1
|
Zobel M, Koorem K, Moora M, Semchenko M, Davison J. Symbiont plasticity as a driver of plant success. THE NEW PHYTOLOGIST 2024; 241:2340-2352. [PMID: 38308116 DOI: 10.1111/nph.19566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024]
Abstract
We discuss which plant species are likely to become winners, that is achieve the highest global abundance, in changing landscapes, and whether plant-associated microbes play a determining role. Reduction and fragmentation of natural habitats in historic landscapes have led to the emergence of patchy, hybrid landscapes, and novel landscapes where anthropogenic ecosystems prevail. In patchy landscapes, species with broad niches are favoured. Plasticity in the degree of association with symbiotic microbes may contribute to broader plant niches and optimization of symbiosis costs and benefits, by downregulating symbiosis when it is unnecessary and upregulating it when it is beneficial. Plasticity can also be expressed as the switch from one type of mutualism to another, for example from nutritive to defensive mutualism with increasing soil fertility and the associated increase in parasite load. Upon dispersal, wide mutualistic partner receptivity is another facet of symbiont plasticity that becomes beneficial, because plants are not limited by the availability of specialist partners when arriving at new locations. Thus, under conditions of global change, symbiont plasticity allows plants to optimize the activity of mutualistic relationships, potentially allowing them to become winners by maximizing geographic occupancy and local abundance.
Collapse
Affiliation(s)
- Martin Zobel
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Kadri Koorem
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Mari Moora
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - Marina Semchenko
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| | - John Davison
- Institute of Ecology and Earth Sciences, University of Tartu, J. Liivi 2, Tartu, 50409, Estonia
| |
Collapse
|
2
|
Zhang S, Fan D, Wu J, Zhang X, Zhuang X, Kong W. The interaction of climate, plant, and soil factors drives putative soil fungal pathogen diversity and community structure in dry grasslands. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13223. [PMID: 38124298 PMCID: PMC10866062 DOI: 10.1111/1758-2229.13223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 11/29/2023] [Indexed: 12/23/2023]
Abstract
Soil pathogens play important roles in shaping soil microbial diversity and controlling ecosystem functions. Though climate and local environmental factors and their influences on fungal pathogen communities have been examined separately, few studies explore the relative contributions of these factors. This is particularly crucial in eco-fragile regions, which are more sensitive to environmental changes. Herein we investigated the diversity and community structure of putative soil fungal pathogens in cold and dry grasslands on the Tibetan Plateau, using high-throughput sequencing. The results showed that steppe soils had the highest diversity of all pathogens and plant pathogens; contrastingly, meadow soils had the highest animal pathogen diversity. Structural equation modelling revealed that climate, plant, and soil had similar levels of influence on putative soil fungal pathogen diversity, with total effects ranging from 52% to 59% (all p < 0.001), with precipitation exhibiting a stronger direct effect than plant and soil factors. Putative soil fungal pathogen community structure gradually changed with desert, steppe, and meadow, and was primarily controlled by the interactions of climate, plant, and soil factors rather than by distinct factors individually. This finding contrasts with most studies of soil bacterial and fungal community structure, which generally report dominant roles of individual environmental factors.
Collapse
Affiliation(s)
- Shaoyang Zhang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER)Institute of Tibetan Plateau Research, Chinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Dandan Fan
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER)Institute of Tibetan Plateau Research, Chinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Jianshuang Wu
- Institute of Environment and Sustainable Development in AgricultureChinese Academy of Agricultural SciencesBeijingChina
| | - Xianzhou Zhang
- Key Laboratory of Ecosystem Network Observation and ModelingInstitute of Geographic Sciences and Natural Resources Research, Chinese Academy of SciencesBeijingChina
| | - Xuliang Zhuang
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER)Institute of Tibetan Plateau Research, Chinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
| | - Weidong Kong
- State Key Laboratory of Tibetan Plateau Earth System, Environment and Resources (TPESER)Institute of Tibetan Plateau Research, Chinese Academy of SciencesBeijingChina
- College of Resources and EnvironmentUniversity of Chinese Academy of SciencesBeijingChina
- College of Life SciencesCapital Normal UniversityBeijingChina
| |
Collapse
|
3
|
Li P, Tedersoo L, Crowther TW, Wang B, Shi Y, Kuang L, Li T, Wu M, Liu M, Luan L, Liu J, Li D, Li Y, Wang S, Saleem M, Dumbrell AJ, Li Z, Jiang J. Global diversity and biogeography of potential phytopathogenic fungi in a changing world. Nat Commun 2023; 14:6482. [PMID: 37838711 PMCID: PMC10576792 DOI: 10.1038/s41467-023-42142-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 10/02/2023] [Indexed: 10/16/2023] Open
Abstract
Phytopathogenic fungi threaten global food security but the ecological drivers of their global diversity and biogeography remain unknown. Here, we construct and analyse a global atlas of potential phytopathogenic fungi from 20,312 samples across all continents and major oceanic island regions, eleven land cover types, and twelve habitat types. We show a peak in the diversity of phytopathogenic fungi in mid-latitude regions, in contrast to the latitudinal diversity gradients observed in aboveground organisms. Our study identifies climate as an important driver of the global distribution of phytopathogenic fungi, and our models suggest that their diversity and invasion potential will increase globally by 2100. Importantly, phytopathogen diversity will increase largely in forest (37.27-79.12%) and cropland (34.93-82.51%) ecosystems, and this becomes more pronounced under fossil-fuelled industry dependent future scenarios. Thus, we recommend improved biomonitoring in forests and croplands, and optimised sustainable development approaches to reduce potential threats from phytopathogenic fungi.
Collapse
Affiliation(s)
- Pengfa Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
| | - Thomas W Crowther
- Institute of Integrative Biology, ETH Zürich, 8092, Zürich, Switzerland
| | - Baozhan Wang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| | - Yu Shi
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Lu Kuang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Ting Li
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China
| | - Meng Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Ming Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Lu Luan
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jia Liu
- Soil and Fertilizer & Resources and Environment Institute, Jiangxi Academy of Agricultural Sciences, 330200, Nanchang, China
| | - Dongzhen Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Yongxia Li
- Key Laboratory of Forest Protection of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, 100091, Beijing, China
| | - Songhan Wang
- College of Agriculture, Nanjing Agricultural University, 210095, Nanjing, China
| | - Muhammad Saleem
- Department of Biological Sciences, Alabama State University, Montgomery, AL, 36104, USA
| | - Alex J Dumbrell
- School of Life Sciences, University of Essex, Colchester, Essex, UK.
| | - Zhongpei Li
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 210008, Nanjing, China
| | - Jiandong Jiang
- Department of Microbiology, College of Life Sciences, Nanjing Agricultural University, Key Laboratory of Agricultural and Environmental Microbiology, Ministry of Agriculture and Rural Affairs, 210095, Nanjing, China.
| |
Collapse
|
4
|
Riit T, Cleary M, Adamson K, Blomquist M, Burokienė D, Marčiulynienė D, Oliva J, Poimala A, Redondo MA, Strømeng GM, Talgø V, Tedersoo L, Thomsen IM, Uimari A, Witzell J, Drenkhan R. Oomycete Soil Diversity Associated with Betula and Alnus in Forests and Urban Settings in the Nordic-Baltic Region. J Fungi (Basel) 2023; 9:926. [PMID: 37755034 PMCID: PMC10532727 DOI: 10.3390/jof9090926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/28/2023] Open
Abstract
This study aimed to determine the differences and drivers of oomycete diversity and community composition in alder- and birch-dominated park and natural forest soils of the Fennoscandian and Baltic countries of Estonia, Finland, Lithuania, Norway, and Sweden. For this, we sequenced libraries of PCR products generated from the DNA of 111 soil samples collected across a climate gradient using oomycete-specific primers on a PacBio high-throughput sequencing platform. We found that oomycete communities are most affected by temperature seasonality, annual mean temperature, and mean temperature of the warmest quarter. Differences in composition were partly explained by the higher diversity of Saprolegniales in Sweden and Norway, as both total oomycete and Saprolegniales richness decreased significantly at higher longitudes, potentially indicating the preference of this group of oomycetes for a more temperate maritime climate. None of the evaluated climatic variables significantly affected the richness of Pythiales or Peronosporales. Interestingly, the relative abundance and richness of Pythiales was higher at urban sites compared to forest sites, whereas the opposite was true for Saprolegniales. Additionally, this is the first report of Phytophthora gallica and P. plurivora in Estonia. Our results indicate that the composition of oomycetes in soils is strongly influenced by climatic factors, and, therefore, changes in climate conditions associated with global warming may have the potential to significantly alter the distribution range of these microbes, which comprise many important pathogens of plants.
Collapse
Affiliation(s)
- Taavi Riit
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| | - Michelle Cleary
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
| | - Kalev Adamson
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| | - Mimmi Blomquist
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
| | - Daiva Burokienė
- Nature Research Centre, Akademijos Str. 2, LT-08412 Vilnius, Lithuania
| | - Diana Marčiulynienė
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
- Institute of Forestry, Lithuanian Research Centre for Agriculture and Forestry, Liepų Str. 1, LT-53101 Girionys, Lithuania
| | - Jonàs Oliva
- Department of Agricultural and Forest Sciences and Engineering, University of Lleida, 25198 Lleida, Spain
- Joint Research Unit CTFC–Agrotecnio, 25198 Lleida, Spain
| | - Anna Poimala
- Natural Resources Institute Finland (LUKE), Latokartanonkaari 9, 00790 Helsinki, Finland
| | - Miguel Angel Redondo
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, P.O. Box 7026, 750 07 Uppsala, Sweden
| | - Gunn Mari Strømeng
- Norwegian Institute of Bioeconomy Research, NIBIO, Høgskoleveien 7, 1433 Ås, Norway
| | - Venche Talgø
- Norwegian Institute of Bioeconomy Research, NIBIO, Høgskoleveien 7, 1433 Ås, Norway
| | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, J. Liivi 2, 50409 Tartu, Estonia
| | - Iben Margrete Thomsen
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Rolighedsvej 23, 1958 Frederiksberg C, Denmark
| | - Anne Uimari
- Natural Resources Institute Finland (LUKE), Juntintie 154, 77600 Suonenjoki, Finland
| | - Johanna Witzell
- Southern Swedish Forest Research Centre, Swedish University of Agricultural Sciences, Sundsvägen 3, 230 53 Alnarp, Sweden
- Department of Forestry and Wood Technology, Linnaeus University, 351 95 Växjö, Sweden
| | - Rein Drenkhan
- Institute of Forestry and Engineering, Estonian University of Life Sciences, F. R. Kreutzwaldi 5, 51006 Tartu, Estonia; (T.R.)
| |
Collapse
|
5
|
The neglected role of micronutrients in predicting soil microbial structure. NPJ Biofilms Microbiomes 2022; 8:103. [PMID: 36575178 PMCID: PMC9794713 DOI: 10.1038/s41522-022-00363-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/29/2022] [Indexed: 12/28/2022] Open
Abstract
Predicting the distribution patterns of soil microbial communities requires consideration of more environmental drivers. The effects of soil micronutrients on composition of microbial communities are largely unknown despite micronutrients closely relating to soil fertility and plant communities. Here we used data from 228 agricultural fields to identify the importance of micronutrients (iron, zinc, copper and manganese) in shaping structure of soil microbial communities (bacteria, fungi and protist) along latitudinal gradient over 3400 km, across diverse edaphic conditions and climatic gradients. We found that micronutrients explained more variations in the structure of microbial communities than macronutrients in maize soils. Moreover, micronutrients, particularly iron and copper, explained a unique percentage of the variation in structure of microbial communities in maize soils even after controlling for climate, soil physicochemical properties and macronutrients, but these effects were stronger for fungi and protist than for bacteria. The ability of micronutrients to predict the structure of soil microbial communities declined greatly in paddy soils. Machine learning approach showed that the addition of micronutrients substantially increased the predictive power by 9-17% in predicting the structure of soil microbial communities with up to 69-78% accuracy. These results highlighted the considerable contributions of soil micronutrients to microbial community structure, and advocated that soil micronutrients should be considered when predicting the structure of microbial communities in a changing world.
Collapse
|
6
|
Chen J, Shi Z, Liu S, Zhang M, Cao X, Chen M, Xu G, Xing H, Li F, Feng Q. Altitudinal Variation Influences Soil Fungal Community Composition and Diversity in Alpine-Gorge Region on the Eastern Qinghai-Tibetan Plateau. J Fungi (Basel) 2022; 8:807. [PMID: 36012795 PMCID: PMC9410234 DOI: 10.3390/jof8080807] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 12/04/2022] Open
Abstract
Soil fungi play an integral and essential role in maintaining soil ecosystem functions. The understanding of altitude variations and their drivers of soil fungal community composition and diversity remains relatively unclear. Mountains provide an open, natural platform for studying how the soil fungal community responds to climatic variability at a short altitude distance. Using the Illumina MiSeq high-throughput sequencing technique, we examined soil fungal community composition and diversity among seven vegetation types (dry valley shrub, valley-mountain ecotone broadleaved mixed forest, subalpine broadleaved mixed forest, subalpine coniferous-broadleaved mixed forest, subalpine coniferous forest, alpine shrub meadow, alpine meadow) along a 2582 m altitude gradient in the alpine-gorge region on the eastern Qinghai-Tibetan Plateau. Ascomycota (47.72%), Basidiomycota (36.58%), and Mortierellomycota (12.14%) were the top three soil fungal dominant phyla in all samples. Soil fungal community composition differed significantly among the seven vegetation types along altitude gradients. The α-diversity of soil total fungi and symbiotic fungi had a distinct hollow pattern, while saprophytic fungi and pathogenic fungi showed no obvious pattern along altitude gradients. The β-diversity of soil total fungi, symbiotic fungi, saprophytic fungi, and pathogenic fungi was derived mainly from species turnover processes and exhibited a significant altitude distance-decay pattern. Soil properties explained 31.27-34.91% of variation in soil fungal (total and trophic modes) community composition along altitude gradients, and the effects of soil nutrients on fungal community composition varied by trophic modes. Soil pH was the main factor affecting α-diversity of soil fungi along altitude gradients. The β-diversity and turnover components of soil total fungi and saprophytic fungi were affected by soil properties and geographic distance, while those of symbiotic fungi and pathogenic fungi were affected only by soil properties. This study deepens our knowledge regarding altitude variations and their drivers of soil fungal community composition and diversity, and confirms that the effects of soil properties on soil fungal community composition and diversity vary by trophic modes along altitude gradients in the alpine-gorge region.
Collapse
Affiliation(s)
- Jian Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Zuomin Shi
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Institute for Sustainable Plant Protection, National Research Council of Italy, 10135 Torino, Italy
| | - Shun Liu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Miaomiao Zhang
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Xiangwen Cao
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Miao Chen
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Gexi Xu
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Hongshuang Xing
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Feifan Li
- Key Laboratory of Forest Ecology and Environment of National Forestry and Grassland Administration, Ecology and Nature Conservation Institute, Chinese Academy of Forestry, Beijing 100091, China; (J.C.); (S.L.); (M.Z.); (X.C.); (M.C.); (G.X.); (H.X.); (F.L.)
- Miyaluo Research Station of Alpine Forest Ecosystem, Lixian County 623100, China
| | - Qiuhong Feng
- Ecological Restoration and Conservation on Forest and Wetland Key Laboratory of Sichuan Province, Sichuan Academy of Forestry, Chengdu 610081, China;
| |
Collapse
|