1
|
Wang W, Liu D, Zhang T, Guo K, Liu X, Liu D, Chen L, Yang J, Teng Z, Zou Y, Ma J, Wang Y, Yang X, Guo X, Sun X, Zhang J, Xiao Y, Paterson AH, Zhang Z. Natural variation in GhROPGEF5 contributes to longer and stronger cotton fibers. THE NEW PHYTOLOGIST 2025; 245:1090-1105. [PMID: 39575696 DOI: 10.1111/nph.20286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/03/2024] [Indexed: 01/11/2025]
Abstract
Length and strength are key parameters impacting the quality of textiles that can be produced from cotton fibers, and therefore are important considerations in cotton breeding. Through map-based cloning and function analysis, we demonstrated that GhROPGEF5, encoding a ROP guanine nucleotide exchange factor, was the gene controlling fiber length and strength at qFSA10.1. Evolutionary analysis revealed that a base deletion in the third exon of GhROPGEF5 resulting in superior fiber length and strength was a rare mutation occurring in a tiny percentage of Upland cottons, with reduced fiber yield hindering its spread. GhROPGEF5 interacted with and activated GhROP10. Knockout or mutation of GhROPGEF5 resulted a loss of the ability to activate GhROP10. Knockout of GhROPGEF5 or GhROP10 affected the expression of many downstream genes associated with fiber elongation and secondary wall deposition, prolonged fiber elongation and delayed secondary wall deposition, producing denser fiber helices and increasing fiber length and strength. These results revealed new molecular aspects of fiber development and revealed a rare favorable allele for improving fiber quality in cotton breeding.
Collapse
Affiliation(s)
- Wenwen Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Dexin Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Tingfu Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Kai Guo
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xueying Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Dajun Liu
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Lei Chen
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Jinming Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Zhonghua Teng
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Ying Zou
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Junrui Ma
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Yi Wang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xinrui Yang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xin Guo
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Xiaoting Sun
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Jian Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Yuehua Xiao
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| | - Andrew H Paterson
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Plant Genome Mapping Laboratory, University of Georgia, Athens, GA, 30605, USA
| | - Zhengsheng Zhang
- Engineering Research Center of South Upland Agriculture, Ministry of Education, Southwest University, Chongqing, 400716, China
- Chongqing Key Laboratory of Crop Molecular Improvement, Southwest University, Chongqing, 400716, China
| |
Collapse
|
2
|
Zhu M, Du BY, Tan YQ, Yang Y, Zhang Y, Wang YF. CPK1 activates CNGCs through phosphorylation for Ca 2+ signaling to promote root hair growth in Arabidopsis. Nat Commun 2025; 16:676. [PMID: 39809784 PMCID: PMC11733299 DOI: 10.1038/s41467-025-56008-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/07/2025] [Indexed: 01/16/2025] Open
Abstract
Cyclic nucleotide-gated channel 5 (CNGC5), CNGC6, and CNGC9 (CNGC5/6/9 for simplicity) control Arabidopsis root hair (RH) growth by mediating the influx of external Ca2+ to establish and maintain a sharp cytosolic Ca2+ gradient at RH tips. However, the underlying mechanisms for the regulation of CNGCs remain unknown. We report here that calcium dependent protein kinase 1 (CPK1) directly activates CNGC5/6/9 to promote Arabidopsis RH growth. The loss-of-function mutants cpk1-1, cpk1-2, cngc5-1 cngc6-2 cngc9-1 (shrh1/short root hair 1), and cpk1 shrh1 show similar RH phenotypes, including shorter RHs, more RH branching, and dramatically attenuated cytosolic Ca2+ gradients at RH tips. The main CPK1-target sites are identified as Ser20, Ser27, and Ser26 for CNGC5/6/9, respectively, and the corresponding alanine substitution mutants fail to rescue RH growth in shrh1 and cpk1-1, while phospho-mimic versions restore the cytosolic Ca2+ gradient at RH apex and rescue the RH phenotypes in the same Arabidopsis mutants. Thus we discover the CPK1-CNGC modules essential for the Ca2+ signaling regulation and RH growth in Arabidopsis.
Collapse
Affiliation(s)
- Meijun Zhu
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Bo-Ya Du
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yan-Qiu Tan
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
| | - Yang Yang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yang Zhang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China
- University of Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yong-Fei Wang
- State Key Laboratory of Plant Trait Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences (CAS), Shanghai, 200032, China.
- University of Chinese Academy of Sciences, Shanghai, 200032, China.
| |
Collapse
|
3
|
Ruan J, Yin Z, Yi P. Effects of fluorescent tags and activity status on the membrane localization of ROP GTPases. PLANT SIGNALING & BEHAVIOR 2024; 19:2306790. [PMID: 38270144 PMCID: PMC10813580 DOI: 10.1080/15592324.2024.2306790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Accepted: 01/08/2024] [Indexed: 01/26/2024]
Abstract
Plant-specific Rho-type GTPases (ROPs) are master regulators of cell polarity and development. Over the past 30 years, their localization and dynamics have been largely examined with fluorescent proteins fused at the amino terminus without investigating their impact on protein function. The moss Physcomitrium patens genome encodes four rop genes. In this study, we introduce a fluorescent tag at the endogenous amino terminus of ROP4 in wild-type and rop1,2,3 triple mutant via homologous recombination and demonstrate that the fluorescent tag severely impairs ROP4 function and inhibits its localization on the plasma membrane. This phenotype is exacerbated in mutants lacking ROP-related GTPase-activating proteins. By comparing the localization of nonfunctional and functional ROP4 fusion reporters, we provide insight into the mechanism that governs the membrane association of ROPs.
Collapse
Affiliation(s)
- Jingtong Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Zihan Yin
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
4
|
Zhang Y, Kawashima T. Cytoskeletal dynamics of gamete nuclear migration in flowering plants, animals, and yeast. Curr Top Dev Biol 2024; 162:33-53. [PMID: 40180514 DOI: 10.1016/bs.ctdb.2024.10.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Gamete nuclear migration is a critical process during fertilization in flowering plants, yet its molecular mechanisms remain poorly understood. Recent studies have highlighted the essential role of cytoskeletal elements, particularly F-actin, in directing sperm nuclear migration, which differ from the microtubule-driven migration in animals. We summarize the process of sperm nuclear migration in plants and the involvement of Class XI myosin XI-G in Arabidopsis, along with the ROP8-SCAR2 pathway's ARP2/3-independent mechanism for F-actin nucleation. We also provide a comparative overview of examples from sea urchins, C. elegans, mice and yeast contrasting these mechanisms with those in plants. Finally, we outline possible future research directions related to sperm nuclear migration in plants. This review highlights the need for further exploration of pre- and post-fertilization processes, emphasizing their importance in plant cytoskeleton biology and the coordinated development of seeds.
Collapse
Affiliation(s)
- Yilin Zhang
- Department of Plant and Soil Sciences, University of Kentucky, Plant Science Building, Lexington, KY, United States
| | - Tomokazu Kawashima
- Department of Plant and Soil Sciences, University of Kentucky, Plant Science Building, Lexington, KY, United States.
| |
Collapse
|
5
|
Sakai Y, Ueno A, Yonetsuka H, Goh T, Kato H, Kondo Y, Fukaki H, Ishizaki K. Regulation of ROP GTPase cycling between active and inactive states is essential for vegetative organogenesis in Marchantia polymorpha. Development 2024; 151:dev202928. [PMID: 39133134 DOI: 10.1242/dev.202928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 08/06/2024] [Indexed: 08/13/2024]
Abstract
Rho/Rac of plant (ROP) GTPases are plant-specific proteins that function as molecular switches, activated by guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). The bryophyte Marchantia polymorpha contains single copies of ROP (MpROP), GEFs [ROPGEF and SPIKE (SPK)] and GAPs [ROPGAP and ROP ENHANCER (REN)]. MpROP regulates the development of various tissues and organs, such as rhizoids, gemmae and air chambers. The ROPGEF KARAPPO (MpKAR) is essential for gemma initiation, but the functions of other ROP regulatory factors are less understood. This study focused on two GAPs: MpROPGAP and MpREN. Mpren single mutants showed defects in thallus growth, rhizoid tip growth, gemma development, and air-chamber formation, whereas Mpropgap mutants showed no visible abnormalities. However, Mpropgap Mpren double mutants had more severe phenotypes than the Mpren single mutants, suggesting backup roles of MpROPGAP in processes involving MpREN. Overexpression of MpROPGAP and MpREN resulted in similar gametophyte defects, highlighting the importance of MpROP activation/inactivation cycling (or balancing). Thus, MpREN predominantly, and MpROPGAP as a backup, regulate gametophyte development, likely by controlling MpROP activation in M. polymorpha.
Collapse
Affiliation(s)
- Yuuki Sakai
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Aki Ueno
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Hiroki Yonetsuka
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Tatsuaki Goh
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Ikoma, 630-0192Japan
| | - Hirotaka Kato
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
- Department of Science and Engineering, Graduate School of Science and Engineering, Ehime University, Matsuyama, 790-8577Japan
| | - Yuki Kondo
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Toyonaka, 560-0043Japan
| | - Hidehiro Fukaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| | - Kimitsune Ishizaki
- Department of Biology, Graduate School of Science, Kobe University, Kobe, 657-8501Japan
| |
Collapse
|
6
|
Yao Q, Li P, Wang X, Liao S, Wang P, Huang S. Molecular mechanisms underlying the negative effects of transient heatwaves on crop fertility. PLANT COMMUNICATIONS 2024; 5:101009. [PMID: 38915200 DOI: 10.1016/j.xplc.2024.101009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/04/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Transient heatwaves occurring more frequently as the climate warms, yet their impacts on crop yield are severely underestimated and even overlooked. Heatwaves lasting only a few days or even hours during sensitive stages, such as microgametogenesis and flowering, can significantly reduce crop yield by disrupting plant reproduction. Recent advances in multi-omics and GWAS analysis have shed light on the specific organs (e.g., pollen, lodicule, style), key metabolic pathways (sugar and reactive oxygen species metabolism, Ca2+ homeostasis), and essential genes that are involved in crop responses to transient heatwaves during sensitive stages. This review therefore places particular emphasis on heat-sensitive stages, with pollen development, floret opening, pollination, and fertilization as the central narrative thread. The multifaceted effects of transient heatwaves and their molecular basis are systematically reviewed, with a focus on key structures such as the lodicule and tapetum. A number of heat-tolerance genes associated with these processes have been identified in major crops like maize and rice. The mechanisms and key heat-tolerance genes shared among different stages may facilitate the more precise improvement of heat-tolerant crops.
Collapse
Affiliation(s)
- Qian Yao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Ping Li
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Xin Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| | - Shuhua Liao
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Pu Wang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Shoubing Huang
- College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
7
|
Qi W, Zhang Y, Li M, Zhang P, Xing J, Chen Y, Zhang L. Endocytic recycling in plants: pathways and regulation. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:4712-4728. [PMID: 38655916 DOI: 10.1093/jxb/erae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/23/2024] [Indexed: 04/26/2024]
Abstract
Endocytic recycling is an intracellular trafficking pathway that returns endocytosed molecules to the plasma membrane via the recycling endosome. This pathway plays a crucial role in remodelling plasma membrane composition and is thus essential for cellular homeostasis. In plants, endocytic recycling regulates the localization and abundance of receptors, transporters, and channels at the plasma membrane that are involved in many aspects of plant growth and development. Despite its importance, the recycling endosome and the underlying sorting mechanisms for cargo recycling in plants remain understudied in comparison to the endocytic recycling pathways in animals. In this review, we focus on the cumulative evidence suggesting the existence of endosomes decorated by regulators that contribute to recycling in plant cells. We summarize the chemical inhibitors used for analysing cargo recycling and discuss recent advances in our understanding of how endocytic recycling participates in various plant cellular and physiological events.
Collapse
Affiliation(s)
- Wencai Qi
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Yu Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Mengting Li
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Peipei Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| | - Jingjing Xing
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng 475004, China
| | - Yanmei Chen
- State Key Laboratory of Plant Environmental Resilience, College of Biological Sciences, China Agricultural University, Beijing 100193, China
| | - Liang Zhang
- College of Life Science, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
8
|
Jing X, Deng N, Cai Y. Genome-Wide Identification and Characterization of RopGEF Gene Family in C 4 Crops. Genes (Basel) 2024; 15:1112. [PMID: 39336703 PMCID: PMC11431098 DOI: 10.3390/genes15091112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 08/15/2024] [Accepted: 08/20/2024] [Indexed: 09/30/2024] Open
Abstract
In plants, RopGEF-mediated ROP signaling is pivotal in cellular signaling pathways, including apical growth, pollen germination and perception, intercellular recognition, as well as in responses to biotic and abiotic stresses. In this study, we retrieved a total of 37 RopGEF members from three C4 Crops, of which 11 are from millet, 11 from sorghum, and 15 from maize. Based on their phylogenetic relationships and structural characteristics, all RopGEF members are classified into four subfamilies. The qRT-PCR technique was utilized to evaluate the expression profiles of 11 SiRopGEFs across different tissues in foxtail millet. The findings indicated that the majority of the SiRopGEFs exhibited higher expression levels in leaves as opposed to roots and stems. The levels of expression of SiRopGEF genes were examined in response to abiotic stress and plant hormones. SiRopGEF1, SiRopGEF5, SiRopGEF6, and SiRopGEF8 showed significant induction under abiotic stresses such as salt, cold, and heat. On the other hand, SiRopGEF1, SiRopGEF2, and SiRopGEF7 were consistently upregulated, while SiRopGEF3, SiRopGEF4, SiRopGEF6, SiRopGEF9, and SiRopGEF10 were downregulated upon exposure to abscisic acid (ABA), ethylene (ET), salicylic acid (SA), and gibberellic acid (GA3) hormones. The alterations in the expression patterns of RopGEF members imply their potential functions in plant growth and development, abiotic stress response, and hormone signal transduction. These discoveries suggest that the RopGEF genes may function as a potential genetic marker to facilitate future studies in elucidating the functional characteristics of RopGEFs.
Collapse
Affiliation(s)
- Xiuqing Jing
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China; (N.D.); (Y.C.)
- Shanxi Key Laboratory of Earth Surface Processes and Resource Ecology Security in Fenhe River Basin, Taiyuan Normal University, Jinzhong 030619, China
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | - Ning Deng
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China; (N.D.); (Y.C.)
| | - Yongduo Cai
- College of Biological Sciences and Technology, Taiyuan Normal University, Jinzhong 030619, China; (N.D.); (Y.C.)
| |
Collapse
|
9
|
Tian H, Lyu R, Yi P. Crosstalk between Rho of Plants GTPase signalling and plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3778-3796. [PMID: 38616410 DOI: 10.1093/jxb/erae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Rho of Plants (ROPs) constitute a plant-specific subset of small guanine nucleotide-binding proteins within the Cdc42/Rho/Rac family. These versatile proteins regulate diverse cellular processes, including cell growth, cell division, cell morphogenesis, organ development, and stress responses. In recent years, the dynamic cellular and subcellular behaviours orchestrated by ROPs have unveiled a notable connection to hormone-mediated organ development and physiological responses, thereby expanding our knowledge of the functions and regulatory mechanisms of this signalling pathway. This review delineates advancements in understanding the interplay between plant hormones and the ROP signalling cascade, focusing primarily on the connections with auxin and abscisic acid pathways, alongside preliminary discoveries in cytokinin, brassinosteroid, and salicylic acid responses. It endeavours to shed light on the intricate, coordinated mechanisms bridging cell- and tissue-level signals that underlie plant cell behaviour, organ development, and physiological processes, and highlights future research prospects and challenges in this rapidly developing field.
Collapse
Affiliation(s)
- Haoyu Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruohan Lyu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
10
|
Bement WM, Goryachev AB, Miller AL, von Dassow G. Patterning of the cell cortex by Rho GTPases. Nat Rev Mol Cell Biol 2024; 25:290-308. [PMID: 38172611 DOI: 10.1038/s41580-023-00682-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/20/2023] [Indexed: 01/05/2024]
Abstract
The Rho GTPases - RHOA, RAC1 and CDC42 - are small GTP binding proteins that regulate basic biological processes such as cell locomotion, cell division and morphogenesis by promoting cytoskeleton-based changes in the cell cortex. This regulation results from active (GTP-bound) Rho GTPases stimulating target proteins that, in turn, promote actin assembly and myosin 2-based contraction to organize the cortex. This basic regulatory scheme, well supported by in vitro studies, led to the natural assumption that Rho GTPases function in vivo in an essentially linear matter, with a given process being initiated by GTPase activation and terminated by GTPase inactivation. However, a growing body of evidence based on live cell imaging, modelling and experimental manipulation indicates that Rho GTPase activation and inactivation are often tightly coupled in space and time via signalling circuits and networks based on positive and negative feedback. In this Review, we present and discuss this evidence, and we address one of the fundamental consequences of coupled activation and inactivation: the ability of the Rho GTPases to self-organize, that is, direct their own transition from states of low order to states of high order. We discuss how Rho GTPase self-organization results in the formation of diverse spatiotemporal cortical patterns such as static clusters, oscillatory pulses, travelling wave trains and ring-like waves. Finally, we discuss the advantages of Rho GTPase self-organization and pattern formation for cell function.
Collapse
Affiliation(s)
- William M Bement
- Center for Quantitative Cell Imaging, Department of Integrative Biology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Andrew B Goryachev
- Center for Engineering Biology, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| | - Ann L Miller
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| | | |
Collapse
|
11
|
Deinum EE, Jacobs B. Rho of Plants patterning: linking mathematical models and molecular diversity. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:1274-1288. [PMID: 37962515 PMCID: PMC10901209 DOI: 10.1093/jxb/erad447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 11/08/2023] [Indexed: 11/15/2023]
Abstract
ROPs (Rho of Plants) are plant specific small GTPases involved in many membrane patterning processes and play important roles in the establishment and communication of cell polarity. These small GTPases can produce a wide variety of patterns, ranging from a single cluster in tip-growing root hairs and pollen tubes to an oriented stripe pattern controlling protoxylem cell wall deposition. For an understanding of what controls these various patterns, models are indispensable. Consequently, many modelling studies on small GTPase patterning exist, often focusing on yeast or animal cells. Multiple patterns occurring in plants, however, require the stable co-existence of multiple active ROP clusters, which does not occur with the most common yeast/animal models. The possibility of such patterns critically depends on the precise model formulation. Additionally, different small GTPases are usually treated interchangeably in models, even though plants possess two types of ROPs with distinct molecular properties, one of which is unique to plants. Furthermore, the shape and even the type of ROP patterns may be affected by the cortical cytoskeleton, and cortex composition and anisotropy differ dramatically between plants and animals. Here, we review insights into ROP patterning from modelling efforts across kingdoms, as well as some outstanding questions arising from these models and recent experimental findings.
Collapse
Affiliation(s)
- Eva E Deinum
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| | - Bas Jacobs
- Mathematical and Statistical Methods (Biometris), Plant Science Group, Wageningen University, 6708 PB Wageningen, The Netherlands
| |
Collapse
|
12
|
Li R, Zhao R, Yang M, Zhang X, Lin J. Membrane microdomains: Structural and signaling platforms for establishing membrane polarity. PLANT PHYSIOLOGY 2023; 193:2260-2277. [PMID: 37549378 DOI: 10.1093/plphys/kiad444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 05/16/2023] [Accepted: 07/11/2023] [Indexed: 08/09/2023]
Abstract
Cell polarity results from the asymmetric distribution of cellular structures, molecules, and functions. Polarity is a fundamental cellular trait that can determine the orientation of cell division, the formation of particular cell shapes, and ultimately the development of a multicellular body. To maintain the distinct asymmetric distribution of proteins and lipids in cellular membranes, plant cells have developed complex trafficking and regulatory mechanisms. Major advances have been made in our understanding of how membrane microdomains influence the asymmetric distribution of proteins and lipids. In this review, we first give an overview of cell polarity. Next, we discuss current knowledge concerning membrane microdomains and their roles as structural and signaling platforms to establish and maintain membrane polarity, with a special focus on the asymmetric distribution of proteins and lipids, and advanced microscopy techniques to observe and characterize membrane microdomains. Finally, we review recent advances regarding membrane trafficking in cell polarity establishment and how the balance between exocytosis and endocytosis affects membrane polarity.
Collapse
Affiliation(s)
- Ruili Li
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Ran Zhao
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Mei Yang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Xi Zhang
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| | - Jinxing Lin
- State Key Laboratory of Tree Genetics and Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- The Tree and Ornamental Plant Breeding and Biotechnology Laboratory of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
- Institute of Tree Development and Genome Editing, Beijing Forestry University, Beijing, China
| |
Collapse
|
13
|
Ruan J, Lai L, Ou H, Yi P. Two subtypes of GTPase-activating proteins coordinate tip growth and cell size regulation in Physcomitrium patens. Nat Commun 2023; 14:7084. [PMID: 37925570 PMCID: PMC10625565 DOI: 10.1038/s41467-023-42879-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/24/2023] [Indexed: 11/06/2023] Open
Abstract
The establishment of cell polarity is a prerequisite for many developmental processes. However, how it is achieved during tip growth in plants remains elusive. Here, we show that the RHO OF PLANTs (ROPs), ROP GUANINE NUCLEOTIDE EXCHANGE FACTORs (RopGEFs), and ROP GTPASE-ACTIVATING PROTEINs (RopGAPs) assemble into membrane domains in tip-growing cells of the moss Physcomitrium patens. The confinement of membrane domains requires redundant global inactivation of ROPs by PpRopGAPs and the PLECKSTRIN HOMOLOGY (PH) domain-containing RenGAP PpREN. Unexpectedly, PpRopGAPs and PpREN exert opposing effects on domain size and cell width upon overexpression. Biochemical and functional analyses indicate that PpRopGAPs are recruited to the membrane by active ROPs to restrict domain size through clustering, whereas PpREN rapidly inactivates ROPs and inhibits PpRopGAP-induced clustering. We propose that the activity- and clustering-based domain organization by RopGAPs and RenGAPs is a general mechanism for coordinating polarized cell growth and cell size regulation in plants.
Collapse
Affiliation(s)
- Jingtong Ruan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, PR China
| | - Linyu Lai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, PR China
| | - Hongxin Ou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, PR China
- School of Life Sciences, Tsinghua University, Beijing, 100084, PR China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, No. 24 South Section 1, Yihuan Road, Wuhou District, Chengdu, Sichuan, 610064, PR China.
| |
Collapse
|
14
|
Liu L, Niu L, Ji K, Wang Y, Zhang C, Pan M, Wang W, Schiefelbein J, Yu F, An L. AXR1 modulates trichome morphogenesis through mediating ROP2 stability in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:756-772. [PMID: 37516999 DOI: 10.1111/tpj.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 07/09/2023] [Accepted: 07/17/2023] [Indexed: 08/01/2023]
Abstract
Cell differentiation and morphogenesis are crucial for the establishment of diverse cell types and organs in multicellular organisms. Trichome cells offer an excellent paradigm for dissecting the regulatory mechanisms of plant cell differentiation and morphogenesis due to their unique growth characteristics. Here, we report the isolation of an Arabidopsis mutant, aberrantly branched trichome 3-1 (abt3-1), with a reduced trichome branching phenotype. Positional cloning and molecular complementation experiments confirmed that abt3-1 is a new mutant allele of Auxin resistant 1 (AXR1), which encodes the N-terminal half of ubiquitin-activating enzyme E1 and functions in auxin signaling pathway. Meanwhile, we found that transgenic plants expressing constitutively active version of ROP2 (CA-ROP2) caused a reduction of trichome branches, resembling that of abt3-1. ROP2 is a member of Rho GTPase of plants (ROP) family, serving as versatile signaling switches involved in a range of cellular and developmental processes. Our genetic and biochemical analyses showed AXR1 genetically interacted with ROP2 and mediated ROP2 protein stability. The loss of AXR1 aggravated the trichome defects of CA-ROP2 and induced the accumulation of steady-state ROP2. Consistently, elevated AXR1 expression levels suppressed ROP2 expression and partially rescued trichome branching defects in CA-ROP2 plants. Together, our results presented a new mutant allele of AXR1, uncovered the effects of AXR1 and ROP2 during trichome development, and revealed a pathway of ROP2-mediated regulation of plant cell morphogenesis in Arabidopsis.
Collapse
Affiliation(s)
- Lu Liu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Linyu Niu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Ke Ji
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yali Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Chi Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Mi Pan
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenjia Wang
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - John Schiefelbein
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, 48109, USA
| | - Fei Yu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lijun An
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, China
| |
Collapse
|
15
|
Ogawa ST, Kessler SA. Update on signaling pathways regulating polarized intercellular communication in Arabidopsis reproduction. PLANT PHYSIOLOGY 2023; 193:1732-1744. [PMID: 37453128 DOI: 10.1093/plphys/kiad414] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/22/2023] [Accepted: 06/22/2023] [Indexed: 07/18/2023]
Affiliation(s)
- Sienna T Ogawa
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47905, USA
| | - Sharon A Kessler
- Department of Botany and Plant Pathology and Center for Plant Biology, Purdue University, West Lafayette, IN 47905, USA
| |
Collapse
|
16
|
Müller S. Update: on selected ROP cell polarity mechanisms in plant cell morphogenesis. PLANT PHYSIOLOGY 2023; 193:26-41. [PMID: 37070572 DOI: 10.1093/plphys/kiad229] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 03/20/2023] [Accepted: 04/02/2023] [Indexed: 06/19/2023]
Abstract
The unequal (asymmetric) distribution of cell structures and proteins within a cell is designated as cell polarity. Cell polarity is a crucial prerequisite for morphogenetic processes such as oriented cell division and directed cell expansion. Rho-related GTPase from plants (ROPs) are required for cellular morphogenesis through the reorganization of the cytoskeleton and vesicle transport in various tissues. Here, I review recent advances in ROP-dependent tip growth, vesicle transport, and tip architecture. I report on the regulatory mechanisms of ROP upstream regulators found in different cell types. It appears that these regulators assemble in nanodomains with specific lipid compositions and recruit ROPs for activation in a stimulus-dependent manner. Current models link mechanosensing/mechanotransduction to ROP polarity signaling involved in feedback mechanisms via the cytoskeleton. Finally, I discuss ROP signaling components that are upregulated by tissue-specific transcription factors and exhibit specific localization patterns during cell division, clearly suggesting ROP signaling in division plane alignment.
Collapse
Affiliation(s)
- Sabine Müller
- Department of Biology, Friedrich-Alexander University of Erlangen-Nuremberg, 91058 Erlangen, Germany
| |
Collapse
|
17
|
Dong J, Van Norman J, Žárský V, Zhang Y. Plant cell polarity: The many facets of sidedness. PLANT PHYSIOLOGY 2023; 193:1-5. [PMID: 37565502 PMCID: PMC10469367 DOI: 10.1093/plphys/kiad436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 07/28/2023] [Indexed: 08/12/2023]
Affiliation(s)
- Juan Dong
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA
- Department of Plant Biology, Rutgers, The State University of New Jersey, New Brunswick, NJ 08891, USA
| | - Jaimie Van Norman
- Department of Botany and Plant Sciences, University of California, Riverside, Riverside, CA 92521, USA
- Center for Plant Cell Biology, Institute of Integrative Genome Biology, University of California, Riverside, Riverside, CA 92521, USA
| | - Viktor Žárský
- Department of Experimental Plant Biology, Faculty of Science, Charles University, 128 44, Prague 2, Czech Republic
- Institute of Experimental Botany, Academy of Sciences of the Czech Republic, 165 02 Prague 6, Czech Republic
| | - Yan Zhang
- Department of Plant Biology and Ecology, College of Life Sciences, Nankai University, Tian’jin 300071, China
| |
Collapse
|
18
|
Goldy C, Caillaud MC. Connecting the plant cytoskeleton to the cell surface via the phosphoinositides. CURRENT OPINION IN PLANT BIOLOGY 2023; 73:102365. [PMID: 37084498 DOI: 10.1016/j.pbi.2023.102365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 05/03/2023]
Abstract
Plants have developed fine-tuned cellular mechanisms to respond to a variety of intracellular and extracellular signals. These responses often necessitate the rearrangement of the plant cytoskeleton to modulate cell shape and/or to guide vesicle trafficking. At the cell periphery, both actin filaments and microtubules associate with the plasma membrane that acts as an integrator of the intrinsic and extrinsic environments. At this membrane, acidic phospholipids such as phosphatidic acid, and phosphoinositides contribute to the selection of peripheral proteins and thereby regulate the organization and dynamic of the actin and microtubules. After recognition of the importance of phosphatidic acid on cytoskeleton dynamics and rearrangement, it became apparent that the other lipids might play a specific role in shaping the cytoskeleton. This review focuses on the emerging role of the phosphatidylinositol 4,5-bisphosphate for the regulation of the peripherical cytoskeleton during cellular processes such as cytokinesis, polar growth, biotic and abiotic responses.
Collapse
Affiliation(s)
- Camila Goldy
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342, Lyon, France
| | - Marie-Cécile Caillaud
- Laboratoire Reproduction et Développement des Plantes, Université de Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAe, F-69342, Lyon, France.
| |
Collapse
|
19
|
Uyehara AN, Rasmussen CG. Redundant mechanisms in division plane positioning. Eur J Cell Biol 2023; 102:151308. [PMID: 36921356 DOI: 10.1016/j.ejcb.2023.151308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 03/05/2023] [Accepted: 03/11/2023] [Indexed: 03/18/2023] Open
Abstract
Redundancies in plant cell division contribute to the maintenance of proper division plane orientation. Here we highlight three types of redundancy: 1) Temporal redundancy, or correction of earlier defects that results in proper final positioning, 2) Genetic redundancy, or functional compensation by homologous genes, and 3) Synthetic redundancy, or redundancy within or between pathways that contribute to proper division plane orientation. Understanding the types of redundant mechanisms involved provides insight into current models of division plane orientation and opens up new avenues for exploration.
Collapse
Affiliation(s)
- Aimee N Uyehara
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA
| | - Carolyn G Rasmussen
- Department of Botany and Plant Sciences, Center for Plant Cell Biology, University of California, Riverside, USA.
| |
Collapse
|