1
|
Groover A, Holbrook NM, Polle A, Sala A, Medlyn B, Brodersen C, Pittermann J, Gersony J, Sokołowska K, Bogar L, McDowell N, Spicer R, David-Schwartz R, Keller S, Tschaplinski TJ, Preisler Y. Tree drought physiology: critical research questions and strategies for mitigating climate change effects on forests. THE NEW PHYTOLOGIST 2025; 245:1817-1832. [PMID: 39690524 DOI: 10.1111/nph.20326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Accepted: 11/18/2024] [Indexed: 12/19/2024]
Abstract
Droughts of increasing severity and frequency are a primary cause of forest mortality associated with climate change. Yet, fundamental knowledge gaps regarding the complex physiology of trees limit the development of more effective management strategies to mitigate drought effects on forests. Here, we highlight some of the basic research needed to better understand tree drought physiology and how new technologies and interdisciplinary approaches can be used to address them. Our discussion focuses on how trees change wood development to mitigate water stress, hormonal responses to drought, genetic variation underlying adaptive drought phenotypes, how trees 'remember' prior stress exposure, and how symbiotic soil microbes affect drought response. Next, we identify opportunities for using research findings to enhance or develop new strategies for managing drought effects on forests, ranging from matching genotypes to environments, to enhancing seedling resilience through nursery treatments, to landscape-scale monitoring and predictions. We conclude with a discussion of the need for co-producing research with land managers and extending research to forests in critical ecological regions beyond the temperate zone.
Collapse
Affiliation(s)
- Andrew Groover
- USDA Forest Service Northern Research Station, Burlington, VT, 05446, USA
- Institute of Forest Genetics, USDA Forest Service Pacific Southwest Research Station, Placerville, CA, 95667, USA
| | - N Michele Holbrook
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Andrea Polle
- Forest Botany and Tree Physiology, University of Göttingen, Büsgenweg 2, 37077, Göttingen, Germany
| | - Anna Sala
- Division of Biological Sciences, University of Montana, Missoula, MT, 59812, USA
| | - Belinda Medlyn
- Hawkesbury Institute for the Environment, Western Sydney University, Locked Bag 1797, Penrith, NSW, 2751, Australia
| | - Craig Brodersen
- School of the Environment, Yale University, New Haven, CT, 06511, USA
| | - Jarmila Pittermann
- Department of Ecology and Evolutionary Biology, University of California, Santa Cruz, CA, 95060, USA
| | - Jessica Gersony
- Department of Biological Sciences, Smith College, Northampton, MA, 01060, USA
| | - Katarzyna Sokołowska
- Department of Plant Developmental Biology, Faculty of Biological Sciences, University of Wrocław, Kanonia 6/8, 50-328, Wrocław, Poland
| | - Laura Bogar
- Department of Plant Biology, University of California Davis, Davis, CA, 95616, USA
| | - Nate McDowell
- Atmospheric, Climate, and Earth Sciences, Pacific Northwest National Laboratory, Richland, WA, 99352, USA
- School of Biological Sciences, Washington State University, Pullman, WA, 99164-4236, USA
| | - Rachel Spicer
- Department of Botany, Connecticut College, New London, CT, 06320, USA
| | - Rakefet David-Schwartz
- Institute of Plant Sciences, Agricultural Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| | - Stephen Keller
- Department of Plant Biology, University of Vermont, Burlington, VT, 05405, USA
| | | | - Yakir Preisler
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, 02138, USA
- Agriculture Research Organization - Volcani Institute, 68 HaMaccabim Road, Rishon Lezion, 7505101, Israel
| |
Collapse
|
2
|
Yimer EA, De Trift L, Lobkowicz I, Villani L, Nossent J, van Griensven A. The underexposed nature-based solutions: A critical state-of-art review on drought mitigation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:119903. [PMID: 38211427 DOI: 10.1016/j.jenvman.2023.119903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 10/03/2023] [Accepted: 12/11/2023] [Indexed: 01/13/2024]
Abstract
Droughts are the most expensive climate disasters as they leave long-term and chronic impacts on the ecosystem, agriculture, and human society. The intensity, frequency, and duration of drought events have increased over the years and are expected to worsen in the future on a regional and planetary/global scale. Nature-based solutions (NBS) such as wetland and floodplain restorations, green infrastructures, rainwater harvesting, etc., are highlighted as effective solutions to cope with the future impacts of these events. While the role of NBS in coping with the impacts of other disasters, such as floods, has been extensively studied, there has been a lack of comprehensive review of NBS targeting drought. The following paper provides a unique critical state-of-the-art literature review of individual drought-related NBS around the world, in Europe, and particularly in Belgium, and assesses the critical differences between the NBS applied globally and in Flanders. An extensive literature review was conducted to systematically analyze NBS, listing the type, the location, the status of the implementation, and the possible recommendations proposed to optimize future NBS applications. Finally, a comparison is made between small- and large-scale applications of NBS. By analyzing all these aspects, especially the level of effectiveness and recommendations, insight was gained into the future potential of NBS and possible improvements. The research indicated a lack of scientific publications, especially in Belgium. Hence, grey literature was also included in the literature review. Only four papers included a quantitative assessment regarding the effectiveness of drought on a global level, all stating a positive impact on groundwater recharge. In contrast, at regional and country levels, the performance of NBS was not quantified. The number of large-scale implementations is low, where landscape- or watershed-scale holistic approaches to drought mitigation are still scarce. Some successfully implemented projects are only very local and have a long realization time, two aspects that limit achieving visible impact at a larger scale. Among the many NBS, wetlands are recognized as highly effective in coping with drought but are still degraded or lost despite their significant restoration potential. A common effectiveness evaluation framework shall be followed, which gives policymakers a clear view of the different NBS investment options. Furthermore, a more collaborative approach is recommended globally, including different stakeholder groups, with specific attention to the local communities. To conclude, future research should increase the evidence base and implementation of drought-mitigating NBS.
Collapse
Affiliation(s)
- Estifanos Addisu Yimer
- Department of Hydrology and Hydraulic Engineering, Vrije University of Brussels, 1050 Brussels, Belgium.
| | - Lien De Trift
- Department of Hydrology and Hydraulic Engineering, Vrije University of Brussels, 1050 Brussels, Belgium
| | - Ida Lobkowicz
- Department of Biology, University of Antwerp, Antwerpen, Belgium
| | - Lorenzo Villani
- Department of Hydrology and Hydraulic Engineering, Vrije University of Brussels, 1050 Brussels, Belgium; Department of Agriculture, Food, Environment and Forestry (DAGRI), Università Degli Studi di Firenze, Italy
| | - Jiri Nossent
- Department of Hydrology and Hydraulic Engineering, Vrije University of Brussels, 1050 Brussels, Belgium; Flanders Hydraulics Research, Department of Mobility and Public Works, Berchemlei 115, 2140 Antwerp, Belgium
| | - Ann van Griensven
- Department of Hydrology and Hydraulic Engineering, Vrije University of Brussels, 1050 Brussels, Belgium; Department of Water Science and Engineering, IHE Delft Institute for Water Education, 2700 Delft, the Netherlands
| |
Collapse
|
3
|
Liu D, Yang J, Tao L, Ma Y, Sun W. Seed Germination and Seedling Growth Influenced by Genetic Features and Drought Tolerance in a Critically Endangered Maple. PLANTS (BASEL, SWITZERLAND) 2023; 12:3140. [PMID: 37687386 PMCID: PMC10490246 DOI: 10.3390/plants12173140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/23/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023]
Abstract
Understanding the adaptation of plant species will help us develop effective breeding programs, guide the collection of germplasm, and improve the success of population restoration projects for threatened species. Genetic features correlate with species adaptation. Acer yangbiense is a critically endangered plant species with extremely small populations (PSESP). However, no information was available on its seed germination and seedling growth in populations with different genetic characteristics. In this study, we investigated seed germination and compared the performance of 566 seedlings in 10 maternal half-sib families cultivated in Kunming Botanical Garden. The results showed that A. yangbiense seeds required an average of 44 days to start germinating, with a 50% germination rate estimated to take about 47-76 days, indicating slow and irregular germination. There is a trade-off between the growth and survival in A. yangbiense seedlings, with fast growth coming at the cost of low survival. Groups that were able to recover from a recent bottleneck consistently had higher relative growth rates. High genetic diversity and low levels of inbreeding are likely to be responsible for their improved survival during drought conditions and rapid growth under optimal environmental conditions. Our results suggest that maternal genetic traits might be used as indicators for conservation and population restoration. These findings provide us with new information that could be applied to support ex situ conservation and reintroduction of threatened species.
Collapse
Affiliation(s)
- Detuan Liu
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (D.L.); (J.Y.); (L.T.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Jiajun Yang
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (D.L.); (J.Y.); (L.T.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Lidan Tao
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (D.L.); (J.Y.); (L.T.)
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Yongpeng Ma
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (D.L.); (J.Y.); (L.T.)
| | - Weibang Sun
- Yunnan Key Laboratory for Integrative Conservation of Plant Species with Extremely Small Populations/Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China; (D.L.); (J.Y.); (L.T.)
| |
Collapse
|
4
|
Keppel G, Sarnow U, Biffin E, Peters S, Fitzgerald D, Boutsalis E, Waycott M, Guerin GR. Population decline in a Pleistocene refugium: Stepwise, drought-related dieback of a South Australian eucalypt. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162697. [PMID: 36898535 DOI: 10.1016/j.scitotenv.2023.162697] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 03/03/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Refugia can facilitate the persistence of species under long-term environmental change, but it is not clear if Pleistocene refugia will remain functional as anthropogenic climate change progresses. Dieback in populations restricted to refugia therefore raises concerns about their long-term persistence. Using repeat field surveys, we investigate dieback in an isolated population of Eucalyptus macrorhyncha during two droughts and discuss prospects for its continued persistence in a Pleistocene refugium. We first confirm that the Clare Valley in South Australia has constituted a long-term refugium for the species, with the population being genetically highly distinct from other conspecific populations. However, the population lost >40 % of individuals and biomass through the droughts, with mortality being just below 20 % after the Millennium Drought (2000-2009) and almost 25 % after the Big Dry (2017-2019). The best predictors of mortality differed after each drought. While north-facing aspect of a sampling location was significant positive predictor after both droughts, biomass density and slope were significant negative predictors only after the Millennium Drought, and distance to the north-west corner of the population, which intercepts hot, dry winds, was a significant positive predictor after the Big Dry only. This suggests that more marginal sites with low biomass and sites located on flat plateaus were more vulnerable initially, but that heat-stress was an important driver of dieback during the Big Dry. Therefore, the causative drivers of dieback may change during population decline. Regeneration occurred predominantly on southern and eastern aspects, which would receive the least solar radiation. While this refugial population is experiencing severe decline, some gullies with lower solar radiation appear to support relatively healthy, regenerating stands of red stringybark, providing hope for persistence in small pockets. Monitoring and managing these pockets during future droughts will be essential to ensure the persistence of this isolated and genetically unique population.
Collapse
Affiliation(s)
- Gunnar Keppel
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia; AMAP, Université de Montpellier, CIRAD, CNRS, INRAE, IRD, Montpellier, France.
| | - Udo Sarnow
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia
| | - Ed Biffin
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, Australia.
| | - Stefan Peters
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Donna Fitzgerald
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Evan Boutsalis
- UniSA STEM and Future Industries Institute, University of South Australia, GPO Box 2471, SA 5001 Adelaide, Australia.
| | - Michelle Waycott
- State Herbarium of South Australia, Botanic Gardens and State Herbarium, Department for Environment and Water, Adelaide, Australia.
| | - Greg R Guerin
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| |
Collapse
|