1
|
Öpik M. Soil biology: Fungi in plant roots - what do they all do down there? Curr Biol 2024; 34:R1237-R1240. [PMID: 39689693 DOI: 10.1016/j.cub.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Plant roots host a range of fungi, including mycorrhizal fungi and endophytes. A new study shows that mucoromycotinan fine root endophytes can selectively utilise organic nitrogen, keep the carbon, transfer nitrogen to host and receive carbon from plants.
Collapse
Affiliation(s)
- Maarja Öpik
- Department of Botany, Institute of Ecology and Earth Sciences, University of Tartu, Tartu, Estonia.
| |
Collapse
|
2
|
Prout JN, Williams A, Wanke A, Schornack S, Ton J, Field KJ. Mucoromycotina 'fine root endophytes': a new molecular model for plant-fungal mutualisms? TRENDS IN PLANT SCIENCE 2024; 29:650-661. [PMID: 38102045 DOI: 10.1016/j.tplants.2023.11.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 11/10/2023] [Accepted: 11/16/2023] [Indexed: 12/17/2023]
Abstract
The most studied plant-fungal symbioses to date are the interactions between plants and arbuscular mycorrhizal (AM) fungi of the Glomeromycotina clade. Advancements in phylogenetics and microbial community profiling have distinguished a group of symbiosis-forming fungi that resemble AM fungi as belonging instead to the Mucoromycotina. These enigmatic fungi are now known as Mucoromycotina 'fine root endophytes' and could provide a means to understand the origins of plant-fungal symbioses. Most of our knowledge of the mechanisms of fungal symbiosis comes from investigations using AM fungi. Here, we argue that inclusion of Mucoromycotina fine root endophytes in future studies will expand our understanding of the mechanisms, evolution, and ecology of plant-fungal symbioses.
Collapse
Affiliation(s)
- James N Prout
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| | - Alex Williams
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Alan Wanke
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, UK
| | | | - Jurriaan Ton
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| | - Katie J Field
- Plants, Photosynthesis and Soil, School of Biosciences, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
| |
Collapse
|
3
|
Rosling A, Eshghi Sahraei S, Kalsoom Khan F, Desirò A, Bryson AE, Mondo SJ, Grigoriev IV, Bonito G, Sánchez-García M. Evolutionary history of arbuscular mycorrhizal fungi and genomic signatures of obligate symbiosis. BMC Genomics 2024; 25:529. [PMID: 38811885 PMCID: PMC11134847 DOI: 10.1186/s12864-024-10391-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 05/08/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND The colonization of land and the diversification of terrestrial plants is intimately linked to the evolutionary history of their symbiotic fungal partners. Extant representatives of these fungal lineages include mutualistic plant symbionts, the arbuscular mycorrhizal (AM) fungi in Glomeromycota and fine root endophytes in Endogonales (Mucoromycota), as well as fungi with saprotrophic, pathogenic and endophytic lifestyles. These fungal groups separate into three monophyletic lineages but their evolutionary relationships remain enigmatic confounding ancestral reconstructions. Their taxonomic ranks are currently fluid. RESULTS In this study, we recognize these three monophyletic linages as phyla, and use a balanced taxon sampling and broad taxonomic representation for phylogenomic analysis that rejects a hard polytomy and resolves Glomeromycota as sister to a clade composed of Mucoromycota and Mortierellomycota. Low copy numbers of genes associated with plant cell wall degradation could not be assigned to the transition to a plant symbiotic lifestyle but appears to be an ancestral phylogenetic signal. Both plant symbiotic lineages, Glomeromycota and Endogonales, lack numerous thiamine metabolism genes but the lack of fatty acid synthesis genes is specific to AM fungi. Many genes previously thought to be missing specifically in Glomeromycota are either missing in all analyzed phyla, or in some cases, are actually present in some of the analyzed AM fungal lineages, e.g. the high affinity phosphorus transporter Pho89. CONCLUSION Based on a broad taxon sampling of fungal genomes we present a well-supported phylogeny for AM fungi and their sister lineages. We show that among these lineages, two independent evolutionary transitions to mutualistic plant symbiosis happened in a genomic background profoundly different from that known from the emergence of ectomycorrhizal fungi in Dikarya. These results call for further reevaluation of genomic signatures associated with plant symbiosis.
Collapse
Affiliation(s)
- Anna Rosling
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
| | | | | | - Alessandro Desirò
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Abigail E Bryson
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, USA
| | - Stephen J Mondo
- Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National laboratory, Berkeley, CA, USA
| | - Igor V Grigoriev
- Department of Energy (DOE) Joint Genome Institute (JGI), Lawrence Berkeley National laboratory, Berkeley, CA, USA
- Department of Plant and Microbial Biology, University of California Berkeley, Berkeley, CA, 94720, USA
| | - Gregory Bonito
- Department of Plant Soil and Microbial Sciences, Michigan State University, East Lansing, MI, USA
| | - Marisol Sánchez-García
- Department of Ecology and Genetics, Uppsala University, Uppsala, Sweden.
- Department of Forest Mycology and Plant Pathology, Uppsala Biocentre, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| |
Collapse
|
4
|
Liu Z, Fang J, He Y, Bending GD, Song B, Guo Y, Wang X, Fang Z, Adams JM. Distinct biogeographic patterns in Glomeromycotinian and Mucoromycotinian arbuscular mycorrhizal fungi across China: A meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168907. [PMID: 38061652 DOI: 10.1016/j.scitotenv.2023.168907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 01/18/2024]
Abstract
Fine root endophytes, recently reclassified as Mucoromycotinian arbuscular mycorrhizal fungi (M-AMF), are now recognized as functionally important as Glomeromycotinian AMF (G-AMF). However, little is known about the biogeography and ecology of M-AMF and G-AMF communities, particularly on a large scale, preventing a systematic assessment of ecosystem diversity and functioning. Here, we investigated the biogeographic assemblies and ecological diversity patterns of both G-AMF and M-AMF, using published 18S rDNA amplicon datasets and associated metadata from 575 soil samples in six ecosystems across China. Contrasting with G-AMF, putative M-AMF were rare in natural/semi-natural sites, where their communities were a subset of those in agricultural sites characterized by intensive disturbances, suggesting different ecological niches that they could occupy. Spatial and environmental factors (e.g., vegetation type) significantly influenced both fungal communities, with soil total‑nitrogen and mean-annual-precipitation being the strongest predictors for G-AMF and M-AMF richness, respectively. Both groups exhibited a strong spatial distance-decay relationship, shaped more by environmental filtering than spatial effects for M-AMF, and the opposite for G-AMF, presumably because stochasticity (e.g., drift) dominantly structured G-AMF communities; while the narrower niche breadth (at community-level) of M-AMF compared to G-AMF suggested its more susceptibility to environmental differences. Furthermore, co-occurrence network links between G-AMF and M-AMF were prevalent across ecosystems, and were predicted to play a key role in stabilizing overall communities harboring both fungi. Based on the macroecological spatial scale datasets, this study provides solid evidence that the two AMF groups have distinct ecological preferences at the continental scale in China, and also highlights the potential impacts of anthropogenic activities on distributions of AMF. These results advance our knowledge of the ecological differences between the two fungal groups in terrestrial ecosystems, suggesting the need for further field-based investigation that may lead to a more sophisticated understanding of ecosystem function and sustainable management.
Collapse
Affiliation(s)
- Zihao Liu
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China
| | - Jie Fang
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China
| | - Yucheng He
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China
| | - Gary D Bending
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK
| | - Bin Song
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China; Department of Forest Sciences, University of Helsinki, PO Box 27, Latokartanonkaari 7, FI-00014 Helsinki, Finland.
| | - Yaping Guo
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China
| | - Xiaojie Wang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Zemin Fang
- School of Life Sciences, Anhui University, Hefei 230601, China
| | - Jonathan M Adams
- School of Geography and Ocean Science, Nanjing University, Nanjing 210008, China.
| |
Collapse
|
5
|
Hoysted GA, Field KJ, Sinanaj B, Bell CA, Bidartondo MI, Pressel S. Direct nitrogen, phosphorus and carbon exchanges between Mucoromycotina 'fine root endophyte' fungi and a flowering plant in novel monoxenic cultures. THE NEW PHYTOLOGIST 2023; 238:70-79. [PMID: 36739554 PMCID: PMC10952891 DOI: 10.1111/nph.18630] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 11/15/2022] [Indexed: 06/18/2023]
Abstract
Most plants form mycorrhizal associations with mutualistic soil fungi. Through these partnerships, resources are exchanged including photosynthetically fixed carbon for fungal-acquired nutrients. Recently, it was shown that the diversity of associated fungi is greater than previously assumed, extending to Mucoromycotina fungi. These Mucoromycotina 'fine root endophytes' (MFRE) are widespread and generally co-colonise plant roots together with Glomeromycotina 'coarse' arbuscular mycorrhizal fungi (AMF). Until now, this co-occurrence has hindered the determination of the direct function of MFRE symbiosis. To overcome this major barrier, we developed new techniques for fungal isolation and culture and established the first monoxenic in vitro cultures of MFRE colonising a flowering plant, clover. Using radio- and stable-isotope tracers in these in vitro systems, we measured the transfer of 33 P, 15 N and 14 C between MFRE hyphae and the host plant. Our results provide the first unequivocal evidence that MFRE fungi are nutritional mutualists with a flowering plant by showing that clover gained both 15 N and 33 P tracers directly from fungus in exchange for plant-fixed C in the absence of other micro-organisms. Our findings and methods pave the way for a new era in mycorrhizal research, firmly establishing MFRE as both mycorrhizal and functionally important in terrestrial ecosystems.
Collapse
Affiliation(s)
- Grace A. Hoysted
- Plants, Photosynthesis and Soil, School of BioscienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Katie J. Field
- Plants, Photosynthesis and Soil, School of BioscienceUniversity of SheffieldSheffieldS10 2TNUK
| | - Besiana Sinanaj
- Plants, Photosynthesis and Soil, School of BioscienceUniversity of SheffieldSheffieldS10 2TNUK
| | | | - Martin I. Bidartondo
- Department of Life SciencesImperial College LondonLondonSW7 2AZUK
- Department of Ecosystem StewardshipRoyal Botanic Gardens, KewRichmondTW9 3DSUK
| | - Silvia Pressel
- Department of Life SciencesNatural History MuseumLondonSW7 5BDUK
| |
Collapse
|
6
|
Almario J, Fabiańska I, Saridis G, Bucher M. Unearthing the plant-microbe quid pro quo in root associations with beneficial fungi. THE NEW PHYTOLOGIST 2022; 234:1967-1976. [PMID: 35239199 DOI: 10.1111/nph.18061] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Accepted: 02/09/2022] [Indexed: 06/14/2023]
Abstract
Mutualistic symbiotic associations between multicellular eukaryotes and their microbiota are driven by the exchange of nutrients in a quid pro quo manner. In the widespread arbuscular mycorrhizal (AM) symbiosis involving plant roots and Glomeromycotina fungi, the mycobiont is supplied with carbon through photosynthesis, which in return supplies the host plant with essential minerals such as phosphorus (P). Most terrestrial plants are largely dependent on AM fungi for nutrients, which raises the question of how plants that are unable to form a functional AM sustain their P nutrition. AM nonhost plants can form alternative, evolutionarily younger, mycorrhizal associations such as the ectomycorrhiza, ericoid and orchid mycorrhiza. However, it is unclear how plants such as the Brassicaceae species Arabidopsis thaliana, which do not form known mycorrhizal symbioses, have adapted to the loss of these essential mycorrhizal traits. Isotope tracing experiments with root-colonizing fungi have revealed the existence of new 'mycorrhizal-like' fungi capable of transferring nutrients such as nitrogen (N) and P to plants, including Brassicaceae. Here, we provide an overview of the biology of trophic relationships between roots and fungi and how these associations might support plant adaptation to climate change.
Collapse
Affiliation(s)
- Juliana Almario
- Ecologie Microbienne, CNRS UMR-5557, INRAe UMR-1418, VetAgroSup, Université de Lyon, Université Claude Bernard Lyon1, 43 Boulevard du 11 novembre 1918, Villeurbanne, 69622, France
| | - Izabela Fabiańska
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Georgios Saridis
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
| | - Marcel Bucher
- Institute for Plant Sciences, Cologne Biocenter, University of Cologne, Cologne, 50674, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), University of Cologne, Cologne, 50931, Germany
| |
Collapse
|
7
|
Howard N, Pressel S, Kaye RS, Daniell TJ, Field KJ. The potential role of Mucoromycotina 'fine root endophytes' in plant nitrogen nutrition. PHYSIOLOGIA PLANTARUM 2022; 174:e13715. [PMID: 35560043 PMCID: PMC9328347 DOI: 10.1111/ppl.13715] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 04/19/2022] [Accepted: 05/10/2022] [Indexed: 05/29/2023]
Abstract
Mycorrhizal associations between fungi and plant roots have globally significant impacts on nutrient cycling. Mucoromycotina 'fine root endophytes' (MFRE) are a distinct and recently characterised group of mycorrhiza-forming fungi that associate with the roots of a range of host plant species. Given their previous misidentification and assignment as arbuscular mycorrhizal fungi (AMF) of the Glomeromycotina, it is now important to untangle the specific form and function of MFRE symbioses. In particular, relatively little is known about the nature of MFRE colonisation and its role in N uptake and transfer to host plants. Even less is known about the mechanisms by which MFRE access and assimilate N, and how this N is processed and subsequently exchanged with host plants for photosynthates. Here, we summarise and contrast the structures formed by MFRE and arbuscular mycorrhizal fungi in host plants as well as compare the N source preference of each mycorrhizal fungal group with what is currently known for MFRE N uptake. We compare the mechanisms of N assimilation and transfer to host plants utilised by the main groups of mycorrhizal fungi and hypothesise potential mechanisms for MFRE N assimilation and transfer, outlining directions for future research.
Collapse
Affiliation(s)
- Nathan Howard
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Silvia Pressel
- Department of Life SciencesNatural History MuseumLondonUK
| | - Ryan S. Kaye
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Tim J. Daniell
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| | - Katie J. Field
- Plants, Photosynthesis and Soil, School of BiosciencesUniversity of SheffieldSheffieldUK
| |
Collapse
|