre AgroBiotech-URL-CNRST-05), Center of Agrobiotechnology and Bioengineering, Cadi Ayyad University, Marrakech 40000, Morocco
- Laboratory of Agro-Food, Biotechnologies and Valorization of Plant Bioresources (AGROBIOVAL), Department of Biology, Faculty of Sciences Semlalia, Cadi Ayyad University, Marrakesh 40000, Morocco
| |
Collapse
|
20
|
Nie X, Zhao Z, Zhang X, Bastías DA, Nan Z, Li C. Endophytes Alleviate Drought-Derived Oxidative Damage in Achnatherum inebrians Plants Through Increasing Antioxidants and Regulating Host Stress Responses. MICROBIAL ECOLOGY 2024; 87:73. [PMID: 38758374 PMCID: PMC11101377 DOI: 10.1007/s00248-024-02391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Endophytes generally increase antioxidant contents of plants subjected to environmental stresses. However, the mechanisms by which endophytes alter the accumulation of antioxidants in plant tissues are not entirely clear. We hypothesized that, in stress situations, endophytes would simultaneously reduce oxidative damage and increase antioxidant contents of plants and that the accumulation of antioxidants would be a consequence of the endophyte ability to regulate the expression of plant antioxidant genes. We investigated the effects of the fungal endophyte Epichloë gansuensis (C.J. Li & Nan) on oxidative damage, antioxidant contents, and expression of representative genes associated with antioxidant pathways in Achnatherum inebrians (Hance) Keng plants subjected to low (15%) and high (60%) soil moisture conditions. Gene expression levels were measured using RNA-seq. As expected, the endophyte reduced the oxidative damage by 17.55% and increased the antioxidant contents by 53.14% (on average) in plants subjected to low soil moisture. In line with the accumulation of antioxidants in plant tissues, the endophyte increased the expression of most plant genes associated with the biosynthesis of antioxidants (e.g., MIOX, crtB, gpx) while it reduced the expression of plant genes related to the metabolization of antioxidants (e.g., GST, PRODH, ALDH). Our findings suggest that endophyte ability of increasing antioxidant contents in plants may reduce the oxidative damage caused by stresses and that the fungal regulation of plant antioxidants would partly explain the accumulation of these compounds in plant tissues.
Collapse
Affiliation(s)
- Xiumei Nie
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Zhenrui Zhao
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Xingxu Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Daniel A Bastías
- Grasslands Research Centre, AgResearch Limited, Palmerston North, 4442, New Zealand.
| | - Zhibiao Nan
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Chunjie Li
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| |
Collapse
|
21
|
Græsholt C, Brembu T, Volpe C, Bartosova Z, Serif M, Winge P, Nymark M. Zeaxanthin epoxidase 3 Knockout Mutants of the Model Diatom Phaeodactylum tricornutum Enable Commercial Production of the Bioactive Carotenoid Diatoxanthin. Mar Drugs 2024; 22:185. [PMID: 38667802 PMCID: PMC11051370 DOI: 10.3390/md22040185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 04/14/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
Carotenoids are pigments that have a range of functions in human health. The carotenoid diatoxanthin is suggested to have antioxidant, anti-inflammatory and chemo-preventive properties. Diatoxanthin is only produced by a few groups of microalgae, where it functions in photoprotection. Its large-scale production in microalgae is currently not feasible. In fact, rapid conversion into the inactive pigment diadinoxanthin is triggered when cells are removed from a high-intensity light source, which is the case during large-scale harvesting of microalgae biomass. Zeaxanthin epoxidase (ZEP) 2 and/or ZEP3 have been suggested to be responsible for the back-conversion of high-light accumulated diatoxanthin to diadinoxanthin in low-light in diatoms. Using CRISPR/Cas9 gene editing technology, we knocked out the ZEP2 and ZEP3 genes in the marine diatom Phaeodactylum tricornutum to investigate their role in the diadinoxanthin-diatoxanthin cycle and determine if one of the mutant strains could function as a diatoxanthin production line. Light-shift experiments proved that ZEP3 encodes the enzyme converting diatoxanthin to diadinoxanthin in low light. Loss of ZEP3 caused the high-light-accumulated diatoxanthin to be stable for several hours after the cultures had been returned to low light, suggesting that zep3 mutant strains could be suitable as commercial production lines of diatoxanthin.
Collapse
Affiliation(s)
- Cecilie Græsholt
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Tore Brembu
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Charlotte Volpe
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, 7010 Trondheim, Norway;
| | - Zdenka Bartosova
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Manuel Serif
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Per Winge
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
| | - Marianne Nymark
- Department of Biology, Norwegian University of Science and Technology, 7491 Trondheim, Norway (T.B.); (Z.B.); (M.S.); (P.W.)
- Department of Fisheries and New Biomarine Industry, SINTEF Ocean, 7010 Trondheim, Norway;
| |
Collapse
|
22
|
Srivastava A, Thapa S, Chakdar H, Babele PK, Shukla P. Cyanobacterial myxoxanthophylls: biotechnological interventions and biological implications. Crit Rev Biotechnol 2024; 44:63-77. [PMID: 36137567 DOI: 10.1080/07388551.2022.2117682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 07/09/2022] [Accepted: 08/06/2022] [Indexed: 11/03/2022]
Abstract
Cyanobacteria safeguard their photosynthetic machinery from oxidative damage caused by adverse environmental factors such as high-intensity light. Together with many photoprotective compounds, they contain myxoxanthophylls, a rare group of glycosidic carotenoids containing a high number of conjugated double bonds. These carotenoids have been shown to: have strong photoprotective effects, contribute to the integrity of the thylakoid membrane, and upregulate in cyanobacteria under a variety of stress conditions. However, their metabolic potential has not been fully utilized in the stress biology of cyanobacteria and the pharmaceutical industry due to a lack of mechanistic understanding and their insufficient biosynthesis. This review summarizes current knowledge on: biological function, genetic regulation, biotechnological production, and pharmaceutical potential of myxoxanthophyll, with a focus on strain engineering and parameter optimization strategies for increasing their cellular content. The summarized knowledge can be utilized in cyanobacterial metabolic engineering to improve the stress tolerance of useful strains and enhance the commercial-scale synthesis of myxoxanthophyll for pharmaceutical uses.
Collapse
Affiliation(s)
- Amit Srivastava
- Department of Chemistry, Purdue University, West Lafayette, United States of America
| | - Shobit Thapa
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, India
| | - Hillol Chakdar
- ICAR-National Bureau of Agriculturally Important Microorganisms (NBAIM), Mau, India
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, School of Biotechnology, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
23
|
Zhang H, Wang X, Yang Z, Bai Y, Chen L, Wu T. Transcriptome analysis reveals the potential mechanism of the response to scale insects in Camellia sasanqua Thunb. BMC Genomics 2024; 25:106. [PMID: 38267855 PMCID: PMC10807073 DOI: 10.1186/s12864-024-09980-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/06/2024] [Indexed: 01/26/2024] Open
Abstract
BACKGROUND Camellia sasanqua Thunb. is an essential woody ornamental plant. Our continuous observation found that scale insects often infest C. sasanqua all year round in Kunming, China, resulting in poor growth. Scientifically preventing and controlling the infestation of scale insects should be paid attention to, and the mechanism of scale insects influencing C. sasanqua should be used as the research basis. RESULTS The scale insect was identified as Pseudaulacaspis sasakawai Takagi. We analyzed transcriptome sequencing data from leaves of C. sasanqua infested with scale insects. A total of 1320 genes were either up-regulated or down-regulated and differed significantly in response to scale insects. GO (Gene Ontology) annotation analysis showed that the pathway of catalytic activity, binding, membrane part, cell part, and cellular process were affected. KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis showed that most DEGs (differentially expressed genes) involved in plant hormone signal transduction, MAPK signaling pathway, flavonoid biosynthesis, tropane, piperidine and pyridine alkaloid biosynthesis. We also observed that the expression of galactose metabolism and carotenoid biosynthesis were significantly influenced. In addition, qRT-PCR (quantitative real-time PCR) validated the expression patterns of DEGs, which showed an excellent agreement with the transcriptome sequencing. CONCLUSIONS Our transcriptomic analysis revealed that the C. sasanqua had an intricate resistance strategy to cope with scale insect attacks. After sensing the attack signal of scale insects, C. sasanqua activated the early signal MAPK (mitogen-activated protein kinase) to activate further transcription factors and Auxin, ET, JA, ABA, and other plant hormone signaling pathways, ultimately leading to the accumulation of lignin, scopolin, flavonoids and other secondary metabolites, produces direct and indirect resistance to scale insects. Our results suggested that it provided some potential resources of defense genes that would benefit the following resistance breeding in C. sasanqua to scale insects.
Collapse
Affiliation(s)
- Hongye Zhang
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Xubo Wang
- Yunnan Biodiversity Research Institute, Southwest Forestry University, Kunming, 650224, China
| | - Ziyun Yang
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Yan Bai
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Longqing Chen
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China
| | - Tian Wu
- School of Landscape Architecture and Horticulture Sciences, Southwest Forestry University, Kunming, 650224, China.
| |
Collapse
|
24
|
Sun M, Shen Y. Integrating the multiple functions of CHLH into chloroplast-derived signaling fundamental to plant development and adaptation as well as fruit ripening. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 338:111892. [PMID: 37821024 DOI: 10.1016/j.plantsci.2023.111892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 10/01/2023] [Accepted: 10/06/2023] [Indexed: 10/13/2023]
Abstract
Chlorophyll (Chl)-mediated oxygenic photosynthesis sustains life on Earth. Greening leaves play fundamental roles in plant growth and crop yield, correlating with the idea that more Chls lead to better adaptation. However, they face significant challenges from various unfavorable environments. Chl biosynthesis hinges on the first committed step, which involves inserting Mg2+ into protoporphyrin. This step is facilitated by the H subunit of magnesium chelatase (CHLH) and features a conserved mechanism from cyanobacteria to plants. For better adaptation to fluctuating land environments, especially drought, CHLH evolves multiple biological functions, including Chl biosynthesis, retrograde signaling, and abscisic acid (ABA) responses. Additionally, it integrates into various chloroplast-derived signaling pathways, encompassing both retrograde signaling and hormonal signaling. The former comprises ROS (reactive oxygen species), heme, GUN (genomes uncoupled), MEcPP (methylerythritol cyclodiphosphate), β-CC (β-cyclocitral), and PAP (3'-phosphoadenosine-5'-phosphate). The latter involves phytohormones like ABA, ethylene, auxin, cytokinin, gibberellin, strigolactone, brassinolide, salicylic acid, and jasmonic acid. Together, these elements create a coordinated regulatory network tailored to plant development and adaptation. An intriguing example is how drought-mediated improvement of fruit quality provides insights into chloroplast-derived signaling, aiding the shift from vegetative to reproductive growth. In this context, we explore the integration of CHLH's multifaceted roles into chloroplast-derived signaling, which lays the foundation for plant development and adaptation, as well as fruit ripening and quality. In the future, manipulating chloroplast-derived signaling may offer a promising avenue to enhance crop yield and quality through the homeostasis, function, and regulation of Chls.
Collapse
Affiliation(s)
- Mimi Sun
- College of Horticulture, China Agricultural University, Beijing 100193, China; College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China
| | - Yuanyue Shen
- College of Plant Science and Technology, Beijing University of Agriculture, 7 Beinong Road, Changping District, Beijing 102206, China.
| |
Collapse
|
25
|
Yatsunami R, Ando A, Miyoko N, Yang Y, Takaichi S, Nakamura S. Two Distinct Enzymes Have Both Phytoene Desaturase and 3,4-Desaturase Activities Involved in Carotenoid Biosynthesis by the Extremely Halophilic Archaeon Haloarcula japonica. Microbes Environ 2024; 39:ME24004. [PMID: 38811235 PMCID: PMC11946383 DOI: 10.1264/jsme2.me24004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 03/04/2024] [Indexed: 05/31/2024] Open
Abstract
The extremely halophilic archaeon Haloarcula japonica accumulates the C50 carotenoid, bacterioruberin (BR). To reveal the BR biosynthetic pathway, unidentified phytoene desaturase candidates were functionally characterized in the present study. Two genes encoding the potential phytoene desaturases, c0507 and d1086, were found from the Ha. japonica genome sequence by a homology search using the Basic Local Align Search Tool. Disruption mutants of c0507 and d1086 and their complemented strains transformed with expression plasmids for c0507 and d1086 were subsequently constructed. High-performance liquid chromatography (HPLC) ana-lyses of carotenoids produced by these strains revealed that C0507 and D1086 were both bifunctional enzymes with the same activities as both phytoene desaturase (CrtI) and 3,4-desaturase (CrtD). C0507 and D1086 complemented each other during BR biosynthesis in Ha. japonica. This is the first study to identify two distinct enzymes with both CrtI and CrtD activities in an extremely halophilic archaeon.
Collapse
Affiliation(s)
- Rie Yatsunami
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226–8501, Japan
| | - Ai Ando
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226–8501, Japan
| | - Nobuhiro Miyoko
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226–8501, Japan
| | - Ying Yang
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226–8501, Japan
| | - Shinichi Takaichi
- Faculty of Life Sciences, Tokyo University of Agriculture, Sakuragaoka, Setagaya-ku, Tokyo 156–8502, Japan
| | - Satoshi Nakamura
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta, Midori-ku, Yokohama 226–8501, Japan
| |
Collapse
|
26
|
Medina-Chávez NO, Torres-Cerda A, Chacón JM, Harcombe WR, De la Torre-Zavala S, Travisano M. Disentangling a metabolic cross-feeding in a halophilic archaea-bacteria consortium. Front Microbiol 2023; 14:1276438. [PMID: 38179456 PMCID: PMC10764424 DOI: 10.3389/fmicb.2023.1276438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 12/06/2023] [Indexed: 01/06/2024] Open
Abstract
Microbial syntrophy, a cooperative metabolic interaction among prokaryotes, serves a critical role in shaping communities, due to the auxotrophic nature of many microorganisms. Syntrophy played a key role in the evolution of life, including the hypothesized origin of eukaryotes. In a recent exploration of the microbial mats within the exceptional and uniquely extreme Cuatro Cienegas Basin (CCB), a halophilic isolate, designated as AD140, emerged as a standout due to its distinct growth pattern. Subsequent genome sequencing revealed AD140 to be a co-culture of a halophilic archaeon from the Halorubrum genus and a marine halophilic bacterium, Marinococcus luteus, both occupying the same ecological niche. This intriguing coexistence hints at an early-stage symbiotic relationship that thrives on adaptability. By delving into their metabolic interdependence through genomic analysis, this study aims to uncover shared characteristics that enhance their symbiotic association, offering insights into the evolution of halophilic microorganisms and their remarkable adaptations to high-salinity environments.
Collapse
Affiliation(s)
- Nahui Olin Medina-Chávez
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Abigail Torres-Cerda
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Jeremy M. Chacón
- Minnesota Supercomputing Institute, Minneapolis, MN, United States
| | - William R. Harcombe
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
| | - Susana De la Torre-Zavala
- Universidad Autónoma de Nuevo León, Facultad de Ciencias Biológicas, Instituto de Biotecnología, San Nicolás de los Garza, San Nicolás de los Garza, Mexico
| | - Michael Travisano
- Department of Ecology, Evolution and Behavior, University of Minnesota, St. Paul, MN, United States
- BioTechnology Institute, University of Minnesota, St. Paul, MN, United States
- Minnesota Center for the Philosophy of Science, University of Minnesota, Minneapolis, MN, United States
| |
Collapse
|
27
|
Cutolo EA, Caferri R, Campitiello R, Cutolo M. The Clinical Promise of Microalgae in Rheumatoid Arthritis: From Natural Compounds to Recombinant Therapeutics. Mar Drugs 2023; 21:630. [PMID: 38132951 PMCID: PMC10745133 DOI: 10.3390/md21120630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/04/2023] [Accepted: 12/05/2023] [Indexed: 12/23/2023] Open
Abstract
Rheumatoid arthritis (RA) is an invalidating chronic autoimmune disorder characterized by joint inflammation and progressive bone damage. Dietary intervention is an important component in the treatment of RA to mitigate oxidative stress, a major pathogenic driver of the disease. Alongside traditional sources of antioxidants, microalgae-a diverse group of photosynthetic prokaryotes and eukaryotes-are emerging as anti-inflammatory and immunomodulatory food supplements. Several species accumulate therapeutic metabolites-mainly lipids and pigments-which interfere in the pro-inflammatory pathways involved in RA and other chronic inflammatory conditions. The advancement of the clinical uses of microalgae requires the continuous exploration of phytoplankton biodiversity and chemodiversity, followed by the domestication of wild strains into reliable producers of said metabolites. In addition, the tractability of microalgal genomes offers unprecedented possibilities to establish photosynthetic microbes as light-driven biofactories of heterologous immunotherapeutics. Here, we review the evidence-based anti-inflammatory mechanisms of microalgal metabolites and provide a detailed coverage of the genetic engineering strategies to enhance the yields of endogenous compounds and to develop innovative bioproducts.
Collapse
Affiliation(s)
- Edoardo Andrea Cutolo
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Roberto Caferri
- Laboratory of Photosynthesis and Bioenergy, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy;
| | - Rosanna Campitiello
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| | - Maurizio Cutolo
- Research Laboratory and Academic Division of Clinical Rheumatology, Department of Internal Medicine, IRCCS San Martino Polyclinic Hospital, University of Genoa, Viale Benedetto XV, 6, 16132 Genoa, Italy; (R.C.)
| |
Collapse
|
28
|
Lv J, Zhang R, Mo Y, Zhou H, Li M, Wu R, Cheng H, Zhang M, Wang H, Hua W, Deng Q, Zhao K, Deng M. Integrative Metabolome and Transcriptome Analyses Provide Insights into Carotenoid Variation in Different-Colored Peppers. Int J Mol Sci 2023; 24:16563. [PMID: 38068885 PMCID: PMC10706310 DOI: 10.3390/ijms242316563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 11/16/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
Carotenoids are important pigments in pepper fruits. The colors of each pepper are mainly determined by the composition and content of carotenoid. The 'ZY' variety, which has yellow fruit, is a natural mutant derived from a branch mutant of 'ZR' with different colors. ZY and ZR exhibit obvious differences in fruit color, but no other obvious differences in other traits. To investigate the main reasons for the formation of different colored pepper fruits, transcriptome and metabolome analyses were performed in three developmental stages (S1-S3) in two cultivars. The results revealed that these structural genes (PSY1, CRTISO, CCD1, CYP97C1, VDE1, CCS, NCED1 and NCED2) related to carotenoid biosynthesis were expressed differentially in the two cultivars. Capsanthin and capsorubin mainly accumulated in ZR and were almost non-existent in ZY. S2 is the fruit color-changing stage; this may be a critical period for the development of different color formation of ZY and ZR. A combination of transcriptome and metabolome analyses indicated that CCS, NCED2, AAO4, VDE1 and CYP97C1 genes were key to the differences in the total carotenoid content. These new insights into pepper fruit coloration may help to improve fruit breeding strategies.
Collapse
Affiliation(s)
- Junheng Lv
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Ruihao Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
- Horticulture Research Institute, Yunnan Academy of Agricultural Sciences, Kunming 650205, China
| | - Yunrong Mo
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Huidan Zhou
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Mengjuan Li
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Rui Wu
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Hong Cheng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Mingxian Zhang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Huasu Wang
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Wei Hua
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Qiaoling Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Kai Zhao
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| | - Minghua Deng
- Key Laboratory of Vegetable Biology of Yunnan Province, College of Landscape and Horticulture, Yunnan Agricultural University, Kunming 650201, China; (J.L.); (R.Z.); (Y.M.); (H.Z.); (M.L.); (R.W.); (H.C.); (M.Z.); (W.H.); (Q.D.)
| |
Collapse
|
29
|
Sulli M, Dall'Osto L, Ferrante P, Guardini Z, Gomez RL, Mini P, Demurtas OC, Aprea G, Nicolia A, Bassi R, Giuliano G. Generation and physiological characterization of genome-edited Nicotiana benthamiana plants containing zeaxanthin as the only leaf xanthophyll. PLANTA 2023; 258:93. [PMID: 37796356 PMCID: PMC10556183 DOI: 10.1007/s00425-023-04248-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/20/2023] [Indexed: 10/06/2023]
Abstract
MAIN CONCLUSION Simultaneous genome editing of the two homeologous LCYe and ZEP genes of Nicotiana benthamiana results in plants in which all xanthophylls are replaced by zeaxanthin. Plant carotenoids act both as photoreceptors and photoprotectants in photosynthesis and as precursors of apocarotenoids, which include signaling molecules such as abscisic acid (ABA). As dietary components, the xanthophylls lutein and zeaxanthin have photoprotective functions in the human macula. We developed transient and stable combinatorial genome editing methods, followed by direct LC-MS screening for zeaxanthin accumulation, for the simultaneous genome editing of the two homeologous Lycopene Epsilon Cyclase (LCYe) and the two Zeaxanthin Epoxidase (ZEP) genes present in the allopolyploid Nicotiana benthamiana genome. Editing of the four genes resulted in plants in which all leaf xanthophylls were substituted by zeaxanthin, but with different ABA levels and growth habits, depending on the severity of the ZEP1 mutation. In high-zeaxanthin lines, the abundance of the major photosystem II antenna LHCII was reduced with respect to wild-type plants and the LHCII trimeric state became unstable upon thylakoid solubilization. Consistent with the depletion in LHCII, edited plants underwent a compensatory increase in PSII/PSI ratios and a loss of the large-size PSII supercomplexes, while the level of PSI-LHCI supercomplex was unaffected. Reduced activity of the photoprotective mechanism NPQ was shown in high-zeaxanthin plants, while PSII photoinhibition was similar for all genotypes upon exposure to excess light, consistent with the antioxidant and photoprotective role of zeaxanthin in vivo.
Collapse
Affiliation(s)
- Maria Sulli
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy.
| | - Luca Dall'Osto
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Paola Ferrante
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Zeno Guardini
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Rodrigo Lionel Gomez
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
- Facultad de Ciencias Agrarias, Universidad Nacional de Rosario (UNR), Campo Experimental Villarino CC No 14, Zavalla - Santa Fe, Argentina
| | - Paola Mini
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Olivia Costantina Demurtas
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Giuseppe Aprea
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy
| | - Alessandro Nicolia
- Council for Agricultural Research and Economics, Research Centre for Vegetable and Ornamental Crops (CREA), Via Cavalleggeri 25, 84098, Pontecagnano, Italy
| | - Roberto Bassi
- Biotechnology Department, University of Verona, Strada Le Grazie 15, 37134, Verona, Italy
| | - Giovanni Giuliano
- Casaccia Research Centre, Biotechnology and Agro-Industry Division, Italian National Agency for New Technologies, Energy and Sustainable Development (ENEA), Via Anguillarese 301, 00123, Rome, Italy.
| |
Collapse
|
30
|
Cao T, Bai Y, Buschbeck P, Tan Q, Cantrell MB, Chen Y, Jiang Y, Liu RZ, Ries NK, Shi X, Sun Y, Ware MA, Yang F, Zhang H, Han J, Zhang L, Huang J, Lohr M, Peers G, Li X. An unexpected hydratase synthesizes the green light-absorbing pigment fucoxanthin. THE PLANT CELL 2023; 35:3053-3072. [PMID: 37100425 PMCID: PMC10396388 DOI: 10.1093/plcell/koad116] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 06/19/2023]
Abstract
The ketocarotenoid fucoxanthin and its derivatives can absorb blue-green light enriched in marine environments. Fucoxanthin is widely adopted by phytoplankton species as a main light-harvesting pigment, in contrast to land plants that primarily employ chlorophylls. Despite its supreme abundance in the oceans, the last steps of fucoxanthin biosynthesis have remained elusive. Here, we identified the carotenoid isomerase-like protein CRTISO5 as the diatom fucoxanthin synthase that is related to the carotenoid cis-trans isomerase CRTISO from land plants but harbors unexpected enzymatic activity. A crtiso5 knockout mutant in the model diatom Phaeodactylum tricornutum completely lacked fucoxanthin and accumulated the acetylenic carotenoid phaneroxanthin. Recombinant CRTISO5 converted phaneroxanthin into fucoxanthin in vitro by hydrating its carbon-carbon triple bond, instead of functioning as an isomerase. Molecular docking and mutational analyses revealed residues essential for this activity. Furthermore, a photophysiological characterization of the crtiso5 mutant revealed a major structural and functional role of fucoxanthin in photosynthetic pigment-protein complexes of diatoms. As CRTISO5 hydrates an internal alkyne physiologically, the enzyme has unique potential for biocatalytic applications. The discovery of CRTISO5 illustrates how neofunctionalization leads to major diversification events in evolution of photosynthetic mechanisms and the prominent brown coloration of most marine photosynthetic eukaryotes.
Collapse
Affiliation(s)
- Tianjun Cao
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Yu Bai
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Paul Buschbeck
- Institut für Molekulare Physiologie, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Qiaozhu Tan
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Michael B Cantrell
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Yinjuan Chen
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Yanyou Jiang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Run-Zhou Liu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
| | - Nana K Ries
- Institut für Molekulare Physiologie, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Xiaohuo Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Instrumentation and Service Center for Molecular Sciences, Westlake University, Hangzhou 310024, China
| | - Yan Sun
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Maxwell A Ware
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Fenghua Yang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
| | - Huan Zhang
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jichang Han
- College of Food and Pharmaceutical Sciences, Ningbo University, Ningbo 315211, China
| | - Lihan Zhang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, Hangzhou 310024, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou 310024, China
| | - Jing Huang
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, China
| | - Martin Lohr
- Institut für Molekulare Physiologie, Johannes Gutenberg-University, 55099 Mainz, Germany
| | - Graham Peers
- Department of Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Xiaobo Li
- Key Laboratory of Growth Regulation and Translational Research of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou 310024, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou 310024, China
| |
Collapse
|
31
|
Chan C. Brown is the new green: Discovery of an algal enzyme for the final step of fucoxanthin biosynthesis. THE PLANT CELL 2023; 35:2716-2717. [PMID: 37195870 PMCID: PMC10396379 DOI: 10.1093/plcell/koad138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/19/2023]
Affiliation(s)
- Ching Chan
- Assistant Features Editor, The Plant Cell, American Society of Plant Biologists, Rockville, MD, USA
- Department of Life Science, National Taiwan Normal University, Taipei 11677, Taiwan
| |
Collapse
|
32
|
Rosas-Saavedra C, Quiroz LF, Parra S, Gonzalez-Calquin C, Arias D, Ocarez N, Lopez F, Stange C. Putative Daucus carota Capsanthin-Capsorubin Synthase (DcCCS) Possesses Lycopene β-Cyclase Activity, Boosts Carotenoid Levels, and Increases Salt Tolerance in Heterologous Plants. PLANTS (BASEL, SWITZERLAND) 2023; 12:2788. [PMID: 37570943 PMCID: PMC10421225 DOI: 10.3390/plants12152788] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/08/2023] [Accepted: 07/17/2023] [Indexed: 08/13/2023]
Abstract
Plant carotenoids are synthesized and accumulated in plastids through a highly regulated pathway. Lycopene β-cyclase (LCYB) is a key enzyme involved directly in the synthesis of α-carotene and β-carotene through the cyclization of trans-lycopene. Daucus carota harbors two LCYB genes, of which DcLCYB2 (annotated as CCS-Like) is mostly expressed in mature storage roots, an organ that accumulates high α-carotene and β-carotene content. In this work, we determined that DcLCYB2 of the orange Nantes variety presents plastid localization and encodes for a functional LCYB enzyme determined by means of heterologous complementation in Escherichia coli. Also, ectopic expression of DcLCYB2 in tobacco (Nicotiana tabacum) and kiwi (Actinidia deliciosa) plants increases total carotenoid content showing its functional role in plants. In addition, transgenic tobacco T2 homozygous plants showed better performance under chronic salt treatment, while kiwi transgenic calli also presented a higher survival rate under salt treatments than control calli. Our results allow us to propose DcLCYB2 as a prime candidate to engineer carotenoid biofortified crops as well as crops resilient to saline environments.
Collapse
Affiliation(s)
- Carolina Rosas-Saavedra
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Luis Felipe Quiroz
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Samuel Parra
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Christian Gonzalez-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Nallat Ocarez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
- Instituto de Investigaciones Agropecuarias (INIA), La Platina, Research Centre, Av. Santa Rosa 11610, Santiago 8820000, Chile
| | - Franco Lopez
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile; (C.R.-S.); (L.F.Q.); (S.P.); (C.G.-C.); (D.A.); (N.O.); (F.L.)
| |
Collapse
|
33
|
Shi A, Hu Y, Zhang X, Zhou D, Xu J, Rensing C, Zhang L, Xing S, Ni W, Yang W. Biochar loaded with bacteria enhanced Cd/Zn phytoextraction by facilitating plant growth and shaping rhizospheric microbial community. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 327:121559. [PMID: 37023890 DOI: 10.1016/j.envpol.2023.121559] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 03/22/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
Biochar and metal-tolerant bacteria have been widely used in the remediation of heavy metal contaminated soil. However, the synergistic effect of biochar-functional microbes on phytoextraction by hyperaccumulators remains unclear. In this study, the heavy metal-tolerant strain Burkholderia contaminans ZCC was selected and loaded on biochar to produce biochar-resistant bacterial material (BM), and the effects of BM on Cd/Zn phytoextraction by Sedum alfredii Hance and rhizospheric microbial community were explored. The results showed that, BM application significantly enhanced the Cd and Zn accumulation of S. alfredii by 230.13% and 381.27%, respectively. Meanwhile, BM alleviated metal toxicity of S. alfredii by reducing oxidative damage and increasing chlorophyll and antioxidant enzyme activity. High-throughput sequencing revealed that BM significantly improved soil bacterial and fungal diversity, and increased the abundance of genera with plant growth promoting and metal solubilizing functions such as Gemmatimonas, Dyella and Pseudarthrobacter. Co-occurrence network analysis showed that BM significantly increased the complexity of the rhizospheric bacterial and fungal network. Structural equation model analysis revealed that soil chemistry property, enzyme activity and microbial diversity contributed directly or indirectly to Cd and Zn extraction by S. alfredii. Overall, our results suggested that biochar- B. contaminans ZCC was able to enhance the growth and Cd/Zn accumulation by S. alfredii. This study enhanced our understanding on the hyperaccumulator-biochar-functional microbe interactions, and provided a feasible strategy for promoting the phytoextraction efficiency of heavy metal contaminated soils.
Collapse
Affiliation(s)
- An Shi
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Ying Hu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Xiao Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Dan Zhou
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Junlong Xu
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Christopher Rensing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Liming Zhang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Shihe Xing
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wuzhong Ni
- College of Environment and Resources, Zhejiang University, Hangzhou, 310058, China
| | - Wenhao Yang
- Key Laboratory of Soil Ecosystem Health and Regulation of Fujian Provincial University, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
34
|
Mapelli-Brahm P, Gómez-Villegas P, Gonda ML, León-Vaz A, León R, Mildenberger J, Rebours C, Saravia V, Vero S, Vila E, Meléndez-Martínez AJ. Microalgae, Seaweeds and Aquatic Bacteria, Archaea, and Yeasts: Sources of Carotenoids with Potential Antioxidant and Anti-Inflammatory Health-Promoting Actions in the Sustainability Era. Mar Drugs 2023; 21:340. [PMID: 37367666 DOI: 10.3390/md21060340] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/28/2023] Open
Abstract
Carotenoids are a large group of health-promoting compounds used in many industrial sectors, such as foods, feeds, pharmaceuticals, cosmetics, nutraceuticals, and colorants. Considering the global population growth and environmental challenges, it is essential to find new sustainable sources of carotenoids beyond those obtained from agriculture. This review focuses on the potential use of marine archaea, bacteria, algae, and yeast as biological factories of carotenoids. A wide variety of carotenoids, including novel ones, were identified in these organisms. The role of carotenoids in marine organisms and their potential health-promoting actions have also been discussed. Marine organisms have a great capacity to synthesize a wide variety of carotenoids, which can be obtained in a renewable manner without depleting natural resources. Thus, it is concluded that they represent a key sustainable source of carotenoids that could help Europe achieve its Green Deal and Recovery Plan. Additionally, the lack of standards, clinical studies, and toxicity analysis reduces the use of marine organisms as sources of traditional and novel carotenoids. Therefore, further research on the processing of marine organisms, the biosynthetic pathways, extraction procedures, and examination of their content is needed to increase carotenoid productivity, document their safety, and decrease costs for their industrial implementation.
Collapse
Affiliation(s)
- Paula Mapelli-Brahm
- Food Colour and Quality Laboratory, Facultad de Farmacia, Universidad de Sevilla, 41012 Sevilla, Spain
| | - Patricia Gómez-Villegas
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Mariana Lourdes Gonda
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Antonio León-Vaz
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | - Rosa León
- Laboratory of Biochemistry, Faculty of Experimental Sciences, Marine International Campus of Excellence and REMSMA, University of Huelva, 21071 Huelva, Spain
| | | | | | - Verónica Saravia
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | - Silvana Vero
- Área Microbiología, Departamento de Biociencias, Facultad de Química, Universidad de la República, Gral Flores 2124, Montevideo 11800, Uruguay
| | - Eugenia Vila
- Departamento de Bioingeniería, Facultad de Ingeniería, Instituto de Ingeniería Química, Universidad de la República, Montevideo 11300, Uruguay
| | | |
Collapse
|
35
|
Olayide P, Alexandersson E, Tzfadia O, Lenman M, Gisel A, Stavolone L. Transcriptome and metabolome profiling identify factors potentially involved in pro-vitamin A accumulation in cassava landraces. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 199:107713. [PMID: 37126903 DOI: 10.1016/j.plaphy.2023.107713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 04/05/2023] [Accepted: 04/18/2023] [Indexed: 05/03/2023]
Abstract
Cassava (Manihot esculenta Crantz) is a predominant food security crop in several developing countries. Its storage roots, rich in carbohydrate, are deficient in essential micronutrients, including provitamin A carotenoids. Increasing carotenoid content in cassava storage roots is important to reduce the incidence of vitamin A deficiency, a public health problem in sub-Saharan Africa. However, cassava improvement advances slowly, mainly due to limited information on the molecular factors influencing β-carotene accumulation in cassava. To address this problem, we performed comparative transcriptomic and untargeted metabolic analyses of roots and leaves of eleven African cassava landraces ranging from white to deep yellow colour, to uncover regulators of carotenoid biosynthesis and accumulation with conserved function in yellow cassava roots. Sequence analysis confirmed the presence of a mutation, known to influence β-carotene content, in PSY transcripts of deep yellow but not of pale yellow genotypes. We identified genes and metabolites with expression and accumulation levels significantly associated with β-carotene content. Particularly an increased activity of the abscisic acid catabolism pathway together with a reduced amount of L-carnitine, may be related to the carotenoid pathway flux, higher in yellow than in white storage roots. In fact, NCED_3.1 was specifically expressed at a lower level in all yellow genotypes suggesting that it could be a potential target for increasing carotenoid accumulation in cassava. These results expand the knowledge on metabolite compositions and molecular mechanisms influencing carotenoid biosynthesis and accumulation in cassava and provide novel information for biotechnological applications and genetic improvement of cassava with high nutritional values.
Collapse
Affiliation(s)
- Priscilla Olayide
- Swedish University of Agricultural Sciences, Sundsvägen 10, SE-234 22, Lomma, Sweden; International Institute of Tropical Agriculture, PMB 5320, Oyo Road, Ibadan, 200001, Oyo State, Nigeria.
| | - Erik Alexandersson
- Swedish University of Agricultural Sciences, Sundsvägen 10, SE-234 22, Lomma, Sweden.
| | - Oren Tzfadia
- Institute of Tropical Medicine, Kronenburgstraat 43/3, 2000, Antwerpen, Belgium.
| | - Marit Lenman
- Swedish University of Agricultural Sciences, Sundsvägen 10, SE-234 22, Lomma, Sweden.
| | - Andreas Gisel
- International Institute of Tropical Agriculture, PMB 5320, Oyo Road, Ibadan, 200001, Oyo State, Nigeria; Institute of Biomedical Technologies, CNR, Via Amendola 122/D, Bari, Italy.
| | - Livia Stavolone
- International Institute of Tropical Agriculture, PMB 5320, Oyo Road, Ibadan, 200001, Oyo State, Nigeria; Institute for Sustainable Plant Protection CNR, Via Amendola 122/D, Bari, Italy.
| |
Collapse
|
36
|
Lautier T, Smith DJ, Yang LK, Chen X, Zhang C, Truan G, Lindley ND. β-Cryptoxanthin Production in Escherichia coli by Optimization of the Cytochrome P450 CYP97H1 Activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4683-4695. [PMID: 36888893 DOI: 10.1021/acs.jafc.2c08970] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Cytochromes P450, forming a superfamily of monooxygenases containing heme as a cofactor, show great versatility in substrate specificity. Metabolic engineering can take advantage of this feature to unlock novel metabolic pathways. However, the cytochromes P450 often show difficulty being expressed in a heterologous chassis. As a case study in the prokaryotic host Escherichia coli, the heterologous synthesis of β-cryptoxanthin was addressed. This carotenoid intermediate is difficult to produce, as its synthesis requires a monoterminal hydroxylation of β-carotene whereas most of the classic carotene hydroxylases are dihydroxylases. This study was focused on the optimization of the in vivo activity of CYP97H1, an original P450 β-carotene monohydroxylase. Engineering the N-terminal part of CYP97H1, identifying the matching redox partners, defining the optimal cellular background and adjusting the culture and induction conditions improved the production by 400 times compared to that of the initial strain, representing 2.7 mg/L β-cryptoxanthin and 20% of the total carotenoids produced.
Collapse
Affiliation(s)
- Thomas Lautier
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, 138602 Singapore
| | - Derek J Smith
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
| | - Gilles Truan
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Nic D Lindley
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), 138669 Singapore
- TBI, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| |
Collapse
|
37
|
Lautier T, Smith DJ, Yang LK, Chen X, Zhang C, Truan G, Lindley ND. Cytochrome P450 Surface Domains Prevent the β-Carotene Monohydroxylase CYP97H1 of Euglena gracilis from Acting as a Dihydroxylase. Biomolecules 2023; 13:biom13020366. [PMID: 36830734 PMCID: PMC9953315 DOI: 10.3390/biom13020366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/17/2023] Open
Abstract
Molecular biodiversity results from branched metabolic pathways driven by enzymatic regioselectivities. An additional complexity occurs in metabolites with an internal structural symmetry, offering identical extremities to the enzymes. For example, in the terpene family, β-carotene presents two identical terminal closed-ring structures. Theses cycles can be hydroxylated by cytochrome P450s from the CYP97 family. Two sequential hydroxylations lead first to the formation of monohydroxylated β-cryptoxanthin and subsequently to that of dihydroxylated zeaxanthin. Among the CYP97 dihydroxylases, CYP97H1 from Euglena gracilis has been described as the only monohydroxylase. This study aims to determine which enzymatic domains are involved in this regioselectivity, conferring unique monohydroxylase activity on a substrate offering two identical sites for hydroxylation. We explored the effect of truncations, substitutions and domain swapping with other CYP97 members and found that CYP97H1 harbours a unique N-terminal globular domain. This CYP97H1 N-terminal domain harbours a hydrophobic patch at the entrance of the substrate channel, which is involved in the monohydroxylase activity of CYP97H1. This domain, at the surface of the enzyme, highlights the role of distal and non-catalytic domains in regulating enzyme specificity.
Collapse
Affiliation(s)
- Thomas Lautier
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
- Toulouse Biotechnolgy Institute, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
- CNRS@CREATE, 1 Create Way, #08-01 Create Tower, Singapore 138602, Singapore
- Correspondence: ; Tel.: +33-(0)-567048813
| | - Derek J. Smith
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Lay Kien Yang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Xixian Chen
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Congqiang Zhang
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
| | - Gilles Truan
- Toulouse Biotechnolgy Institute, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| | - Nic D Lindley
- Singapore Institute of Food and Biotechnology Innovation (SIFBI), Agency for Science, Technology and Research (A*STAR), Singapore 138669, Singapore
- Toulouse Biotechnolgy Institute, Université de Toulouse, CNRS, INRAE, INSA, 31077 Toulouse, France
| |
Collapse
|
38
|
Lisboa MP, Canal D, Filgueiras JPC, Turchetto-Zolet AC. Molecular evolution and diversification of phytoene synthase (PSY) gene family. Genet Mol Biol 2022; 45:e20210411. [PMID: 36537743 PMCID: PMC9764326 DOI: 10.1590/1678-4685-gmb-2021-0411] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 10/30/2022] [Indexed: 12/23/2022] Open
Abstract
Phytoene synthase (PSY) is a crucial enzyme required for carotenoid biosynthesis, encoded by a gene family conserved in carotenoid-producing organisms. This gene family is diversified in angiosperms through distinct duplication events. Understanding diversification patterns and the evolutionary history of the PSY gene family is important for explaining carotenogenesis in different plant tissues. This study identified 351 PSY genes in 166 species, including Viridiplantae, brown and red algae, cyanobacteria, fungi, arthropods, and bacteria. All PSY genes displayed conserved intron/exon organization. Fungi and arthropod PSY sequences were grouped with prokaryote PSY, suggesting the occurrence of horizontal gene transfer. Angiosperm PSY is split into five subgroups. One includes the putative ortholog of PSY3 (Subgroup E3) from eudicots, and the other four subgroups include PSY from both monocots and eudicots (subgroups E1, E2, M1, and M2). Expression profile analysis revealed that PSY genes are constitutively expressed across developmental stages and anatomical parts, except for the eudicot PSY3, with root-specific expression. This study elucidates the molecular evolution and diversification of the PSY gene family, furthering our understanding of variations in carotenogenesis.
Collapse
Affiliation(s)
- Marcia Pagno Lisboa
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Drielli Canal
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - João Pedro Carmo Filgueiras
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| | - Andreia Carina Turchetto-Zolet
- Universidade Federal do Rio Grande do Sul (UFRGS), Departamento de Genética, Instituto de Biociências, Programa de Pós-Graduação em Genética e Biologia Molecular, Porto Alegre, RS, Brazil
| |
Collapse
|
39
|
Efremov GI, Shchennikova AV, Kochieva EZ. Functional Diversification of the Carotenoid-cis-trans-Isomerases CrtISO, CrtISO-L1, and CrtISO-L2 in Tomato Species (Solanum, Section Lycopersicon). DOKL BIOCHEM BIOPHYS 2022; 507:340-344. [PMID: 36786998 DOI: 10.1134/s1607672922340051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Revised: 10/05/2022] [Accepted: 10/06/2022] [Indexed: 02/15/2023]
Abstract
The expression of the genes of carotenoid-cis-trans-isomerases CrtISO, CrtISO-L1, and CrtISO-L2 was studied in comparison with the content of carotenoids in tomato species with different ripe fruit colors: green (Solanum habrochaites), yellow (S. cheesmaniae), and red (S. pimpinellifolium and S. lycopersicum). More ancient origin of CrtISO-L2 in relation to CrtISO and CrtISO-L1 was shown. A similar content of total carotenoids (leaves) and β-carotene (ripe fruits) between the samples was found. Unlike the fruits of S. habrochaites and S. cheesmaniae, the red fruits accumulated lycopene and 20-30 times greater total carotenoids. The highest level of transcripts both in leaves and in ripe fruits was detected for CrtISO. The CrtISO-L1 and CrtISO-L2 genes were transcribed at high levels in leaves and at low levels in fruits, except for the high expression of CrtISO-L2 in S. lycopersicum fruits. No correlation between the content of carotenoids and the level of gene expression in the fruit was observed. In the leaves, a positive correlation between the amount of carotenoids and the levels of CrtISO-L1 and CrtISO-L2 transcripts was found.
Collapse
Affiliation(s)
- G I Efremov
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia.
| | - A V Shchennikova
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| | - E Z Kochieva
- Federal Research Center "Fundamentals of Biotechnology" of the Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
40
|
Hou L, Zhang F, Yuan X, Li S, Tian W, Tian W, Li J. Comparative transcriptome analysis reveals key genes for polyphyllin difference in five Paris species. PHYSIOLOGIA PLANTARUM 2022; 174:e13810. [PMID: 36326141 DOI: 10.1111/ppl.13810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/11/2022] [Accepted: 10/23/2022] [Indexed: 06/16/2023]
Abstract
Paris species accumulate a large amount of steroidal saponins, which have numerous pharmacological activities and have become an essential component in many patented drugs. However, only two among all Paris species. Paris are identified as official sources due to high level of bioactive compounds. To clarify the composition of steroidal saponins and the molecular basis behind the differences between species, we investigated transcriptome and metabolic profiles of leaves and rhizomes in Paris polyphylla var. chinensis (PPC), Paris polyphylla var. yunnanensis (PPY), Paris polyphylla var. stenophylla (PPS), Paris fargesii (PF), and Paris mairei (PM). Phytochemical results displayed that the accumulation of steroidal saponins was tissue- and species-specific. PF and PPS contained more steroidal saponins in leaves than rhizomes, while PPY accumulated more steroidal saponins in rhizomes than leaves. PPC and PM contained similar amounts of steroidal saponins in leaves and rhizomes. Transcriptome analysis illustrated that most differentially expressed genes related to the biosynthesis of steroidal saponins were abundantly expressed in rhizomes than leaves. Meanwhile, more biosynthetic genes had significant correlations with steroidal saponins in rhizomes than in leaves. The result of CCA indicated that ACAT, DXS, DWF1, and CYP90 constrained 97.35% of the variance in bioactive compounds in leaves, whereas CYP72, UGT73, ACAT, and GPPS constrained 98.61% of the variance in phytochemicals in rhizomes. This study provided critical information for enhancing the production of steroidal saponins by biotechnological approaches and methodologies.
Collapse
Affiliation(s)
- Lixiu Hou
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Furui Zhang
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Xincheng Yuan
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Song Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Weijun Tian
- Yunnan Baotian Agricultural Technology Co., Ltd., Kunming, China
| | - Weirong Tian
- Yunnan Baotian Agricultural Technology Co., Ltd., Kunming, China
| | - Jiaru Li
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
41
|
Quiroz-Iturra LF, Simpson K, Arias D, Silva C, González-Calquin C, Amaza L, Handford M, Stange C. Carrot DcALFIN4 and DcALFIN7 Transcription Factors Boost Carotenoid Levels and Participate Differentially in Salt Stress Tolerance When Expressed in Arabidopsis thaliana and Actinidia deliciosa. Int J Mol Sci 2022; 23:ijms232012157. [PMID: 36293018 PMCID: PMC9603649 DOI: 10.3390/ijms232012157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/22/2022] [Accepted: 09/28/2022] [Indexed: 11/16/2022] Open
Abstract
ALFIN-like transcription factors (ALs) are involved in several physiological processes such as seed germination, root development and abiotic stress responses in plants. In carrot (Daucus carota), the expression of DcPSY2, a gene encoding phytoene synthase required for carotenoid biosynthesis, is induced after salt and abscisic acid (ABA) treatment. Interestingly, the DcPSY2 promoter contains multiple ALFIN response elements. By in silico analysis, we identified two putative genes with the molecular characteristics of ALs, DcAL4 and DcAL7, in the carrot transcriptome. These genes encode nuclear proteins that transactivate reporter genes and bind to the carrot DcPSY2 promoter in yeast. The expression of both genes is induced in carrot under salt stress, especially DcAL4 which also responds to ABA treatment. Transgenic homozygous T3 Arabidopsis thaliana lines that stably express DcAL4 and DcAL7 show a higher survival rate with respect to control plants after chronic salt stress. Of note is that DcAL4 lines present a better performance in salt treatments, correlating with the expression level of DcAL4, AtPSY and AtDXR and an increase in carotenoid and chlorophyll contents. Likewise, DcAL4 transgenic kiwi (Actinidia deliciosa) lines show increased carotenoid and chlorophyll content and higher survival rate compared to control plants after chronic salt treatment. Therefore, DcAL4 and DcAL7 encode functional transcription factors, while ectopic expression of DcAL4 provides increased tolerance to salinity in Arabidopsis and Kiwi plants.
Collapse
Affiliation(s)
- Luis Felipe Quiroz-Iturra
- Genetics & Biotechnology Lab, Plant & AgriBiosciences Research Centre (PABC), Ryan Institute, University of Galway, University Road, H91 REW4 Galway, Ireland
| | - Kevin Simpson
- Departamento de Genética Molecular y Microbiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Alameda 340, Santiago 7750000, Chile
| | - Daniela Arias
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Cristóbal Silva
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Christian González-Calquin
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Leticia Amaza
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Michael Handford
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
| | - Claudia Stange
- Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Las Palmeras 3425, Ñuñoa, Santiago 7750000, Chile
- Correspondence: ; Tel.: +56-22-2978-7361
| |
Collapse
|
42
|
Li Y, Jian Y, Mao Y, Meng F, Shao Z, Wang T, Zheng J, Wang Q, Liu L. "Omics" insights into plastid behavior toward improved carotenoid accumulation. FRONTIERS IN PLANT SCIENCE 2022; 13:1001756. [PMID: 36275568 PMCID: PMC9583013 DOI: 10.3389/fpls.2022.1001756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Plastids are a group of diverse organelles with conserved carotenoids synthesizing and sequestering functions in plants. They optimize the carotenoid composition and content in response to developmental transitions and environmental stimuli. In this review, we describe the turbulence and reforming of transcripts, proteins, and metabolic pathways for carotenoid metabolism and storage in various plastid types upon organogenesis and external influences, which have been studied using approaches including genomics, transcriptomics, proteomics, and metabonomics. Meanwhile, the coordination of plastid signaling and carotenoid metabolism including the effects of disturbed carotenoid biosynthesis on plastid morphology and function are also discussed. The "omics" insight extends our understanding of the interaction between plastids and carotenoids and provides significant implications for designing strategies for carotenoid-biofortified crops.
Collapse
Affiliation(s)
- Yuanyuan Li
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yue Jian
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Yuanyu Mao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Fanliang Meng
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Zhiyong Shao
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Tonglin Wang
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jirong Zheng
- Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Qiaomei Wang
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| | - Lihong Liu
- Key Laboratory of Horticultural Plant Growth and Development, Ministry of Agriculture, Department of Horticulture, Zhejiang University, Hangzhou, China
| |
Collapse
|
43
|
Hülsen T, Barnes AC, Batstone DJ, Capson-Tojo G. Creating value from purple phototrophic bacteria via single-cell protein production. Curr Opin Biotechnol 2022; 76:102726. [DOI: 10.1016/j.copbio.2022.102726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/25/2022] [Accepted: 03/29/2022] [Indexed: 12/20/2022]
|
44
|
New molecules in plant defence against pathogens. Essays Biochem 2022; 66:683-693. [PMID: 35642866 DOI: 10.1042/ebc20210076] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 04/14/2022] [Accepted: 05/09/2022] [Indexed: 12/12/2022]
Abstract
Plants host a multipart immune signalling network to ward off pathogens. Pathogen attack upon plant tissues can often lead to an amplified state of (induced) defence against subsequent infections in distal tissues; this is known as systemic acquired resistance (SAR). The interaction of plants with beneficial microbes of the rhizosphere microbiome can also lead to an induced resistance in above-ground plant tissues, known as induced systemic resistance. Second messengers such as calcium (Ca2+), reactive oxygen species (ROS), and nitric oxide (NO) are necessary for cell-to-cell signal propagation during SAR and show emergent roles in the mediation of other SAR metabolites. These include the lysine-derived signals pipecolic acid (Pip) and N-hydroxypipecolic acid (NHP), which are key signalling metabolites in SAR. Emerging evidence additionally pinpoints plant volatiles as modulators of defence signalling within and between plants. Plant volatile organic compounds (VOCs) such as monoterpenes can promote SAR by functioning through ROS. Furthermore, plant-derived and additionally also microbial VOCs can target both salicylic acid and jasmonic acid signalling pathways in plants and modulate defence against pathogens. In this review, an overview of recent findings in induced defence signalling, with a particular focus on newer signalling molecules and how they integrate into these networks is discussed.
Collapse
|
45
|
Snell TW, Carberry J. Astaxanthin Bioactivity Is Determined by Stereoisomer Composition and Extraction Method. Nutrients 2022; 14:nu14071522. [PMID: 35406135 PMCID: PMC9002770 DOI: 10.3390/nu14071522] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 02/07/2023] Open
Abstract
Astaxanthin (ASX) is a natural product and one of the most powerful antioxidants known. It has significant effects on the metabolism of many animals, increasing fecundity, egg yolk volume, growth rates, immune responses, and disease resistance. A large part of the bioactivity of ASX is due to its targeting of mitochondria, where it inserts itself into cell membranes. Here, ASX stabilizes membranes and acts as a powerful antioxidant, protecting mitochondria from damage by reactive oxygen species (ROS). ROS are ubiquitous by-products of energy metabolism that must be tightly regulated by cells, lest they bind to and inactivate proteins, DNA and RNA, lipids, and signaling molecules. Most animals cannot synthesize ASX, so they need to acquire it in their diet. ASX is easily thermally denatured during extraction, and its high hydrophobicity limits its bioavailability. Our focus in this review is to contrast the bioactivity of different ASX stereoisomers and how extraction methods can denature ASX, compromising its bioavailability and bioactivity. We discuss the commercial sources of astaxanthin, structure of stereoisomers, relative bioavailability and bioactivity of ASX stereoisomers, mechanisms of ASX bioactivity, evolution of carotenoids, and why mitochondrial targeting makes ASX such an effective antioxidant.
Collapse
Affiliation(s)
- Terry W. Snell
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- Correspondence: ; Tel.: +1-404-368-8475
| | - John Carberry
- Sustainable Aquatics, 110 W. Old Andrew Johnson Highway, Jefferson City, TN 37760, USA;
| |
Collapse
|
46
|
Carotenoids and Their Biosynthesis in Fungi. Molecules 2022; 27:molecules27041431. [PMID: 35209220 PMCID: PMC8879039 DOI: 10.3390/molecules27041431] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/04/2022] Open
Abstract
Carotenoids represent a class of pigmented terpenoids. They are distributed in all taxonomic groups of fungi. Most of the fungal carotenoids differ in their chemical structures to those from other organisms. The general function of carotenoids in heterotrophic organisms is protection as antioxidants against reactive oxygen species generated by photosensitized reactions. Furthermore, carotenoids are metabolized to apocarotenoids by oxidative cleavage. This review presents the current knowledge on fungal-specific carotenoids, their occurrence in different taxonomic groups, and their biosynthesis and conversion into trisporic acids. The outline of the different pathways was focused on the reactions and genes involved in not only the known pathways, but also suggested the possible mechanisms of reactions, which may occur in several non-characterized pathways in different fungi. Finally, efforts and strategies for genetic engineering to enhance or establish pathways for the production of various carotenoids in carotenogenic or non-carotenogenic yeasts were highlighted, addressing the most-advanced producers of each engineered yeast, which offered the highest biotechnological potentials as production systems.
Collapse
|
47
|
Sun T, Rao S, Zhou X, Li L. Plant carotenoids: recent advances and future perspectives. MOLECULAR HORTICULTURE 2022; 2:3. [PMID: 37789426 PMCID: PMC10515021 DOI: 10.1186/s43897-022-00023-2] [Citation(s) in RCA: 140] [Impact Index Per Article: 46.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 01/03/2022] [Indexed: 10/05/2023]
Abstract
Carotenoids are isoprenoid metabolites synthesized de novo in all photosynthetic organisms. Carotenoids are essential for plants with diverse functions in photosynthesis, photoprotection, pigmentation, phytohormone synthesis, and signaling. They are also critically important for humans as precursors of vitamin A synthesis and as dietary antioxidants. The vital roles of carotenoids to plants and humans have prompted significant progress toward our understanding of carotenoid metabolism and regulation. New regulators and novel roles of carotenoid metabolites are continuously revealed. This review focuses on current status of carotenoid metabolism and highlights recent advances in comprehension of the intrinsic and multi-dimensional regulation of carotenoid accumulation. We also discuss the functional evolution of carotenoids, the agricultural and horticultural application, and some key areas for future research.
Collapse
Affiliation(s)
- Tianhu Sun
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Sombir Rao
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Xuesong Zhou
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA
- State Key Laboratory of Crop Genetics & Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Li Li
- Robert W. Holley Center for Agriculture and Health, USDA-Agricultural Research Service, Cornell University, Ithaca, NY, 14853, USA.
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
48
|
Caferri R, Guardini Z, Bassi R, Dall’Osto L. Assessing photoprotective functions of carotenoids in photosynthetic systems of plants and green algae. Methods Enzymol 2022; 674:53-84. [DOI: 10.1016/bs.mie.2022.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
49
|
Hill RA, Wong-Bajracharya J, Anwar S, Coles D, Wang M, Lipzen A, Ng V, Grigoriev IV, Martin F, Anderson IC, Cazzonelli CI, Jeffries T, Plett KL, Plett JM. Abscisic acid supports colonization of Eucalyptus grandis roots by the mutualistic ectomycorrhizal fungus Pisolithus microcarpus. THE NEW PHYTOLOGIST 2022; 233:966-982. [PMID: 34699614 DOI: 10.1111/nph.17825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 10/20/2021] [Indexed: 06/13/2023]
Abstract
The pathways regulated in ectomycorrhizal (EcM) plant hosts during the establishment of symbiosis are not as well understood when compared to the functional stages of this mutualistic interaction. Our study used the EcM host Eucalyptus grandis to elucidate symbiosis-regulated pathways across the three phases of this interaction. Using a combination of RNA sequencing and metabolomics we studied both stage-specific and core responses of E. grandis during colonization by Pisolithus microcarpus. Using exogenous manipulation of the abscisic acid (ABA), we studied the role of this pathway during symbiosis establishment. Despite the mutualistic nature of this symbiosis, a large number of disease signalling TIR-NBS-LRR genes were induced. The transcriptional regulation in E. grandis was found to be dynamic across colonization with a small core of genes consistently regulated at all stages. Genes associated to the carotenoid/ABA pathway were found within this core and ABA concentrations increased during fungal integration into the root. Supplementation of ABA led to improved accommodation of P. microcarpus into E. grandis roots. The carotenoid pathway is a core response of an EcM host to its symbiont and highlights the need to understand the role of the stress hormone ABA in controlling host-EcM fungal interactions.
Collapse
Affiliation(s)
- Richard A Hill
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Johanna Wong-Bajracharya
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Sidra Anwar
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Donovin Coles
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Mei Wang
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Anna Lipzen
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Vivian Ng
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Igor V Grigoriev
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Francis Martin
- INRAE, UMR Interactions Arbres/Microorganismes, Laboratory of Excellence ARBRE, INRAE GrandEst-Nancy, Université de Lorraine, 54280, Champenoux, France
| | - Ian C Anderson
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Christopher I Cazzonelli
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Thomas Jeffries
- School of Science, Western Sydney University, Richmond, NSW, 2753, Australia
| | - Krista L Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
- Elizabeth Macarthur Agricultural Institute, New South Wales Department of Primary Industries, Menangle, NSW, 2568, Australia
| | - Jonathan M Plett
- Hawkesbury Institute for the Environment, Western Sydney University, Richmond, NSW, 2753, Australia
| |
Collapse
|