1
|
Liu C, Wang L, Li J, Heděnec P, Xu Z, Tan B, Cui X, Li H, Xu L, Xu H, Zhang L, Wang L, Liu S, Gong Y, Yuan Y, You C. Soil nutrients determine multidimensional absorptive root traits of Cryptomeria japonica var. sinensis plantations along a chronosequence in subtropical forest. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 381:125220. [PMID: 40186966 DOI: 10.1016/j.jenvman.2025.125220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 03/29/2025] [Accepted: 03/31/2025] [Indexed: 04/07/2025]
Abstract
Absorptive roots are crucial for nutrient uptake and water absorption in forest ecosystems, yet variations in root traits and the underlying drivers during stand succession remains poorly understood. Here, we use a space-for-time substitution method to investigate the morphological traits (i.e., root diameter, RD; specific root length, SRL; and root tissue density, RTD) and chemical traits (i.e., concentrations of carbon, C; nitrogen, N; phosphorus, P; potassium, K; calcium, Ca; magnesium, Mg and manganese, Mn) in the absorptive roots of Cryptomeria japonica across five chronosequences in subtropical China. Simultaneously, we evaluated soil parameters and tree relative growth rate (RGR) to determine their influence on root traits. The results showed that RD, N, K, and Ca concentrations exhibited hump-shaped patterns with stand development (peaking in mature stands), whereas SRL and RTD exhibited opposite trends. Additionally, P and Mg concentrations in the roots decreased with stand age, whereas Mn concentration increased. Two trade-off strategies of absorptive root traits were identified: the first strategy characterized by RD, RTD, and root nutrients (N, Ca and Mg), potentially indicates a trade-off between nutrient acquisition and conservation. The second strategy related to SRL and K concentration represents a trade-off between resource foraging efficiency and nutrient allocation. Soil factors had a greater influence on root trait variations than tree RGR. Specifically, soil pH negatively influenced RD and Mn concentration but positively affected RTD. Root N and Ca concentrations increased with soil water content, while K concentration rose with soil nitrate-N availability. Conversely, P and Mg concentrations decreased with increasing soil ammonium-N. These findings demonstrate that forest stand development shapes adaptive adjustments in absorptive root traits through soil-mediated trade-offs between resource acquisition and conservation, highlighting edaphic factors as key regulators of nutrient foraging strategies.
Collapse
Affiliation(s)
- Chunran Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lihua Wang
- College of Resources and Environment, Aba Teachers University, Wenchuan, Sichuan, 623002, China
| | - Jing Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Petr Heděnec
- Institute of Tropical Biodiversity and Sustainable Development, Universiti Malaysia Terengganu, Kuala Nerus, 21030, Terengganu, Malaysia
| | - Zhenfeng Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Bo Tan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xinglei Cui
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Han Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lin Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Hongwei Xu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Li Zhang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Lixia Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Sining Liu
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yanhong Gong
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Yaling Yuan
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China
| | - Chengming You
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
2
|
Shedd EL, Cavaleri MA, Külheim C, Burton AJ. Fine root respiration in Quercus rubra (L.) aligns with the economics trade-offs in bi-dimensional root trait space. TREE PHYSIOLOGY 2025; 45:tpaf024. [PMID: 39969889 DOI: 10.1093/treephys/tpaf024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 01/23/2025] [Accepted: 02/16/2025] [Indexed: 02/20/2025]
Abstract
Plant economic theory argues that growth strategies maximize either the rate or longevity of return per resource investment in a unidimensional trade-off. Belowground trade-offs may not mimic those aboveground due to soil resource heterogeneity, different physical constraints imposed by the shape of roots compared with leaves and fungal symbioses, and often multiple dimensions of variation are found. Root respiration represents a substantial carbon flux out of forest ecosystems, but its placement in these trade-offs is unclear, and its incorporation into carbon cycle models is limited by available data. Most research on root traits has focused on interspecific variability, but here, we investigated whether trade-offs among one species' populations align with those between species by sampling Quercus rubra (L.) populations along a Midwest, USA latitudinal gradient. Across populations, we assessed whether fine root traits follow uni- or multidimensional trade-offs and how these axes relate to root respiration. Respiration rates, morphological traits and root nitrogen were measured on excised fine roots at 14 sites, spanning a wide variety of environmental conditions, and then analyzed for trade-off axes. We uncovered substantial root trait variation among Q. rubra populations that aligned with two distinct trade-offs, one between branching intensity (BI) and average diameter and a second with root tissue density on one end and specific root length, root nitrogen concentration and root specific respiration (RSR) on the other. Reliance on ectomycorrhizal fungi, which colonize root tips, may be a possible explanation for the first axis, with higher BI representing more collaboration. Along the latter axis, RSR increased with root nitrogen concentration and decreased with root tissue density. These results support a similar bidimensional trait space between Q. rubra populations to that between species, with an economics trade-off that might be a useful predictor of the fine root respiration carbon flux.
Collapse
Affiliation(s)
- E L Shedd
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| | - M A Cavaleri
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| | - C Külheim
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| | - A J Burton
- College of Forest Resources and Environmental Science, Michigan Technological University, 1400 Townsend Dr, Houghton, MI 49931, USA
| |
Collapse
|
3
|
Liu X, Ye G, Feng Z, Zhou Y, Qin Y, Yao Q, Zhu H. Cold storage promotes germination and colonization of arbuscular mycorrhizal fungal hyphae as propagules. FRONTIERS IN PLANT SCIENCE 2024; 15:1450829. [PMID: 39559772 PMCID: PMC11570285 DOI: 10.3389/fpls.2024.1450829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/14/2024] [Indexed: 11/20/2024]
Abstract
The inoculants of arbuscular mycorrhizal fungi (AMF) propagated by the in vitro culture system is important in scientific research; however, the long-term storage reduces the spore germination rate. The propagules of AMF consist of three components, including spores, hyphae and colonized root fragments. It is well known that cold storage can improve the germination rate of AMF spores, with limited investigations on the germination of other propagules. In this study, AMF inoculants were stored at 25°C or at 4°C (cold storage) to investigate the effect of cold storage on the propagule viability of the AMF Rhizophagus irregularis DAOM197198. The germination rate of propagules (spores, hyphae, root fragments) and their colonization ability were determined at 3 and 6 months after storage. The results showed that the spore germination rate remained unchanged after storage for 0 and 1 month at 25°C, but decreased rapidly after storage for 3 months. Furthermore, we investigated the hyphal germination rate for the first time. The germination rates of spores, hyphae and root fragments were significantly higher under cold storage compared to those at 25°C. Additionally, we classified the germ tubes of hypha into two types: long-type (L-type) and short type (S-type). The germination rate and the proportion of L-type germ tubes of hyphae significantly increased with cold storage time, which was conducive to colonization. The results of mycorrhizal colonization confirmed that cold storage significantly increased the colonization of hypha compared with 25°C treatment. Cold storage may break the dormancy of AMF propagules and activate related enzymes to promote the germination and colonization of propagules, which needs further investigation.
Collapse
Affiliation(s)
- Xiaodi Liu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Guojian Ye
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Zengwei Feng
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yang Zhou
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Yongqiang Qin
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| | - Qing Yao
- College of Horticulture, South China Agricultural University, Guangdong Province Key Laboratory of Microbial Signals and Disease Control, Guangzhou, China
| | - Honghui Zhu
- Key Laboratory of Agricultural Microbiomics and Precision Application (MARA), Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Key Laboratory of Agricultural Microbiome (MARA), State Key Laboratory of Applied Microbiology Southern China, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
4
|
Zhang P, Ding J, Wang Q, McDowell NG, Kong D, Tong Y, Yin H. Contrasting coordination of non-structural carbohydrates with leaf and root economic strategies of alpine coniferous forests. THE NEW PHYTOLOGIST 2024; 243:580-590. [PMID: 38488228 DOI: 10.1111/nph.19678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 02/20/2024] [Indexed: 06/21/2024]
Abstract
Non-structural carbohydrates (NSCs), as the labile fraction and dominant carbon currency, are essential mediators of plant adaptation to environments. However, whether and how NSC coordinates with plant economic strategy frameworks, particularly the well-recognized leaf economics spectrums (LES) and root economics space (RES), remains unclear. We examined the relationships between NSC and key plant economics traits in leaves and fine roots across 90 alpine coniferous populations on the Tibetan Plateau, China. We observed contrasting coordination of NSC with economics traits in leaves and roots. Leaf total NSC and soluble sugar aligned with the leaf economic spectrum, conveying a trade-off between growth and storage in leaves. However, NSC in roots was independent of the root economic spectrum, but highly coordinated with root foraging, with more starch and less sugar in forage-efficient, thinner roots. Further, NSC-trait coordination in leaves and roots was, respectively, driven by local temperature and precipitation. These findings highlight distinct roles of NSC in shaping the above- and belowground multidimensional economics trait space, and NSC-based carbon economics provides a mechanistic understanding of how plants adapt to heterogeneous habitats and respond to environmental changes.
Collapse
Affiliation(s)
- Peipei Zhang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Junxiang Ding
- College of Ecology and Environment, Zhengzhou University, Zhengzhou, 450052, China
| | - Qitong Wang
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| | - Nate G McDowell
- Biological Sciences Division, Pacific Northwest National Lab, PO Box 999, Richland, WA, 99352, USA
| | - Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yindong Tong
- School of Ecology and Environment, Tibet University, Lhasa, 850000, China
| | - Huajun Yin
- CAS Key Laboratory of Mountain Ecological Restoration and Bioresource Utilization & Ecological Restoration and Biodiversity Conservation Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041, China
| |
Collapse
|
5
|
Zheng J, Freschet GT, Tedersoo L, Li S, Yan H, Jiang L, Wang H, Ma N, Dai X, Fu X, Kou L. A trait-based root acquisition-defence-decomposition framework in angiosperm tree species. Nat Commun 2024; 15:5311. [PMID: 38906891 PMCID: PMC11192760 DOI: 10.1038/s41467-024-49666-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 06/15/2024] [Indexed: 06/23/2024] Open
Abstract
To adapt to the complex belowground environment, plants make trade-offs between root resource acquisition and defence ability. This includes forming partnerships with different types of root associating microorganisms, such as arbuscular mycorrhizal and ectomycorrhizal fungi. These trade-offs, by mediating root chemistry, exert legacy effects on nutrient release during decomposition, which may, in turn, affect the ability of new roots to re-acquire resources, thereby generating a feedback loop. However, the linkages at the basis of this potential feedback loop remain largely unquantified. Here, we propose a trait-based root 'acquisition-defence-decomposition' conceptual framework and test the strength of relevant linkages across 90 angiosperm tree species. We show that, at the plant species level, the root-fungal symbiosis gradient within the root economics space, root chemical defence (condensed tannins), and root decomposition rate are closely linked, providing support to this framework. Beyond the dichotomy between arbuscular mycorrhizal-dominated versus ectomycorrhizal-dominated systems, we suggest a continuous shift in feedback loops, from 'high arbuscular mycorrhizal symbiosis-low defence-fast decomposition-inorganic nutrition' by evolutionarily ancient taxa to 'high ectomycorrhizal symbiosis-high defence-slow decomposition-organic nutrition' by more modern taxa. This 'acquisition-defence-decomposition' framework provides a foundation for testable hypotheses on multidimensional linkages between species' belowground strategies and ecosystem nutrient cycling in an evolutionary context.
Collapse
Affiliation(s)
- Jiajia Zheng
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | | | - Leho Tedersoo
- Mycology and Microbiology Center, University of Tartu, Tartu, Estonia
- Department of Zoology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Shenggong Li
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Han Yan
- Freie Universität Berlin, Institut für Biologie, 14195, Berlin, Germany
- Berlin-Brandenburg Institute of Advanced Biodiversity Research, 14195, Berlin, Germany
| | - Lei Jiang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, China
| | - Huimin Wang
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Ning Ma
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoqin Dai
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoli Fu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Liang Kou
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
6
|
Gao Y, Wang H, Yang F, Dai X, Meng S, Hu M, Kou L, Fu X. Relationships between root exudation and root morphological and architectural traits vary with growing season. TREE PHYSIOLOGY 2024; 44:tpad118. [PMID: 37738586 PMCID: PMC10849755 DOI: 10.1093/treephys/tpad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/24/2023]
Abstract
Plants allocate a substantial amount of C belowground for root exudates and for the construction and adjustment of root morphological and architectural traits. What relationships exist between root exudates and other root traits and these relationships change with growing season, however, remain unclear. We quantified the root exudation rate and root morphological traits, including total root length (RL), total root surface area (RS), root diameter (RD), specific root length (SRL), specific root area (SRA) and root tissue density (RTD), and architectural traits, such as branching intensity (BI), and investigated their associations during the rapidly growing season (April and August) and the slowly growing season (December) of three common native tree species, Liquidambar formosana, Michelia maudiae and Schima superba, in subtropical China. We found that the linkages of RD, SRL, SRA, RTD and BI did not change with the growing season, reflecting their highly conservative relationships. The root exudation rate varied significantly with growing season (P < 0.05) and produced various associations with other root traits at different growing seasons. During the rapidly growing season (i.e., April), the exudation rate was the highest and was positively correlated with RL. The exudation rate was the lowest during the slowly growing season (i.e., December) and was negatively associated with RL, RS and RTD. Our findings demonstrate the seasonality of the linkages of root exudation rate with other root traits, which highlights the highly plastic and complex associations of belowground root traits. These findings help to deepen our understanding of plant nutrient acquisition strategies.
Collapse
Affiliation(s)
- Yuqiu Gao
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- School of Water Conservancy and Environment, University of Jinan, No. 336 West Nanxinzhuang Road, Shizhong District, Jinan 250022, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Fengting Yang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Mingyuan Hu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, 11A, Datun Road, Chaoyang District, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, No. 80 Zhongguancun East Road, Haidian District, Beijing 100190, China
| |
Collapse
|
7
|
Zhang Y, Cao J, Lu M, Kardol P, Wang J, Fan G, Kong D. The origin of bi-dimensionality in plant root traits. Trends Ecol Evol 2024; 39:78-88. [PMID: 37777374 DOI: 10.1016/j.tree.2023.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 09/01/2023] [Accepted: 09/01/2023] [Indexed: 10/02/2023]
Abstract
Plant roots show extraordinary diversity in form and function in heterogeneous environments. Mounting evidence has shown global bi-dimensionality in root traits, the root economics spectrum (RES), and an orthogonal dimension describing mycorrhizal collaboration; however, the origin of the bi-dimensionality remains unresolved. Here, we propose that bi-dimensionality arises from the cylindrical geometry of roots, allometry between root cortex and stele, and independence between root cell wall thickness and cell number. Root geometry and mycorrhizal collaboration may both underlie the bi-dimensionality. Further, we emphasize why plant roots should be cylindrical rather than flat. Finally, we highlight the need to integrate organ-, cellular-, and molecular-level processes driving the bi-dimensionality in plant roots to fully understand plant diversity and functions.
Collapse
Affiliation(s)
- Yue Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jingjing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | | | - Paul Kardol
- Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Umeå, 75007, Sweden; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, 90183, Sweden
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of Soil and Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Guoqiang Fan
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Deliang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
8
|
Zhang Y, Cao JJ, Yang QP, Wu MZ, Zhao Y, Kong DL. The worldwide allometric relationship in anatomical structures for plant roots. PLANT DIVERSITY 2023; 45:621-629. [PMID: 38197011 PMCID: PMC10772186 DOI: 10.1016/j.pld.2023.05.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 04/15/2023] [Accepted: 05/25/2023] [Indexed: 01/11/2024]
Abstract
The cortex (i.e., absorptive tissue) and stele (transportive vascular tissue) are fundamental to the function of plant roots. Unraveling how these anatomical structures are assembled in absorptive roots is essential for our understanding of plant ecology, physiology, and plant responses to global environmental changes. In this review, we first compile a large data set on anatomical traits in absorptive roots, including cortex thickness and stele radius, across 698 observations and 512 species. Using this data set, we reveal a common root allometry in absorptive root structures, i.e., cortex thickness increases much faster than stele radius with increasing root diameter (hereafter, root allometry). Root allometry is further validated within and across plant growth forms (woody, grass, and liana species), mycorrhiza types (arbuscular mycorrhiza, ectomycorrhiza, and orchid mycorrhizas), phylogenetic gradients (from ferns to Orchidaceae), and environmental change scenarios (e.g., elevation of atmospheric CO2 concentration and nitrogen fertilization). These findings indicate that root allometry is common in plants. Importantly, root allometry varies greatly across species. We then summarize recent research on the mechanisms of root allometry and potential issues regarding these mechanisms. We further discuss ecological and evolutionary implications of root allometry. Finally, we propose several important research directions that should be pursued regarding root allometry.
Collapse
Affiliation(s)
- Yue Zhang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Jing-Jing Cao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Qing-Pei Yang
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Ming-Zuo Wu
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - Yong Zhao
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| | - De-Liang Kong
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, China
| |
Collapse
|
9
|
Ma N, Kou L, Li S, Dai X, Meng S, Jiang L, Xue Y, Zheng J, Fu X, Wang H. Plant-soil feedback regulates the trade-off between phosphorus acquisition pathways in Pinus elliottii. TREE PHYSIOLOGY 2023; 43:1092-1103. [PMID: 37074159 PMCID: PMC10785040 DOI: 10.1093/treephys/tpad044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/31/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Plant-soil feedback (PSF) is conventionally characterized by plant biomass growth, yet it remains unclear how PSF affects plant nutrient acquisition strategies (e.g., nutrient absorption and nutrient resorption) associated with plant growth, particularly under changing soil environments. A greenhouse experiment was performed with seedlings of Pinus elliottii Englem and conditioned soils of monoculture plantations (P. elliottii and Cunninghamia lanceolata Hook). Soil sterilization was designed to test plant phosphorus (P) acquisition strategy with and without native soil fungal communities. Soils from P. elliottii and C. lanceolata plantations were used to explore the specific soil legacy effects on two different P acquisition pathways (absorption and resorption). Phosphorus addition was also applied to examine the separate and combined effects of soil abiotic factors and soil fungal factors on P acquisition pathways. Due to diminished mycorrhizal symbiosis, PSF prompted plants to increasingly rely on P resorption under soil sterilization. In contrast, P absorption was employed preferentially in the heterospecific soil, where species-specific pathogenic fungi could not affect P absorption. Higher soil P availability diluted the effects of soil fungal factors on the trade-off between the two P acquisition pathways in terms of the absolute PSF. Moreover, P addition plays a limited role in terms of the relative PSF and does not affect the direction and strength of relative PSF. Our results reveal the role of PSF in regulating plant P acquisition pathways and highlight the interaction between mycorrhizal and pathogenic fungi as the underlying mechanism of PSF.
Collapse
Affiliation(s)
- Ning Ma
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| | - Liang Kou
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shenggong Li
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish Center for Education and Research, Eastern Yanqihu Campus, University of Chinese Academy of Sciences, 380 Huaibeizhuang, Beijing 101400, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lei Jiang
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Yafang Xue
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajia Zheng
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoli Fu
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Huimin Wang
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
10
|
Hogan JA, Jusino MA, Smith ME, Corrales A, Song X, Hu YH, Yang J, Cao M, Valverde-Barrantes OJ, Baraloto C. Root-associated fungal communities are influenced more by soils than by plant-host root traits in a Chinese tropical forest. THE NEW PHYTOLOGIST 2023; 238:1849-1864. [PMID: 36808625 DOI: 10.1111/nph.18821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 02/14/2023] [Indexed: 05/04/2023]
Abstract
Forest fungal communities are shaped by the interactions between host tree root systems and the associated soil conditions. We investigated how the soil environment, root morphological traits, and root chemistry influence root-inhabiting fungal communities in three tropical forest sites of varying successional status in Xishuangbanna, China. For 150 trees of 66 species, we measured root morphology and tissue chemistry. Tree species identity was confirmed by sequencing rbcL, and root-associated fungal (RAF) communities were determined using high-throughput ITS2 sequencing. Using distance-based redundancy analysis and hierarchical variation partitioning, we quantified the relative importance of two soil variables (site average total phosphorus and available phosphorus), four root traits (dry matter content, tissue density, specific tip abundance, and forks), and three root tissue elemental concentrations (nitrogen, calcium, and manganese) on RAF community dissimilarity. The root and soil environment collectively explained 23% of RAF compositional variation. Soil phosphorus explained 76% of that variation. Twenty fungal taxa differentiated RAF communities among the three sites. Soil phosphorus most strongly affects RAF assemblages in this tropical forest. Variation in root calcium and manganese concentrations and root morphology among tree hosts, principally an architectural trade-off between dense, highly branched vs less-dense, herringbone-type root systems, are important secondary determinants.
Collapse
Affiliation(s)
- J Aaron Hogan
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Michelle A Jusino
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- USDA Forest Service, Northern Research Station, Center for Forest Mycology Research, Madison, WI, 53726, USA
| | - Matthew E Smith
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
| | - Adriana Corrales
- Department of Plant Pathology, University of Florida, Gainesville, FL, 32611, USA
- Centro de Investigaciones en Microbiología y Biotecnología-UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, Bogotá, 111221, Colombia
| | - Xiaoyang Song
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Yue-Hua Hu
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Jie Yang
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Min Cao
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, 666303, China
| | - Oscar J Valverde-Barrantes
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| | - Christopher Baraloto
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
11
|
Yi R, Liu Q, Yang F, Dai X, Meng S, Fu X, Li S, Kou L, Wang H. Complementary belowground strategies underlie species coexistence in an early successional forest. THE NEW PHYTOLOGIST 2023; 238:612-623. [PMID: 36647205 DOI: 10.1111/nph.18736] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Unravelling belowground strategies is critical for understanding species coexistence and successional dynamics; yet, our knowledge of nutrient acquisition strategies of forest species at different successional stages remains limited. We measured morphological (diameter, specific root length, and root tissue density), architectural (branching ratio), physiological (ammonium, nitrate, and glycine uptake rates) root traits, and mycorrhizal colonisation rates of eight coexisting woody species in an early successional plantation forest in subtropical China. By incorporating physiological uptake efficiency, we revealed a bi-dimensional root economics space comprising of an 'amount-efficiency' dimension represented by morphological and physiological traits, and a 'self-symbiosis' dimension dominated by architectural and mycorrhizal traits. The early pioneer species relied on root-fungal symbiosis, developing densely branched roots with high mycorrhizal colonisation rates for foraging mobile soil nitrate. The late pioneer species invested in roots themselves and allocated effort towards improving uptake efficiency of less-mobile ammonium. Within the root economics space, the covariation of axes with soil phosphorus availability also distinguished the strategy preference of the two successional groups. These results demonstrate the importance of incorporating physiological uptake efficiency into root economics space, and reveal a trade-off between expanding soil physical space exploration and improving physiological uptake efficiency for successional species coexistence in forests.
Collapse
Affiliation(s)
- Ruojun Yi
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qianyuan Liu
- School of Geographical Sciences, Hebei Key Laboratory of Environmental Change and Ecological Construction, Hebei Normal University, Shijiazhuang, Hebei, 050024, China
| | - Fengting Yang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xiaoli Fu
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Shenggong Li
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
- National Ecosystem Science Data Center, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
| | - Liang Kou
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Wang
- Qianyanzhou Ecological Research Station, Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
12
|
Yan H, Freschet GT, Wang H, Hogan JA, Li S, Valverde-Barrantes OJ, Fu X, Wang R, Dai X, Jiang L, Meng S, Yang F, Zhang M, Kou L. Corrigendum. THE NEW PHYTOLOGIST 2023; 237:2505-2509. [PMID: 36700421 DOI: 10.1111/nph.18529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
|
13
|
Zheng J, Li S, Wang H, Dai X, Meng S, Jiang L, Ma N, Yan H, Fu X, Kou L. Home‐field advantage meets priming effect in root decomposition: Implications for belowground carbon dynamics. Funct Ecol 2022. [DOI: 10.1111/1365-2435.14251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Jiajia Zheng
- National Ecosystem Science Data Center Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Shenggong Li
- National Ecosystem Science Data Center Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Huimin Wang
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
- Qianyanzhou Ecological Research Station Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
| | - Xiaoqin Dai
- Qianyanzhou Ecological Research Station Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
| | - Shengwang Meng
- Qianyanzhou Ecological Research Station Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
| | - Lei Jiang
- National Ecosystem Science Data Center Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
| | - Ning Ma
- National Ecosystem Science Data Center Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
| | - Han Yan
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
- Qianyanzhou Ecological Research Station Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
| | - Xiaoli Fu
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
- Qianyanzhou Ecological Research Station Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
| | - Liang Kou
- College of Resources and Environment University of Chinese Academy of Sciences Beijing China
- Qianyanzhou Ecological Research Station Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences Beijing China
| |
Collapse
|
14
|
Nerva L, Sandrini M, Moffa L, Velasco R, Balestrini R, Chitarra W. Breeding toward improved ecological plant-microbiome interactions. TRENDS IN PLANT SCIENCE 2022; 27:1134-1143. [PMID: 35803843 DOI: 10.1016/j.tplants.2022.06.004] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/04/2022] [Accepted: 06/09/2022] [Indexed: 06/15/2023]
Abstract
Domestication processes, amplified by breeding programs, have allowed the selection of more productive genotypes and more suitable crop lines capable of coping with the changing climate. Notwithstanding these advancements, the impact of plant breeding on the ecology of plant-microbiome interactions has not been adequately considered yet. This includes the possible exploitation of beneficial plant-microbe interactions to develop crops with improved performance and better adaptability to any environmental scenario. Here we discuss the exploitation of customized synthetic microbial communities in agricultural systems to develop more sustainable breeding strategies based on the implementation of multiple interactions between plants and their beneficial associated microorganisms.
Collapse
Affiliation(s)
- Luca Nerva
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy
| | - Marco Sandrini
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100, Udine, (UD), Italy
| | - Loredana Moffa
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; University of Udine, Department of Agricultural, Food, Environmental and Animal Sciences, Via delle Scienze 206, 33100, Udine, (UD), Italy
| | - Riccardo Velasco
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy
| | - Raffaella Balestrini
- National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy.
| | - Walter Chitarra
- Research Centre for Viticulture and Enology, Council for Agricultural Research and Economics (CREA-VE), Via XXVIII Aprile 26, 31015 Conegliano, (TV), Italy; National Research Council of Italy - Institute for Sustainable Plant Protection (CNR-IPSP), Strada delle Cacce, 73, 10135 Torino (TO), Italy
| |
Collapse
|