1
|
Zhang Y, Tariq A, Hughes AC, Hong D, Wei F, Sun H, Sardans J, Peñuelas J, Perry G, Qiao J, Kurban A, Jia X, Raimondo D, Pan B, Yang W, Zhang D, Li W, Ahmed Z, Beierkuhnlein C, Lazkov G, Toderich K, Karryeva S, Dehkonov D, Hisoriev H, Dimeyeva L, Milko D, Soule A, Suska-Malawska M, Saparmuradov J, Bekzod A, Allin P, Dieye S, Cissse B, Whibesilassie W, Ma K. Challenges and solutions to biodiversity conservation in arid lands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159695. [PMID: 36302433 DOI: 10.1016/j.scitotenv.2022.159695] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/20/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The strategic goals of the United Nations and the Aichi Targets for biodiversity conservation have not been met. Instead, biodiversity has continued to rapidly decrease, especially in developing countries. Setting a new global biodiversity framework requires clarifying future priorities and strategies to bridge challenges and provide representative solutions. Hyper-arid, arid, and semi-arid lands (herein, arid lands) form about one third of the Earth's terrestrial surface. Arid lands contain unique biological and cultural diversity, and biodiversity loss in arid lands can have a disproportionate impact on these ecosystems due to low redundancy and a high risk of trophic cascades. They contain unique biological and cultural diversity and host many endemic species, including wild relatives of key crop plants. Yet extensive agriculture, unsustainable use, and global climate change are causing an irrecoverable damage to arid lands, with far-reaching consequences to the species, ground-water resources, ecosystem productivity, and ultimately the communities' dependant on these systems. However, adequate research and effective policies to protect arid land biodiversity and sustainability are lacking because a large proportion of arid areas are in developing countries, and the unique diversity in these systems is frequently overlooked. Developing new priorities for global arid lands and mechanisms to prevent unsustainable development must become part of public discourse and form the basis for conservation efforts. The current situation demands the combined efforts of researchers, practitioners, policymakers, and local communities to adopt a socio-ecological approach for achieving sustainable development (SDGs) in arid lands. Applying these initiatives globally is imperative to conserve arid lands biodiversity and the critical ecological services they provide for future generations. This perspective provides a framework for conserving biodiversity in arid lands for all stakeholders that will have a tangible impact on sustainable development, nature, and human well-being.
Collapse
Affiliation(s)
- Yuanming Zhang
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Xinjiang, China.
| | - Akash Tariq
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Xinjiang, China; Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele 848300, China
| | - Alice C Hughes
- Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan, China
| | - Deyuan Hong
- Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Fuwen Wei
- Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Hang Sun
- Kunming Institute of Botany, Chinese Academy of Sciences, Yunnan, China
| | - Jordi Sardans
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Josep Peñuelas
- CSIC, Global Ecology Unit, CREAF-CSIC-UAB, Bellaterra, Barcelona, Catalonia, Spain; CREAF, Cerdanyola del Vallès, Barcelona, Catalonia, Spain
| | - Gad Perry
- Department of Natural Resource Management, Texas Tech University, Lubbock, USA
| | - Jianfang Qiao
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Xinjiang, China
| | - Alishir Kurban
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Xinjiang, China; Sino-Belgian Joint Laboratory for Geo-Information, Urumqi 830011, China
| | - Xiaoxia Jia
- Science Technology Innovation Unit, Secretariat of the UNCCD, Bonn, Germany
| | | | - Borong Pan
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Xinjiang, China
| | - Weikang Yang
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Xinjiang, China
| | - Daoyuan Zhang
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Xinjiang, China
| | - Wenjun Li
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Xinjiang, China
| | - Zeeshan Ahmed
- Xinjiang Institute of Ecology & Geography, Chinese Academy of Sciences, Xinjiang, China
| | | | - Georgy Lazkov
- Institute of Biology, National Academy of Sciences of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Kristina Toderich
- International Platform for Dryland Research and Education, University of Tottori, Tottori, Japan
| | | | - Davron Dehkonov
- Institute of Botany, Academy Sciences of Uzbekistan, Uzbekistan
| | - Hikmat Hisoriev
- Flora and Systematic Botany Department Institute of Botany, Plant Physiology and Genetics, Tajikistan National Academy of Sciences, Dushanbe, Tajikistan
| | - Liliya Dimeyeva
- Laboratory of Geobotany, Institute of Botany & Phytointroduction, Almaty, Kazakhstan
| | - Dmitry Milko
- Institute of Biology, National Academy of Sciences of Kyrgyzstan, Bishkek, Kyrgyzstan
| | - Ahmedou Soule
- Research Center for the Valorization of Biodiversity, Nouakchott, Mauritania
| | - Malgozhata Suska-Malawska
- International Platform for Dryland Research and Education, University of Tottori, Tottori, Japan; Faculty of Biology, University of Warsaw, Warsaw, Poland
| | - Jumamurat Saparmuradov
- Department of Environmental Protection and Hydrometeorology, Ministry of Agriculture and Environmental Protection of Turkmenistan, Ashgabat, Turkmenistan
| | - Alilov Bekzod
- Institute of Botany, Academy Sciences of Uzbekistan, Uzbekistan
| | - Paul Allin
- Transfrontier Africa, Hoedspruit, South Africa
| | - Sidy Dieye
- Transfrontier Africa, Hoedspruit, South Africa
| | - Birane Cissse
- Cheikh Anta DIOP University of Dakar, Dakar, Senegal
| | | | - Keping Ma
- Institute of Botany, Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
2
|
de Mestier A, Lücking R, Gutierrez J, Brokamp G, Celis M, Borsch T. Nested singletons in molecular trees: Utility of adding morphological and geographical data from digitized herbarium specimens to test taxon concepts at species level in the case of Casearia (Salicaceae). Ecol Evol 2023; 13:e9736. [PMID: 36694555 PMCID: PMC9843533 DOI: 10.1002/ece3.9736] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 12/21/2022] [Accepted: 12/23/2022] [Indexed: 01/19/2023] Open
Abstract
Using the genus Casearia, we assessed the status of nested singletons: individual specimens corresponding to accepted species but in molecular trees appearing nested within clades of closely related species. Normally, such cases would be left undecided, while on the other hand, timely taxonomic decisions are required. We argue that morphological, chorological, and ecological data can be informative to illuminate patterns of speciation. Their use can provide a first step in testing taxon concepts at species level. We focused on five cases of nested singletons in trees of the genus Casearia. We employed PCA and cluster analysis to assess phenotypic differentiation. Using geocoordinates, we calculated niche space differentiation based on 19 bioclim variables, by means of PCA and niche equivalency and similarity tests and generated dot maps. We found that the singletons were morphologically distinctive in two of the five cases (Casearia selloana and C. manausensis), relatively distinctive in two other cases (C. zizyphoides and C. mariquitensis), and partially overlapping in the last case (C. grandiflora). For two cases (C. mariquitensis and C. selloana), ecological niche space was broadly overlapping, in two cases it was found broadly nested (C. grandiflora and C. zizyphoides), and in one case narrowly nested (C. manausensis), but in no case niche differentiation was observed. Niche overlap, similarity and equivalency showed corresponding patterns. Given these data, one would interpret C. selloana and C. manausensis as presumably well-distinguished taxa, their narrow distribution ranges suggesting recently emerging lineages. The other three cases are not clearcut. Morphological data would suggest particularly C. grandiflora conspecific with C. arborea, but differences in the distribution are intriguing. Our approach would reject the notion of potential synonymy based on nested phylogenetic placement for at least two of the five cases. The other case also shows no complete lack of differentiation which would support synonymy.
Collapse
Affiliation(s)
- Astrid de Mestier
- Botanischer GartenFreie Universität BerlinBerlinGermany
- Institut für Biologie – Systematische Botanik und PflanzengeographieFreie Universität BerlinBerlinGermany
| | | | - Jorge Gutierrez
- Jardín Botánico Nacional CalabazarUniversidad de La HabanaBoyerosCuba
| | - Grischa Brokamp
- Botanischer GartenFreie Universität BerlinBerlinGermany
- Fachbereich Wald und UmweltHochschule für Nachhaltige Entwicklung EberswaldeEberswaldeGermany
| | - Marcela Celis
- Departamento de Química y BiologíaUniversidad del NorteBarranquillaColombia
| | - Thomas Borsch
- Botanischer GartenFreie Universität BerlinBerlinGermany
- Institut für Biologie – Systematische Botanik und PflanzengeographieFreie Universität BerlinBerlinGermany
| |
Collapse
|
3
|
Ruhm J, Böhnert T, Mutke J, Luebert F, Montesinos-Tubée DB, Weigend M. Two Sides of the Same Desert: Floristic Connectivity and Isolation Along the Hyperarid Coast and Precordillera in Peru and Chile. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.862846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
In this study we aim at refining our understanding of the floristic connectivity of the loma- and precordillera floras of southern Peru and northern Chile and the parameters determining vegetation cover in this region. We used multivariate analyses to test for floristic- and environmental similarity across 53 precordillera and loma locations in Peru and Chile. We propose the use of predictive modeling in estimating the extent of desert vegetation as a complementary method to remote sensing. We created habitat suitability models for the vegetation on the coast and in the precordillera based on a combination of latent bioclimatic variables and additional environmental predictors using Maxent. We found Peruvian and Chilean lomas to be strongly floristically differentiated, as are the Chilean precordillera and lomas. Conversely, there is clear connectivity between both the Peruvian loma- and precordillera floras on the one hand and the Peruvian and Chilean precordillera floras on the other. Divergent environmental conditions were retrieved as separating the precordillera and lomas, while environmental conditions are not differentiated between Peruvian and Chilean lomas. Peruvian and Chilean precordilleras show a gradual change in environmental conditions. Habitat suitability models of vegetation cover retrieve a gap for the loma vegetation along the coast between Peru and Chile, while a continuous belt of suitable habitats is retrieved along the Andean precordillera. Unsuitable habitat for loma vegetation north and south of the Chilean and Peruvian border likely represents an ecogeographic barrier responsible for the floristic divergence of Chilean and Peruvian lomas. Conversely, environmental parameters change continuously along the precordilleras, explaining the moderate differentiation of the corresponding floras. Our results underscore the idea of the desert core acting as an ecogeographic barrier separating the coast from the precordillera in Chile, while it has a more limited isolating function in Peru. We also find extensive potentially suitable habitats for both loma- and precordillera vegetation so far undetected by methods of remote sensing.
Collapse
|