1
|
Mascarenhas MS, Nascimento FDS, Rocha ADJ, Ferreira MDS, Oliveira WDDS, Morais Lino LS, Mendes TADO, Ferreira CF, dos Santos-Serejo JA, Amorim EP. Use of CRISPR Technology in Gene Editing for Tolerance to Biotic Factors in Plants: A Systematic Review. Curr Issues Mol Biol 2024; 46:11086-11123. [PMID: 39451539 PMCID: PMC11505962 DOI: 10.3390/cimb46100659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 09/24/2024] [Accepted: 09/30/2024] [Indexed: 10/26/2024] Open
Abstract
The objective of this systematic review (SR) was to select studies on the use of gene editing by CRISPR technology related to plant resistance to biotic stresses. We sought to evaluate articles deposited in six electronic databases, using pre-defined inclusion and exclusion criteria. This SR demonstrates that countries such as China and the United States of America stand out in studies with CRISPR/Cas. Among the most studied crops are rice, tomatoes and the model plant Arabidopsis thaliana. The most cited biotic agents include the genera, Xanthomonas, Manaporthe, Pseudomonas and Phytophthora. This SR also identifies several CRISPR/Cas-edited genes and demonstrates that plant responses to stressors are mediated by many complex signaling pathways. The Cas9 enzyme is used in most articles and Cas12 and 13 are used as additional editing tools. Furthermore, the quality of the articles included in this SR was validated by a risk of bias analysis. The information collected in this SR helps to understand the state of the art of CRISPR/Cas aimed at improving resistance to diseases and pests to understand the mechanisms involved in most host-pathogen relationships. This SR shows that the CRISPR/Cas system provides a straightforward method for rapid gene targeting, providing useful information for plant breeding programs.
Collapse
Affiliation(s)
- Marcelly Santana Mascarenhas
- Department of Biological Sciences, Feira de Santana State University, Feira de Santana 44036-900, BA, Brazil; (M.S.M.); (W.D.d.S.O.)
| | - Fernanda dos Santos Nascimento
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Anelita de Jesus Rocha
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Mileide dos Santos Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Lucymeire Souza Morais Lino
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | | | - Claudia Fortes Ferreira
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Janay Almeida dos Santos-Serejo
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| | - Edson Perito Amorim
- Embrapa Mandioca e Fruticultura, Cruz das Almas 44380-000, BA, Brazil; (F.d.S.N.); (A.d.J.R.); (M.d.S.F.); (L.S.M.L.); (C.F.F.); (J.A.d.S.-S.)
| |
Collapse
|
2
|
Bian S, Li Z, Song S, Zhang X, Shang J, Wang W, Zhang D, Ni D. Enhancing Crop Resilience: Insights from Labdane-Related Diterpenoid Phytoalexin Research in Rice ( Oryza sativa L.). Curr Issues Mol Biol 2024; 46:10677-10695. [PMID: 39329985 PMCID: PMC11430374 DOI: 10.3390/cimb46090634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/16/2024] [Accepted: 09/20/2024] [Indexed: 09/28/2024] Open
Abstract
Rice (Oryza sativa L.), as one of the most significant food crops worldwide, holds paramount importance for global food security. Throughout its extensive evolutionary journey, rice has evolved a diverse array of defense mechanisms to fend off pest and disease infestations. Notably, labdane-related diterpenoid phytoalexins play a crucial role in aiding rice in its response to both biotic and abiotic stresses. This article provides a comprehensive review of the research advancements pertaining to the chemical structures, biological activities, and biosynthetic pathways, as well as the molecular regulatory mechanisms, underlying labdane-related diterpenoid phytoalexins discovered in rice. This insight into the molecular regulation of labdane-related diterpenoid phytoalexin biosynthesis offers valuable perspectives for future research aimed at improving crop resilience and productivity.
Collapse
Affiliation(s)
- Shiquan Bian
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Zhong Li
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Shaojie Song
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Xiao Zhang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Jintao Shang
- Agricultural Technology Extension Center of Linping District, Hangzhou 311199, China
| | - Wanli Wang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dewen Zhang
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| | - Dahu Ni
- Key Laboratory of Rice Germplasm Innovation and Molecular Improvement of Anhui Province, Rice Research Institute, Anhui Academy of Agricultural Sciences, Hefei 230031, China
| |
Collapse
|
3
|
Feng Y, Weers T, Peters RJ. Double-barreled defense: dual ent-miltiradiene synthases in most rice cultivars. ABIOTECH 2024; 5:375-380. [PMID: 39279860 PMCID: PMC11399519 DOI: 10.1007/s42994-024-00167-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 05/01/2024] [Indexed: 09/18/2024]
Abstract
Rice (Oryza sativa) produces numerous diterpenoid phytoalexins that are important in defense against pathogens. Surprisingly, despite extensive previous investigations, a major group of such phytoalexins, the abietoryzins, were only recently reported. These aromatic abietanes are presumably derived from ent-miltiradiene, but such biosynthetic capacity has not yet been reported in O. sativa. While wild rice has been reported to contain such an enzyme, specifically ent-kaurene synthase-like 10 (KSL10), the only characterized ortholog from O. sativa (OsKSL10), specifically from the well-studied cultivar (cv.) Nipponbare, instead has been shown to make ent-sandaracopimaradiene, precursor to the oryzalexins. Notably, in many other cultivars, OsKSL10 is accompanied by a tandem duplicate, termed here OsKSL14. Biochemical characterization of OsKLS14 from cv. Kitaake demonstrates that this produces the expected abietoryzin precursor ent-miltiradiene. Strikingly, phylogenetic analysis of OsKSL10 across the rice pan-genome reveals that from cv. Nipponbare is an outlier, whereas the alleles from most other cultivars group with those from wild rice, suggesting that these also might produce ent-miltiradiene. Indeed, OsKSL10 from cv. Kitaake exhibits such activity as well, consistent with its production of abietoryzins but not oryzalexins. Similarly consistent with these results is the lack of abietoryzin production by cv. Nipponbare. Although their equivalent product outcome might suggest redundancy, OsKSL10 and OsKSL14 were observed to exhibit distinct expression patterns, indicating such differences may underlie retention of these duplicated genes. Regardless, the results reported here clarify abietoryzin biosynthesis and provide insight into the evolution of rice diterpenoid phytoalexins. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00167-3.
Collapse
Affiliation(s)
- Yiling Feng
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Tristan Weers
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
4
|
Dixon RA, Dickinson AJ. A century of studying plant secondary metabolism-From "what?" to "where, how, and why?". PLANT PHYSIOLOGY 2024; 195:48-66. [PMID: 38163637 PMCID: PMC11060662 DOI: 10.1093/plphys/kiad596] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/15/2023] [Indexed: 01/03/2024]
Abstract
Over the past century, early advances in understanding the identity of the chemicals that collectively form a living plant have led scientists to deeper investigations exploring where these molecules localize, how they are made, and why they are synthesized in the first place. Many small molecules are specific to the plant kingdom and have been termed plant secondary metabolites, despite the fact that they can play primary and essential roles in plant structure, development, and response to the environment. The past 100 yr have witnessed elucidation of the structure, function, localization, and biosynthesis of selected plant secondary metabolites. Nevertheless, many mysteries remain about the vast diversity of chemicals produced by plants and their roles in plant biology. From early work characterizing unpurified plant extracts, to modern integration of 'omics technology to discover genes in metabolite biosynthesis and perception, research in plant (bio)chemistry has produced knowledge with substantial benefits for society, including human medicine and agricultural biotechnology. Here, we review the history of this work and offer suggestions for future areas of exploration. We also highlight some of the recently developed technologies that are leading to ongoing research advances.
Collapse
Affiliation(s)
- Richard A Dixon
- BioDiscovery Institute and Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Alexandra Jazz Dickinson
- Department of Cell and Developmental Biology, University of California at San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
5
|
Kariya K, Mori H, Ueno M, Yoshikawa T, Teraishi M, Yabuta Y, Ueno K, Ishihara A. Identification and evolution of a diterpenoid phytoalexin oryzalactone biosynthetic gene in the genus Oryza. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:358-372. [PMID: 38194491 DOI: 10.1111/tpj.16608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 11/11/2023] [Accepted: 12/14/2023] [Indexed: 01/11/2024]
Abstract
The natural variation of plant-specialized metabolites represents the evolutionary adaptation of plants to their environments. However, the molecular mechanisms that account for the diversification of the metabolic pathways have not been fully clarified. Rice plants resist attacks from pathogens by accumulating diterpenoid phytoalexins. It has been confirmed that the composition of rice phytoalexins exhibits numerous natural variations. Major rice phytoalexins (momilactones and phytocassanes) are accumulated in most cultivars, although oryzalactone is a cultivar-specific compound. Here, we attempted to reveal the evolutionary trajectory of the diversification of phytoalexins by analyzing the oryzalactone biosynthetic gene in Oryza species. The candidate gene, KSLX-OL, which accounts for oryzalactone biosynthesis, was found around the single-nucleotide polymorphisms specific to the oryzalactone-accumulating cultivars in the long arm of chromosome 11. The metabolite analyses in Nicotiana benthamiana and rice plants overexpressing KSLX-OL indicated that KSLX-OL is responsible for the oryzalactone biosynthesis. KSLX-OL is an allele of KSL8 that is involved in the biosynthesis of another diterpenoid phytoalexin, oryzalexin S and is specifically distributed in the AA genome species. KSLX-NOL and KSLX-bar, which encode similar enzymes but are not involved in oryzalactone biosynthesis, were also found in AA genome species. The phylogenetic analyses of KSLXs, KSL8s, and related pseudogenes (KSL9s) indicated that KSLX-OL was generated from a common ancestor with KSL8 and KSL9 via gene duplication, functional differentiation, and gene fusion. The wide distributions of KSLX-OL and KSL8 in AA genome species demonstrate their long-term coexistence beyond species differentiation, suggesting a balancing selection between the genes.
Collapse
Affiliation(s)
- Keisuke Kariya
- The United Graduate School of Agricultural Sciences, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Haruka Mori
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Makoto Ueno
- Faculty of Life and Environmental Sciences, Shimane University, Nishikawatsu 1060, Matsue, 690-8504, Japan
| | - Takanori Yoshikawa
- National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto, 606-8502, Japan
| | - Yukinori Yabuta
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| |
Collapse
|
6
|
Kato-Noguchi H. Isolation and identification of allelochemicals and their activities and functions. JOURNAL OF PESTICIDE SCIENCE 2024; 49:1-14. [PMID: 38450087 PMCID: PMC10912975 DOI: 10.1584/jpestics.d23-052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 10/29/2023] [Indexed: 03/08/2024]
Abstract
Allelopathy is the interaction between donor plants and receiver plants through allelochemicals. According to a great number of publications, allelopathy may be involved in several ecological aspects such as the formation of monospecific stands and sparse understory vegetation for certain plant species. Allelopathy also contributes to the naturalization of invasive plant species in introduced ranges. Autotoxicity is a particular type of allelopathy involving certain compounds. Many medicinal plants have been reported to show relatively high allelopathic activity. We selected plant species that show high allelopathic activity and isolated allelochemicals through the bioassay-guided purification process. More than 100 allelochemicals, including novel compounds have been identified in some medicinal and invasive plants, plants forming monospecific stands, plants with sparse understory vegetation, and plants showing autotoxicity. The allelopathic activity of benzoxazinones and related compounds was also determined.
Collapse
Affiliation(s)
- Hisashi Kato-Noguchi
- Department of Applied Biological Science, Faculty of Agriculture, Kagawa University
| |
Collapse
|
7
|
Zhao Y, Chen Y, Gao M, Wu L, Wang Y. LcMYB106 suppresses monoterpene biosynthesis by negatively regulating LcTPS32 expression in Litsea cubeba. TREE PHYSIOLOGY 2023; 43:2150-2161. [PMID: 37682081 DOI: 10.1093/treephys/tpad111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 05/15/2023] [Accepted: 09/05/2023] [Indexed: 09/09/2023]
Abstract
Litsea cubeba, the core species of the Lauraceae family, is valuable for the production of essential oils due to its high concentration of monoterpenes (90%). The key monoterpene synthase and metabolic regulatory network of monoterpene biosynthesis have provided new insights for improving essential oil content. However, there are few studies on the regulation mechanism of monoterpenes in L. cubeba. In this study, we investigated LcTPS32, a member of the TPS-b subfamily, and identified its function as an enzyme for the synthesis of monoterpenes, including geraniol, α-pinene, β-pinene, β-myrcene, linalool and eucalyptol. The quantitative real-time PCR analysis showed that LcTPS32 was highly expressed in the fruits of L. cubeba and contributed to the characteristic flavor of its essential oil. Overexpression of LcTPS32 resulted in a significant increase in the production of monoterpenes in L. cubeba by activating both the MVA and MEP pathways. Additionally, the study revealed that LcMYB106 played a negative regulatory role in monoterpenes biosynthesis by directly binding to the promoter of LcTPS32. Our study indicates that LcMYB106 could serve as a crucial target for metabolic engineering endeavors, aiming at enhancing the monoterpene biosynthesis in L. cubeba.
Collapse
Affiliation(s)
- Yunxiao Zhao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Rd, Hangzhou, Zhejiang 311400, China
| | - Yicun Chen
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Rd, Hangzhou, Zhejiang 311400, China
| | - Ming Gao
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Rd, Hangzhou, Zhejiang 311400, China
| | - Liwen Wu
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Rd, Hangzhou, Zhejiang 311400, China
| | - Yangdong Wang
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Xiangshan Rd, Beijing 100091, China
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Daqiao Rd, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
8
|
Man J, Shi Y, Huang Y, Zhang X, Wang X, Liu S, He G, An K, Han D, Wang X, Wei S. PnMYB4 negatively modulates saponin biosynthesis in Panax notoginseng through interplay with PnMYB1. HORTICULTURE RESEARCH 2023; 10:uhad134. [PMID: 37564268 PMCID: PMC10410195 DOI: 10.1093/hr/uhad134] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 06/25/2023] [Indexed: 08/12/2023]
Abstract
Saponins are the main triterpenoid ingredients from Panax notoginseng, a well-known Chinese medicine, and are important sources for producing drugs to prevent and treat cerebrovascular and cardiovascular diseases. However, the transcriptional regulatory network of saponin biosynthesis in P. notoginseng is largely unknown. In the present study we demonstrated that one R2R3-MYB transcription factor, designated PnMYB4, acts as a repressor of saponin accumulation. Suppression of PnMYB4 in P. notoginseng calli significantly increased the saponin content and the expression level of saponin biosynthetic genes. PnMYB4 directly bound to the promoters of key saponin biosynthetic genes, including PnSS, PnSE, and PnDS, to repress saponin accumulation. PnMYB4 and the activator PnMYB1 could interacted with PnbHLH, which is a positive regulator of saponin biosynthesis, to modulate the biosynthesis of saponin. PnMYB4 competed with PnMYB1 for binding to PnbHLH, repressing activation of the promoters of saponin structural genes induced by the PnMYB1-PnbHLH complex. Our study reveals that a complex regulatory module of saponin biosynthesis is associated with positive and negative MYB transcriptional regulators and provides a theoretical basis for improving the content of saponins and efficacy of P. notoginseng.
Collapse
Affiliation(s)
- Jinhui Man
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yue Shi
- School of Life and Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Yuying Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaoqin Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xin Wang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shanhu Liu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Gaojie He
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Kelu An
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Dongran Han
- School of Life and Science, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Xiaohui Wang
- Modern Research Center for Traditional Chinese Medicine, Beijing Institute of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 102488, China
| | - Shengli Wei
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing 102488, China
| |
Collapse
|
9
|
Kariya K, Fujita A, Ueno M, Yoshikawa T, Teraishi M, Taniguchi Y, Ueno K, Ishihara A. Natural variation of diterpenoid phytoalexins in rice: Aromatic diterpenoid phytoalexins in specific cultivars. PHYTOCHEMISTRY 2023; 211:113708. [PMID: 37149120 DOI: 10.1016/j.phytochem.2023.113708] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 04/29/2023] [Accepted: 05/03/2023] [Indexed: 05/08/2023]
Abstract
Rice (Oryza sativa L.) plants accumulate antimicrobial compounds known as phytoalexins in response to pathogen attack. To date, more than 20 compounds have been isolated as phytoalexins from rice, mostly diterpenoids. However, the quantitative analysis of diterpenoid phytoalexins in various cultivars has revealed that the cultivar 'Jinguoyin' does not accumulate these compounds at detectable concentrations. Therefore, in this study, we attempted to detect a new class of phytoalexins from Bipolaris oryzae infected leaves of 'Jinguoyin'. We detected five compounds in the leaves of the target cultivar, whereas these compounds were not detected in the leaves of 'Nipponbare' or 'Kasalath', which are representative cultivars of the japonica and indica subspecies. Subsequently, we isolated these compounds from ultraviolet (UV)-light-irradiated leaves and determined their structures by spectroscopic analysis and the crystalline sponge method. All the compounds were diterpenoids containing a benzene ring and were detected from the pathogen-infected rice leaves for the first time. Because the compounds showed antifungal activity against B. oryzae and Pyricularia oryzae, we propose that they function as phytoalexins in rice and named them abietoryzins A-E. The abietoryzins tended to accumulate at high concentrations in cultivars that accumulated low levels of known diterpenoid phytoalexins after UV-light irradiation. Of the total of 69 cultivars in the WRC, 30 cultivars accumulated at least one of the abietoryzins, and, in 15 cultivars, the amounts of some abietoryzins were the highest among those of the analyzed phytoalexins. Therefore, abietoryzins are a major phytoalexin group in rice, although their presence has, to date, been overlooked (252 words).
Collapse
Affiliation(s)
- Keisuke Kariya
- United Graduate School of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Aiko Fujita
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Makoto Ueno
- Faculty of Life and Environmental Sciences, Shimane University, Nishikawatsu 1060, Matsue, 690-8504, Japan
| | - Takanori Yoshikawa
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto, 606-8502, Japan
| | - Masayoshi Teraishi
- Graduate School of Agriculture, Kyoto University, Kitashirakawa Oiwake-Cho, Kyoto, 606-8502, Japan
| | - Yoshimasa Taniguchi
- Kirin Central Research Institute, Research & Development Division, Kirin Holdings Company Ltd, 26-1, Muraoka-Higashi 2-chome, Fujisawa, Kanagawa, 251-8555, Japan
| | - Kotomi Ueno
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan
| | - Atsushi Ishihara
- Faculty of Agriculture, Tottori University, 4-110 Koyama Minami, Tottori, 680-8553, Japan.
| |
Collapse
|
10
|
Kato-Noguchi H. Defensive Molecules Momilactones A and B: Function, Biosynthesis, Induction and Occurrence. Toxins (Basel) 2023; 15:toxins15040241. [PMID: 37104180 PMCID: PMC10140866 DOI: 10.3390/toxins15040241] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/22/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Labdane-related diterpenoids, momilactones A and B were isolated and identified in rice husks in 1973 and later found in rice leaves, straws, roots, root exudate, other several Poaceae species and the moss species Calohypnum plumiforme. The functions of momilactones in rice are well documented. Momilactones in rice plants suppressed the growth of fungal pathogens, indicating the defense function against pathogen attacks. Rice plants also inhibited the growth of adjacent competitive plants through the root secretion of momilactones into their rhizosphere due to the potent growth-inhibitory activity of momilactones, indicating a function in allelopathy. Momilactone-deficient mutants of rice lost their tolerance to pathogens and allelopathic activity, which verifies the involvement of momilactones in both functions. Momilactones also showed pharmacological functions such as anti-leukemia and anti-diabetic activities. Momilactones are synthesized from geranylgeranyl diphosphate through cyclization steps, and the biosynthetic gene cluster is located on chromosome 4 of the rice genome. Pathogen attacks, biotic elicitors such as chitosan and cantharidin, and abiotic elicitors such as UV irradiation and CuCl2 elevated momilactone production through jasmonic acid-dependent and independent signaling pathways. Rice allelopathy was also elevated by jasmonic acid, UV irradiation and nutrient deficiency due to nutrient competition with neighboring plants with the increased production and secretion of momilactones. Rice allelopathic activity and the secretion of momilactones into the rice rhizosphere were also induced by either nearby Echinochloa crus-galli plants or their root exudates. Certain compounds from Echinochloa crus-galli may stimulate the production and secretion of momilactones. This article focuses on the functions, biosynthesis and induction of momilactones and their occurrence in plant species.
Collapse
|
11
|
Zhao L, Oyagbenro R, Feng Y, Xu M, Peters RJ. Oryzalexin S biosynthesis: a cross-stitched disappearing pathway. ABIOTECH 2023; 4:1-7. [PMID: 37220540 PMCID: PMC10199973 DOI: 10.1007/s42994-022-00092-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/25/2022] [Indexed: 05/25/2023]
Abstract
Rice produces many diterpenoid phytoalexins and, reflecting the importance of these natural products in this important cereal crop plant, its genome contains three biosynthetic gene clusters (BGCs) for such metabolism. The chromosome 4 BGC (c4BGC) is largely associated with momilactone production, in part due to the presence of the initiating syn-copalyl diphosphate (CPP) synthase gene (OsCPS4). Oryzalexin S is also derived from syn-CPP. However, the relevant subsequently acting syn-stemarene synthase gene (OsKSL8) is not located in the c4BGC. Production of oryzalexin S further requires hydroxylation at carbons 2 and 19 (C2 and C19), presumably catalyzed by cytochrome P450 (CYP) monooxygenases. Here it is reported the closely related CYP99A2 and CYP99A3, whose genes are also found in the c4BGC catalyze the necessary C19-hydroxylation, while the closely related CYP71Z21 and CYP71Z22, whose genes are found in the recently reported chromosome 7 BGC (c7BGC), catalyze subsequent hydroxylation at C2α. Thus, oryzalexin S biosynthesis utilizes two distinct BGCs, in a pathway cross-stitched together by OsKSL8. Notably, in contrast to the widely conserved c4BGC, the c7BGC is subspecies (ssp.) specific, being prevalent in ssp. japonica and only rarely found in the other major ssp. indica. Moreover, while the closely related syn-stemodene synthase OsKSL11 was originally considered to be distinct from OsKSL8, it has now been reported to be a ssp. indica derived allele at the same genetic loci. Intriguingly, more detailed analysis indicates that OsKSL8(j) is being replaced by OsKSL11 (OsKSL8i), suggesting introgression from ssp. indica to (sub)tropical japonica, with concurrent disappearance of oryzalexin S production. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-022-00092-3.
Collapse
Affiliation(s)
- Le Zhao
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Richard Oyagbenro
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Yiling Feng
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Meimei Xu
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| | - Reuben J. Peters
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011 USA
| |
Collapse
|
12
|
Wang Z, Nelson DR, Zhang J, Wan X, Peters RJ. Plant (di)terpenoid evolution: from pigments to hormones and beyond. Nat Prod Rep 2023; 40:452-469. [PMID: 36472136 PMCID: PMC9945934 DOI: 10.1039/d2np00054g] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Covering: up to 2014-2022.Diterpenoid biosynthesis in plants builds on the necessary production of (E,E,E)-geranylgeranyl diphosphate (GGPP) for photosynthetic pigment production, with diterpenoid biosynthesis arising very early in land plant evolution, enabling stockpiling of the extensive arsenal of (di)terpenoid natural products currently observed in this kingdom. This review will build upon that previously published in the Annual Review of Plant Biology, with a stronger focus on enzyme structure-function relationships, as well as additional insights into the evolution of (di)terpenoid metabolism since generated.
Collapse
Affiliation(s)
- Zhibiao Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China.,Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| | - David R Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Juan Zhang
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Xiangyuan Wan
- Zhongzhi International Institute of Agricultural Biosciences, Shunde Innovation School, Research Center of Biology and Agriculture, University of Science and Technology Beijing, Beijing 100024, China.
| | - Reuben J Peters
- Roy J. Carver Department of Biochemistry, Biophysics & Molecular Biology, Iowa State University, Ames, IA 50014, USA.
| |
Collapse
|
13
|
Valletta A, Iozia LM, Fattorini L, Leonelli F. Rice Phytoalexins: Half a Century of Amazing Discoveries; Part I: Distribution, Biosynthesis, Chemical Synthesis, and Biological Activities. PLANTS (BASEL, SWITZERLAND) 2023; 12:260. [PMID: 36678973 PMCID: PMC9862927 DOI: 10.3390/plants12020260] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/29/2022] [Accepted: 01/01/2023] [Indexed: 06/17/2023]
Abstract
Cultivated rice is a staple food for more than half of the world's population, providing approximately 20% of the world's food energy needs. A broad spectrum of pathogenic microorganisms causes rice diseases leading to huge yield losses worldwide. Wild and cultivated rice species are known to possess a wide variety of antimicrobial secondary metabolites, known as phytoalexins, which are part of their active defense mechanisms. These compounds are biosynthesized transiently by rice in response to pathogens and certain abiotic stresses. Rice phytoalexins have been intensively studied for over half a century, both for their biological role and their potential application in agronomic and pharmaceutical fields. In recent decades, the growing interest of the research community, combined with advances in chemical, biological, and biomolecular investigation methods, has led to a notable acceleration in the growth of knowledge on rice phytoalexins. This review provides an overview of the knowledge gained in recent decades on the diversity, distribution, biosynthesis, chemical synthesis, and bioactivity of rice phytoalexins, with particular attention to the most recent advances in this research field.
Collapse
Affiliation(s)
- Alessio Valletta
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Lorenzo Maria Iozia
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Laura Fattorini
- Department of Environmental Biology, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Francesca Leonelli
- Department of Chemistry, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| |
Collapse
|
14
|
Zhou S, Ma Y, Shang Y, Qi X, Huang S, Li J. Functional diversity and metabolic engineering of plant-specialized metabolites. LIFE METABOLISM 2022; 1:109-121. [PMID: 39872355 PMCID: PMC11749740 DOI: 10.1093/lifemeta/loac019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 01/30/2025]
Abstract
Plants are talented biochemists that produce a broad diversity of small molecules. These so-called specialized metabolites (SMs) play critical roles in the adaptive evolution of plants to defend against biotic and abiotic stresses, attract pollinators, and modulate soil microbiota for their own benefits. Many plant SMs have been used as nutrition and flavor compounds in our daily food, as well as drugs for treatment of human diseases. Current multi-omics tools have significantly accelerated the process of biosynthetic pathway elucidation in plants through correlation analyses, genetic mapping, and de novo biosynthetic gene cluster predictions. Understanding the biosynthesis of plant SMs has enabled reconstitution of naturally occurring specialized metabolic pathways in microbial hosts, providing a sustainable supply of these high-value molecules. In this review, we illustrate the general functions of several typical plant SMs in natural ecosystems and for human societies. We then provide an overview of current methods elucidating the biosynthetic pathways of plant SMs, and synthetic biology strategies that optimize the efficiency of heterologous biosynthetic pathways in microbial hosts. Moving forward, dissection of the functions and application of plant SMs by using current multidiscipline approaches would be greatly benefit to the scientific community and human societies.
Collapse
Affiliation(s)
- Shaoqun Zhou
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Yongshuo Ma
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Yi Shang
- Yunnan Key Laboratory of Potato Biology, The CAAS-YNNU-YINMORE Joint Academy of Potato Sciences, Yunnan Normal University, Kunming, Yunan 650500, China
| | - Xiaoquan Qi
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Sanwen Huang
- Shenzhen Branch, Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, Guangdong 518120, China
| | - Jiayang Li
- State Key Laboratory of Plant Genomics, National Center for Plant Gene Research, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
15
|
Ninkuu V, Yan J, Zhang L, Fu Z, Yang T, Li S, Li B, Duan J, Ren J, Li G, Yang X, Zeng H. Hrip1 mediates rice cell wall fortification and phytoalexins elicitation to confer immunity against Magnaporthe oryzae. FRONTIERS IN PLANT SCIENCE 2022; 13:980821. [PMID: 36212323 PMCID: PMC9546723 DOI: 10.3389/fpls.2022.980821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 08/10/2022] [Indexed: 06/16/2023]
Abstract
Magnaporthe oryzae is a potent fungus that adversely affects rice yield. Combinatorial techniques of prevention, toxic chemicals, and fungicide are used to remedy rice blast infection. We reported the role of Hrip1 in cell death elicitation and expression of systematic acquired resistance that could potentially stifle M. oryzae infection. In this study, transcriptome and metabolomic techniques were used to investigate the mechanism by which Hrip1 reprogramed the transcriptome of rice seedlings to confer immunity against M. oryzae. Our results showed that Hrip1 induces cell wall thickening and phytoalexin elicitation to confer immunity against M. oryzae infection. Hrip1 activates key lignin biosynthetic genes and myeloblastosis transcription factors that act as molecular switches for lignin production. Lignin content was increased by 68.46% and more after 48 h onwards in Hrip1-treated seedlings compared to the control treatment. Further analysis of cell wall morphology using the transmission electron microscopy technique revealed over 100% cell wall robustness. Hrip1 also induced the expression of 24 diterpene synthases. These include class I and II terpene synthases, cytochrome P450 subfamilies (OsCYP76M and OsCYP71Z), and momilactones synthases. The relationship between the expression of these genes and metabolic elicitation was analyzed using ultra-performance liquid chromatography-tandem mass spectrometry. Enhanced amounts of momilactones A and B, oryzalactone, and phytocassane A and G were detected in the Hrip1-treated leaves. We also identified seven benzoxazinoid genes (BX1-BX7) that could improve rice immunity. Our findings show that Hrip1 confers dual immunity by leveraging lignin and phytoalexins for physical and chemical resistance. This study provides novel insights into the mechanisms underlying Hrip1-treated plant immunity.
Collapse
|
16
|
Smit SJ, Lichman BR. Plant biosynthetic gene clusters in the context of metabolic evolution. Nat Prod Rep 2022; 39:1465-1482. [PMID: 35441651 PMCID: PMC9298681 DOI: 10.1039/d2np00005a] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Indexed: 12/17/2022]
Abstract
Covering: up to 2022Plants produce a wide range of structurally and biosynthetically diverse natural products to interact with their environment. These specialised metabolites typically evolve in limited taxonomic groups presumably in response to specific selective pressures. With the increasing availability of sequencing data, it has become apparent that in many cases the genes encoding biosynthetic enzymes for specialised metabolic pathways are not randomly distributed on the genome. Instead they are physically linked in structures such as arrays, pairs and clusters. The exact function of these clusters is debated. In this review we take a broad view of gene arrangement in plant specialised metabolism, examining types of structures and variation. We discuss the evolution of biosynthetic gene clusters in the wider context of metabolism, populations and epigenetics. Finally, we synthesise our observations to propose a new hypothesis for biosynthetic gene cluster formation in plants.
Collapse
Affiliation(s)
- Samuel J Smit
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| | - Benjamin R Lichman
- Centre for Novel Agricultural Products, Department of Biology, University of York, York, YO10 5DD, UK.
| |
Collapse
|
17
|
Jiang M, Yu N, Zhang Y, Liu L, Li Z, Wang C, Cheng S, Cao L, Liu Q. Deletion of Diterpenoid Biosynthetic Genes CYP76M7 and CYP76M8 Induces Cell Death and Enhances Bacterial Blight Resistance in Indica Rice ‘9311’. Int J Mol Sci 2022; 23:ijms23137234. [PMID: 35806236 PMCID: PMC9266670 DOI: 10.3390/ijms23137234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/23/2022] [Accepted: 06/27/2022] [Indexed: 11/26/2022] Open
Abstract
Lesion mimic mutants (LMMs) are ideal materials for studying cell death and resistance mechanisms. Here, we identified and mapped a novel rice LMM, g380. The g380 exhibits a spontaneous hypersensitive response-like cell death phenotype accompanied by excessive accumulation of reactive oxygen species (ROS) and upregulated expression of pathogenesis-related genes, as well as enhanced resistance to Xanthomonas oryzae pv. oryzae (Xoo). Using a map-based cloning strategy, a 184,916 bp deletion on chromosome 2 that overlaps with the diterpenoid biosynthetic gene cluster was identified in g380. Accordingly, the content of diterpenoids decreased in g380. In addition, lignin, one of the physical lines of plant defense, was increased in g380. RNA-seq analysis showed 590 significantly differentially expressed genes (DEG) between the wild-type 9311 and g380, 585 of which were upregulated in g380. Upregulated genes in g380 were mainly enriched in the monolignol biosynthesis branches of the phenylpropanoid biosynthesis pathway, the plant–pathogen interaction pathway and the phytoalexin-specialized diterpenoid biosynthesis pathway. Taken together, our results indicate that the diterpenoid biosynthetic gene cluster on chromosome 2 is involved in immune reprogramming, which in turn regulates cell death in rice.
Collapse
Affiliation(s)
- Min Jiang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Ning Yu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Rice Research Institute of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Yingxin Zhang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Lin Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Zhi Li
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Chen Wang
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Shihua Cheng
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
| | - Liyong Cao
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
- Northern Center for China National Rice Research Institute, China National Rice Research Institute, Hangzhou 311400, China
- Correspondence: (L.C.); (Q.L.)
| | - Qunen Liu
- State Key Laboratory of Rice Biology, China National Rice Research Institute, Hangzhou 311400, China; (M.J.); (N.Y.); (Y.Z.); (L.L.); (Z.L.); (C.W.); (S.C.)
- Key Laboratory for Zhejiang Super Rice Research, China National Rice Research Institute, Hangzhou 311400, China
- Correspondence: (L.C.); (Q.L.)
| |
Collapse
|