1
|
Chen K, Jin Z, Zhu Q, Hu X, Tian S, Wang Y, Sun Y, Yuan M, Yao H. Impacts of biodegradable microplastics on rhizosphere bacterial communities of Arabidopsis thaliana: Insights into root hair-dependent colonization. ENVIRONMENTAL RESEARCH 2025; 276:121496. [PMID: 40157415 DOI: 10.1016/j.envres.2025.121496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/01/2025]
Abstract
Biodegradable microplastics (MPs) affect plant health by altering rhizosphere microbial communities. Root hairs create a unique niche for diverse microbes, but the effects of biodegradable MPs on root hair-dependent bacterial colonization are unclear, particularly the direct relationship between microbes in the rhizosphere and bulk soil. Here, the effects of polybutylene adipate terephthalate (PBAT) MPs on root hair-dependent bacterial colonization and diversity in the rhizosphere were revealed using an absolute quantitative method and in-situ zymography with two genotypes of Arabidopsis thaliana (long root hair, wild-type, WT and short root hair, rop2-1 mutant, ROP). The results showed that rhizosphere enzyme activity hotspots, bacterial diversity, and colonization increased from ROP to WT plants. PBAT MPs reduced root hair-dependent bacterial colonization and β-glucosidase hotspots by 17.1 % and 9.8 %, respectively. Despite increasing bacterial absolute abundance in both rhizosphere and bulk soil, PBAT MPs diminished bacterial community modularity and shifted bacterial life strategies from K- to r-strategy via elevated rRNA (rrn) copy numbers and copiotroph/oligotroph ratio. This study indicated that PBAT MPs decreased root hair-dependent bacterial colonization and diversity in the rhizosphere by altering the microbial life history strategies and increasing copiotrophic abundance. This study explained the effects of PBAT MPs on rhizosphere bacterial colonization and diversity from the perspective of root hairs.
Collapse
Affiliation(s)
- Keyi Chen
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Zhihui Jin
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Qing Zhu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Xiaodie Hu
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Sijia Tian
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yulin Wang
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Yaru Sun
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China
| | - Ming Yuan
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China.
| | - Huaiying Yao
- Key Laboratory of Green Chemical Engineering Process of Ministry of Education, Hubei Key Laboratory of Microbial Transformation and Regulation of Biogenic Elements in the Middle Reaches of the Yangtze River, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, 430205, China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, China.
| |
Collapse
|
2
|
Eweda MA, Jalil S, Rashwan AK, Tsago Y, Hassan U, Jin X. Molecular and physiological characterizations of roots under drought stress in rice: A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2025; 225:110012. [PMID: 40388855 DOI: 10.1016/j.plaphy.2025.110012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2025] [Revised: 05/05/2025] [Accepted: 05/10/2025] [Indexed: 05/21/2025]
Abstract
Drought stress poses a major challenge to rice (Oryza sativa L.) production, significantly threatening global food security, especially in the context of climate change. Root architecture plays a key role in drought resistance, as rice plants require substantial water throughout their growth. The genetic diversity of rice root systems exhibits various growth patterns and adaptive traits that enable plants to endure water-deficient conditions. Harnessing this diversity to improve drought resilience demands a thorough understanding of critical root traits and adaptive mechanisms. This review explores rice roots' anatomical, physiological, and biochemical responses to drought, emphasizing important traits such as root architecture, xylem vessel modifications, root cortical aerenchyma (RCA), and water transport mechanisms. The role of biochemical regulators, including phytohormones, sugars, lipids, and reactive oxygen species (ROS), in root adaptation to drought is also explored. Additionally, the genetic and molecular pathways influencing root development under drought stress are discussed, with a focus on key genes and transcription factors (TFs) such as NAC, bZIP, AP2/ERF, and others that contribute to enhanced drought tolerance. Understanding these complex interactions is crucial for breeding drought-tolerant rice varieties, ultimately improving crop productivity under challenging environmental conditions.
Collapse
Affiliation(s)
- Mohamed Ali Eweda
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Hangzhou, Zhejiang, 310058, China; Department of Plant Production, Arid Lands Cultivation Research Institute, The City of Scientific Research and Technological Applications, SRTA-City, Alexandria, Egypt
| | - Sanaullah Jalil
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Ahmed K Rashwan
- Department of Food Science and Nutrition, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yohannes Tsago
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China
| | - Umair Hassan
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Hangzhou, Zhejiang, 310058, China
| | - Xiaoli Jin
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China; Zhejiang Key Laboratory of Crop Germplasm Innovation and Utilization, Hangzhou, Zhejiang, 310058, China.
| |
Collapse
|
3
|
Hao Y, Zhang Y, Lu C, Sun A, Chen QL. Flooding followed by drought in urban and forest soils: unraveling microbial dynamics and ecological functions. SCIENCE CHINA. LIFE SCIENCES 2025:10.1007/s11427-024-2893-1. [PMID: 40304922 DOI: 10.1007/s11427-024-2893-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 02/28/2025] [Indexed: 05/02/2025]
Affiliation(s)
- Yilong Hao
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Yifang Zhang
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Changyi Lu
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China
| | - Anqi Sun
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China.
| | - Qing-Lin Chen
- State Key Laboratory for Ecological Security of Regions and Cities, Ningbo Observation and Research Station, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
- Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, CAS Haixi Industrial Technology Innovation Center in Beilun, Ningbo, 315830, China.
| |
Collapse
|
4
|
Lian J, Cai K, Yin A, Yuan Y, Zhang X, Xu C. Both light and soil moisture affect the rhizosphere microecology in two oak species. Front Microbiol 2025; 16:1506558. [PMID: 39963499 PMCID: PMC11830677 DOI: 10.3389/fmicb.2025.1506558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/13/2025] [Indexed: 02/20/2025] Open
Abstract
Understanding the mechanisms by which seedlings respond to light and water regulation, as well as studying the response of rhizosphere microecology to drought stress, are crucial for forest ecosystem management and ecological restoration. To elucidate the response of the rhizosphere microecology of Quercus dentata and Quercus variabilis seedlings to water and light conditions, and to clarify how plants modulate the structure and function of rhizosphere microbial communities under drought stress, we conducted 12 water-light gradient control experiments. These experiments aimed to offer scientific theoretical support for the dynamic changes in rhizosphere soil enzyme activities and microbial community compositions of these two oak species under varying light and moisture conditions, and subsequently assist in the future breeding and cultivation efforts. The results are summarized as follows: (1) The activities of cellulase, urease, and chitinase in the rhizosphere soil of Q. dentata and Q. variabilis were significantly influenced by water and light treatments (p < 0.05). Urease was particularly sensitive to light, while sucrase exhibited sensitivity to light in Q. dentata and no significant difference in Q. variabilis. (2) Compared to Q. dentata, the rhizosphere bacteria of Q. variabilis demonstrated greater adaptability to drought conditions. Significant differences were observed in the composition of microorganisms and types of fungi in the rhizosphere soil of the two Quercus seedlings. The fungal community is significantly influenced by light and moisture, and appropriate shading treatment can increase the species diversity of fungi; (3) Under different water and light treatments, the rhizosphere soil microbial composition and dominant species differed significantly between the two Quercus seedlings. For instance, Streptomyces, Mesorhizobium, and Paecilomyces exhibited significant variations under different treatment conditions. Specifically, under L3W0 (25% light, 75-85% moisture) conditions, Hyphomonadaceae and SWB02 dominated in the Q. dentata rhizosphere, whereas Burkholderiales and Nitrosomonadaceae were prevalent in the Q. variabilis rhizosphere. Overall, the rhizosphere microecology of Q. dentata and Q. variabilis exhibited markedly distinct responses to varying light and water regimen conditions. Under identical conditions, however, the enzyme activity and microbial community composition in the rhizosphere soil of these two oak seedlings were found to be similar.
Collapse
Affiliation(s)
- Jinshuo Lian
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Keke Cai
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Aijing Yin
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Yuan Yuan
- State Key Laboratory of Efficient Production of Forest Resources, School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
| | - Xinna Zhang
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| | - Chengyang Xu
- The Key Laboratory for Silviculture and Conservation of Ministry of Education, Key Laboratory for Silviculture and Forest Ecosystem of State Forestry and Grassland Administration, Research Center for Urban Forestry, Research Center of Deciduous Oaks, Beijing Forestry University, Beijing, China
| |
Collapse
|
5
|
Jia R, Zhou J, Yang L, Blagodatskaya E, Jones DL, Razavi BS, Yang Y, Kuzyakov Y, Zeng Z, Zang H. Trade-off between soil enzyme activities and hotspots area depends on long-term fertilization: In situ field zymography. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176386. [PMID: 39304160 DOI: 10.1016/j.scitotenv.2024.176386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 09/17/2024] [Indexed: 09/22/2024]
Abstract
Mineral fertilizers and livestock manure have been found to impact soil enzyme activities and distributions, but their trade-off and subsequent effects on soil functioning related to nutrient cycling are rarely evaluated. Here, we investigated the long-term effects of manure and mineral fertilization on the spatial distribution of enzyme activities related to carbon, nitrogen, and phosphorus cycling under field-grown maize. We found that the legacy of mineral fertilizers increased the rhizosphere extension for β-glucosidase and N-acetylglucosaminidase by 16-170 %, and the hotspots area by 37-151 %, compared to manure. The legacy of manure, especially combined with mineral fertilizers, increased enzyme activities and formed non-rhizosphere hotspots. Furthermore, we found a trade-off between hotspots area and enzyme activities under the legacy effect of long-term fertilization. This suggested that plants and microorganisms regulate nutrient investments by altering spatial distribution of enzyme activities. The positive correlation between hotspots area and nutrient contents highlights the importance of non-rhizosphere hotspots induced by manure in maintaining soil fertility. Compared to mineral fertilization, the legacy effect of manure expanded the soil functions for nutrient cycling in both rhizosphere and non-rhizosphere by >1.7 times. In conclusion, the legacy of manure expands non-rhizosphere hotspots and enhances soil functioning, while mineral fertilization expands rhizosphere extension and intensifies hotspots area for nutrient exploitation.
Collapse
Affiliation(s)
- Rong Jia
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Jie Zhou
- College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Lei Yang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle (Saale), Germany
| | - Davey L Jones
- School of Natural Sciences, Bangor University, Bangor, Gwynedd LL57 2UW, UK; Centre for Sustainable Farming Systems, Food Futures Institute, 90 South St, Murdoch, WA 6150, Australia
| | - Bahar S Razavi
- Dept. Soil and Plant Microbiome, Institute of Phytopathology, Christian-Albrechts-University of Kiel, Kiel, Germany
| | - Yadong Yang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, Georg August University of Göttingen, Göttingen, Germany; Peoples' Friendship University of Russia, RUDN University, 117198 Moscow, Russia; Institute of Environmental Sciences, Kazan Federal University, 420049 Kazan, Russia
| | - Zhaohai Zeng
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China
| | - Huadong Zang
- State Key Laboratory of Maize Bio-Breeding, College of Agronomy and Biotechnology, China Agricultural University, Beijing 100193, China; Scientific Observing and Experimental Station of Crop High Efficient Use of Water in Wuqiao, the Ministry of Agriculture and Rural Affairs, Wuqiao 061802, China.
| |
Collapse
|
6
|
Wang Z, Li Z, Zhang Y, Liao J, Guan K, Zhai J, Meng P, Tang X, Dong T, Song Y. Root hair developmental regulators orchestrate drought triggered microbiome changes and the interaction with beneficial Rhizobiaceae. Nat Commun 2024; 15:10068. [PMID: 39567534 PMCID: PMC11579020 DOI: 10.1038/s41467-024-54417-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 11/07/2024] [Indexed: 11/22/2024] Open
Abstract
Drought is one of the most serious abiotic stresses, and emerging evidence suggest plant microbiome affects plant drought tolerance. However, there is a lack of genetic evidence regarding whether and how plants orchestrate the dynamic assembly of the microbiome upon drought. By utilizing mutants with enhanced or decreased root hair densities, we find that root hair regulators also affect drought induced root microbiome changes. Rhizobiaceae is a key biomarker taxa affected by root hair related mutants. We isolated and sequenced 1479 root associated microbes, and confirmed that several Rhizobium strains presented stress-alleviating activities. Metagenome, root transcriptome and root metabolome studies further reveal the multi-omic changes upon drought stress. We knocked out an ornithine cyclodeaminase (ocd) gene in Rhizobium sp. 4F10, which significantly dampens its stress alleviating ability. Our genetic and integrated multi-omics studies confirm the involvement of host genetic effects in reshaping a stress-alleviating root microbiome during drought, and provide mechanistic insights into Rhizobiaceae mediated abiotic stress protection.
Collapse
Affiliation(s)
- Zhenghong Wang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Zewen Li
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yujie Zhang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jingye Liao
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Kaixiang Guan
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Jingxuan Zhai
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Pengfei Meng
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Xianli Tang
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Tao Dong
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China
| | - Yi Song
- Shenzhen Key Laboratory of Plant Genetic Engineering and Molecular Design, Institute of Plant and Food Science, Department of Biology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
- Department of Immunology and Microbiology, School of Life Sciences, Southern University of Science and Technology (SUSTech), Shenzhen, Guangdong, China.
| |
Collapse
|
7
|
Martinez-Feria R, Simmonds MB, Ozaydin B, Lewis S, Schwartz A, Pluchino A, McKellar M, Gottlieb SS, Kayatsky T, Vital R, Mehlman SE, Caron Z, Colaianni NR, Ané JM, Maeda J, Infante V, Karlsson BH, McLimans C, Vyn T, Hanson B, Verhagen G, Nevins C, Reese L, Otyama P, Robinson A, Learmonth T, Miller CMF, Havens K, Tamsir A, Temme K. Genetic remodeling of soil diazotrophs enables partial replacement of synthetic nitrogen fertilizer with biological nitrogen fixation in maize. Sci Rep 2024; 14:27754. [PMID: 39532958 PMCID: PMC11557888 DOI: 10.1038/s41598-024-78243-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Increasing biological nitrogen (N) fixation (BNF) in maize production could reduce the environmental impacts of N fertilizer use, but reactive N in the rhizosphere of maize limits the BNF process. Using non-transgenic methods, we developed gene-edited strains of Klebsiella variicola (Kv137-2253) and Kosakonia sacchari (Ks6-5687) bacteria optimized for root-associated BNF and ammonium excretion in N-rich conditions. The aim of this research was to elucidate the mechanism of action of these strains. We present evidence from in vitro, in planta and field experiments that confirms that our genetic remodeling strategy derepresses BNF activity in N-rich systems and increases ammonium excretion by orders of magnitude above the respective wildtype strains. BNF is demonstrated in controlled environments by the transfer of labeled 15N2 gas from the rhizosphere to the chlorophyll of inoculated maize plants. This was corroborated in several 15N isotope tracer field experiments where inoculation with the formulated, commercial-grade product derived from the gene-edited strains (PIVOT BIO PROVEN® 40) provided on average 21 kg N ha-1 to the plant by the VT-R1 growth stages. Data from small-plot and on-farm trials suggest that this technology can improve crop N status pre-flowering and has potential to mitigate the risk of yield loss associated with a reduction in synthetic N fertilizer inputs.
Collapse
Affiliation(s)
| | - Maegen B Simmonds
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
- Regrow Agriculture, Inc. , Durham , NH, 03824, USA
| | - Bilge Ozaydin
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Stacey Lewis
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | | | - Alex Pluchino
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Megan McKellar
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | | | - Tasha Kayatsky
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Richelle Vital
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | | | - Zoe Caron
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | | | - Jean-Michel Ané
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Junko Maeda
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Valentina Infante
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Bjorn H Karlsson
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Caitlin McLimans
- Department of Plant and Agroecosystem Sciences, University of Wisconsin-Madison, 1575 Linden Drive, Madison, WI, 53706, USA
| | - Tony Vyn
- Department of Agronomy, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 479074, USA
| | - Brendan Hanson
- Department of Agronomy, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 479074, USA
| | - Garrett Verhagen
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
- Department of Agronomy, Purdue University, 915 Mitch Daniels Blvd, West Lafayette, IN, 479074, USA
| | - Clayton Nevins
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Lori Reese
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Paul Otyama
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Alice Robinson
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | | | | | - Keira Havens
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Alvin Tamsir
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| | - Karsten Temme
- Pivot Bio, Inc., 2910 Seventh St, Berkeley, CA, 94710, USA
| |
Collapse
|
8
|
Veličković D, Winkler T, Balasubramanian V, Wietsma T, Anderton CR, Ahkami AH, Zemaitis K. RhizoMAP: a comprehensive, nondestructive, and sensitive platform for metabolic imaging of the rhizosphere. PLANT METHODS 2024; 20:117. [PMID: 39095910 PMCID: PMC11297713 DOI: 10.1186/s13007-024-01249-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 07/28/2024] [Indexed: 08/04/2024]
Abstract
BACKGROUND Elucidating the intricate structural organization and spatial gradients of biomolecular composition within the rhizosphere is critical to understanding important biogeochemical processes, which include the mechanisms of root-microbe interactions for maintaining sustainable plant ecosystem services. While various analytical methods have been developed to assess the spatial heterogeneity within the rhizosphere, a comprehensive view of the fine distribution of metabolites within the root-soil interface has remained a significant challenge. This is primarily due to the difficulty of maintaining the original spatial organization during sample preparation without compromising its molecular content. RESULTS In this study, we present a novel approach, RhizoMAP, in which the rhizosphere molecules are imprinted on selected polymer membranes and then spatially profiled using matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI). We enhanced the performance of RhizoMAP by combining the use of two thin (< 20 μm) membranes (polyester and polycarbonate) with distinct MALDI sample preparations. This optimization allowed us to gain insight into the distribution of over 500 different molecules within the rhizosphere of poplar (Populus trichocarpa) grown in rhizoboxes filled with mycorrhizae soil. These two membranes, coupled with three different sample preparation conditions, enabled us to capture the distribution of a wide variety of molecules that included phytohormones, amino acids, sugars, sugar glycosides, polycarboxylic acids components of the Krebs cycle, fatty acids, short aldehydes and ketones, terpenes, volatile organic compounds, fertilizers from the soil, and others. Their spatial distribution varies greatly, with some following root traces, others showing diffusion from roots, some associated with soil particles, and many having distinct hot spots along the plant root or surrounding soil. Moreover, we showed how RhizoMAP can be used to localize the origin of the molecules and molecular transformation during root growth. Finally, we demonstrated the power of RhizoMAP to capture molecular distributions of key metabolites throughout a 20 cm deep rhizosphere. CONCLUSIONS RhizoMAP is a method that provides nondestructive, untargeted, broad, and sensitive metabolite imaging of root-associated molecules, exudates, and soil organic matter throughout the rhizosphere, as demonstrated in a lab-controlled native soil environment.
Collapse
Affiliation(s)
- Dušan Veličković
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA.
| | - Tanya Winkler
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Vimal Balasubramanian
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Thomas Wietsma
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Christopher R Anderton
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Amir H Ahkami
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| | - Kevin Zemaitis
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA, 99354, USA
| |
Collapse
|
9
|
Gholizadeh S, Nemati I, Vestergård M, Barnes CJ, Kudjordjie EN, Nicolaisen M. Harnessing root-soil-microbiota interactions for drought-resilient cereals. Microbiol Res 2024; 283:127698. [PMID: 38537330 DOI: 10.1016/j.micres.2024.127698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/14/2024] [Accepted: 03/17/2024] [Indexed: 04/17/2024]
Abstract
Cereal plants form complex networks with their associated microbiome in the soil environment. A complex system including variations of numerous parameters of soil properties and host traits shapes the dynamics of cereal microbiota under drought. These multifaceted interactions can greatly affect carbon and nutrient cycling in soil and offer the potential to increase plant growth and fitness under drought conditions. Despite growing recognition of the importance of plant microbiota to agroecosystem functioning, harnessing the cereal root microbiota remains a significant challenge due to interacting and synergistic effects between root traits, soil properties, agricultural practices, and drought-related features. A better mechanistic understanding of root-soil-microbiota associations could lead to the development of novel strategies to improve cereal production under drought. In this review, we discuss the root-soil-microbiota interactions for improving the soil environment and host fitness under drought and suggest a roadmap for harnessing the benefits of these interactions for drought-resilient cereals. These methods include conservative trait-based approaches for the selection and breeding of plant genetic resources and manipulation of the soil environments.
Collapse
Affiliation(s)
- Somayeh Gholizadeh
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Iman Nemati
- Department of Plant Production and Genetics Engineering, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mette Vestergård
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Christopher James Barnes
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Enoch Narh Kudjordjie
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark
| | - Mogens Nicolaisen
- Faculty of Technical Sciences, Department of Agroecology, Aarhus University, Forsøgsvej 1, Slagelse 4200, Denmark.
| |
Collapse
|
10
|
Steiner FA, Wild AJ, Tyborski N, Tung SY, Koehler T, Buegger F, Carminati A, Eder B, Groth J, Hesse BD, Pausch J, Lüders T, Vahl WK, Wolfrum S, Mueller CW, Vidal A. Rhizosheath drought responsiveness is variety-specific and a key component of belowground plant adaptation. THE NEW PHYTOLOGIST 2024; 242:479-492. [PMID: 38418430 DOI: 10.1111/nph.19638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 02/02/2024] [Indexed: 03/01/2024]
Abstract
Biophysicochemical rhizosheath properties play a vital role in plant drought adaptation. However, their integration into the framework of plant drought response is hampered by incomplete mechanistic understanding of their drought responsiveness and unknown linkage to intraspecific plant-soil drought reactions. Thirty-eight Zea mays varieties were grown under well-watered and drought conditions to assess the drought responsiveness of rhizosheath properties, such as soil aggregation, rhizosheath mass, net-rhizodeposition, and soil organic carbon distribution. Additionally, explanatory traits, including functional plant trait adaptations and changes in soil enzyme activities, were measured. Drought restricted soil structure formation in the rhizosheath and shifted plant-carbon from litter-derived organic matter in macroaggregates to microbially processed compounds in microaggregates. Variety-specific functional trait modifications determined variations in rhizosheath drought responsiveness. Drought responses of the plant-soil system ranged among varieties from maintaining plant-microbial interactions in the rhizosheath through accumulation of rhizodeposits, to preserving rhizosheath soil structure while increasing soil exploration through enhanced root elongation. Drought-induced alterations at the root-soil interface may hold crucial implications for ecosystem resilience in a changing climate. Our findings highlight that rhizosheath soil properties are an intrinsic component of plant drought response, emphasizing the need for a holistic concept of plant-soil systems in future research on plant drought adaptation.
Collapse
Affiliation(s)
- Franziska A Steiner
- Soil Science, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Andreas J Wild
- Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95447, Bayreuth, Germany
| | - Nicolas Tyborski
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95448, Bayreuth, Germany
| | - Shu-Yin Tung
- Soil Science, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Institute for Agroecology and Organic Farming, Bavarian State Research Center for Agriculture, 85354, Freising, Germany
| | - Tina Koehler
- Root-Soil Interaction, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
| | - Franz Buegger
- Research Unit Environmental Simulation, Helmholtz Zentrum München (GmbH), German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Andrea Carminati
- Physics of Soils and Terrestrial Ecosystems, Department of Environmental Systems Science, ETH Zurich, 8092, Zurich, Switzerland
| | - Barbara Eder
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture, 85354, Freising, Germany
| | - Jennifer Groth
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture, 85354, Freising, Germany
| | - Benjamin D Hesse
- Chair of Land Surface-Atmosphere Interactions, TUM School of Life Sciences, Technical University of Munich, 85354, Freising, Germany
- Department of Integrative Biology and Biodiversity Research, Institute of Botany, University of Natural Resources and Life Sciences, 1180, Vienna, Austria
| | - Johanna Pausch
- Agroecology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95447, Bayreuth, Germany
| | - Tillmann Lüders
- Ecological Microbiology, Bayreuth Center of Ecology and Environmental Research (BayCEER), University of Bayreuth, 95448, Bayreuth, Germany
| | - Wouter K Vahl
- Institute for Crop Science and Plant Breeding, Bavarian State Research Center for Agriculture, 85354, Freising, Germany
| | - Sebastian Wolfrum
- Institute for Agroecology and Organic Farming, Bavarian State Research Center for Agriculture, 85354, Freising, Germany
| | - Carsten W Mueller
- Chair of Soil Science, Institute of Ecology, Technische Universität Berlin, 10587, Berlin, Germany
- Department for Geoscience and Natural Resource Management, University of Copenhagen, 1350, Copenhagen, Denmark
| | - Alix Vidal
- Soil Biology Group, Department of Environmental Sciences, Wageningen University, 6700, Wageningen, the Netherlands
| |
Collapse
|
11
|
Galindo-Castañeda T, Hartmann M, Lynch JP. Location: root architecture structures rhizosphere microbial associations. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:594-604. [PMID: 37882632 PMCID: PMC10773995 DOI: 10.1093/jxb/erad421] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 10/25/2023] [Indexed: 10/27/2023]
Abstract
Root architectural phenotypes are promising targets for crop breeding, but root architectural effects on microbial associations in agricultural fields are not well understood. Architecture determines the location of microbial associations within root systems, which, when integrated with soil vertical gradients, determines the functions and the metabolic capability of rhizosphere microbial communities. We argue that variation in root architecture in crops has important implications for root exudation, microbial recruitment and function, and the decomposition and fate of root tissues and exudates. Recent research has shown that the root microbiome changes along root axes and among root classes, that root tips have a unique microbiome, and that root exudates change within the root system depending on soil physicochemical conditions. Although fresh exudates are produced in larger amounts in root tips, the rhizosphere of mature root segments also plays a role in influencing soil vertical gradients. We argue that more research is needed to understand specific root phenotypes that structure microbial associations and discuss candidate root phenotypes that may determine the location of microbial hotspots within root systems with relevance to agricultural systems.
Collapse
Affiliation(s)
| | - Martin Hartmann
- Department of Environmental Systems Service, ETH Zürich, 8092 Zurich, Switzerland
| | - Jonathan P Lynch
- Department of Plant Science, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
12
|
da Silva Teixeira R, Costa DC, Cavalcante VS, Fialho RC, Teixeira APM, de Sousa RN, de Almeida Vasconcelos A, da Silva IR. The impact of fast-growing eucalypt plantations on C emissions in tropical soil: effect of belowground and aboveground C inputs. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 196:102. [PMID: 38158434 DOI: 10.1007/s10661-023-12253-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024]
Abstract
Planted forest soils can have great potential for CO2-C sequestration, mainly due to belowground C inputs, which impact deep soil C (DSC) accumulation. However, there are still gaps in understanding the CO2 emission dynamics in eucalypt plantations. Therefore, we used isotopic techniques to investigate the dynamics of the soil surface CO2-C flux and CO2-C concentration with depth for a eucalypt plantation influenced by different C inputs (above- and belowground). The gas evaluations were carried in depth the root to valuation of root priming effect (RPE) was calculated. In addition, measurements of the plant (C-fine root and C-litterfall) and soil (total organic carbon - TOC, total nitrogen - TN, soil moisture - SM, and soil temperature - ST) were performed. After planting the eucalypt trees, there was an increase in the soil surface CO2-C flux with plant growth. Root growth contributed greatly to the soil surface CO2-C flux, promoting greater surface RPE over time. In comparison to the other factors, SM had a greater influence on litterfall decomposition and root respiration. It was not possible to detect losses in TOC and TN in the different soil layers for the 31-month-old eucalypt. However, the 40-month-old eucalypt showed a positive RPE with depth, indicating possible replacement of DSC ("old C") by rhizodeposition-C ("new C") in the soil. Thus, in eucalyptus plantations, aboveground plant growth influences CO2 emissions on the soil surface, while root growth and activity influence C in deeper soil layers. This information indicates the need for future changes in forest management, with a view to reducing CO2 emissions.
Collapse
Affiliation(s)
| | - Daniela Cristina Costa
- Soil Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Valéria Santos Cavalcante
- Soil Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil.
- Instituto Federal de Educação, Ciência E Tecnologia de Minas Gerais, Campus São João Evangelista, Minas Gerais, CEP 39705-000, Brazil.
| | - Ricardo Cardoso Fialho
- Soil Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Ana Paula Mendes Teixeira
- Department of Forestry Engineering, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| | - Rodrigo Nogueira de Sousa
- Soil Science Department, Escola Superior de Agricultura "Luiz de Queiroz" - Universidade de São Paulo, Piracicaba, São Paulo, CEP 13418-900, Brazil
| | | | - Ivo Ribeiro da Silva
- Soil Department, Universidade Federal de Viçosa, Viçosa, Minas Gerais, CEP 36570-900, Brazil
| |
Collapse
|
13
|
Guo Y, Lu Y, Eltohamy KM, Liu C, Fang Y, Guan Y, Liu B, Yang J, Liang X. Contribution of Biogas Slurry-Derived Colloids to Plant P Uptake and Phosphatase Activities: Spatiotemporal Response. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:16564-16574. [PMID: 37862689 DOI: 10.1021/acs.est.3c05108] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
The bioavailability for varied-size phosphorus (P)-binding colloids (Pcoll) especially from external P sources in soil terrestrial ecosystems remains unclear. This study evaluated the differential contribution of various-sized biogas slurry (BS)-derived colloids to plant available P uptake in the rhizosphere and the corresponding patterns of phosphatase response. Keeping the same content of total P input (15 mg kg-1), we applied different size-fractioned BS-derived colloids including nanosized colloids (NCs, 1-20 nm), fine-sized colloids (FCs, 20-220 nm), and medium-sized colloids (MCs, 220-450 nm) respectively to conduct a 45-day rice (Oryza sativa L.) rhizotron experiment. During the whole cultivation period, the dynamics of chemical characteristics and P fractions in each experimental rhizosphere soil solution were analyzed. The spatial and temporal dynamics examination of P-transforming enzymes (acid phosphatases) in the rice rhizosphere was visualized by a soil zymography technique after 5, 25, and 45 days of rice transplantation. The results indicated that the acid phosphatase activities and its hot spot areas were significantly 1) correlated with the relative bioavailability of colloidal P (RBAcoll), 2) increased with the colloid-free (truly dissolved P) and BS-derived NC addition, and 3) affected by the plant growth stage. With the nanosized BS colloid addition, the RBAcoll and plant biomass were respectively found to be the highest (64% and 1.22 g plant-1), in which the acid phosphatase-catalyzed hydrolysis of organic Pcoll played an important role. All of the above suggested that nanosized BS-derived colloids are an effective alternative to conventional phosphorus fertilizer for promoting plant P uptake and P bioavailability.
Collapse
Affiliation(s)
- Yuxin Guo
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yuanyuan Lu
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Kamel Mohamed Eltohamy
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
- Department of Water Relations & Field Irrigation, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Chunlong Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| | - Yunying Fang
- Australian Rivers Institute and School of Environment and Science, Griffith University, Nathan Campus, Queensland 4111, Australia
| | - Yajing Guan
- Seed Science Center, Institute of Crop Science, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang Province 310058, China
| | - Boyi Liu
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiao Yang
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinqiang Liang
- Key Laboratory of Watershed Non-Point Source Pollution Control and Water Eco-Security of Ministry of Water Resources, College of Environmental and Resources Sciences, Zhejiang University, Hangzhou 310058, China
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Harbin 150081, China
| |
Collapse
|
14
|
Qu Q, Wang Z, Gan Q, Liu R, Xu H. Impact of drought on soil microbial biomass and extracellular enzyme activity. FRONTIERS IN PLANT SCIENCE 2023; 14:1221288. [PMID: 37692424 PMCID: PMC10491016 DOI: 10.3389/fpls.2023.1221288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 08/09/2023] [Indexed: 09/12/2023]
Abstract
Introduction With the continuous changes in climate patterns due to global warming, drought has become an important limiting factor in the development of terrestrial ecosystems. However, a comprehensive understanding of the impact of drought on soil microbial activity at a global scale is lacking. Methods In this study, we aimed to examine the effects of drought on soil microbial biomass (carbon [MBC], nitrogen [MBN], and phosphorus [MBP]) and enzyme activity (β-1, 4-glucosidase [BG]; β-D-cellobiosidase [CBH]; β-1, 4-N-acetylglucosaminidase [NAG]; L-leucine aminopeptidase [LAP]; and acid phosphatase [AP]). Additionally, we conducted a meta-analysis to determine the degree to which these effects are regulated by vegetation type, drought intensity, drought duration, and mean annual temperature (MAT). Result and discussion Our results showed that drought significantly decreased the MBC, MBN, and MBP and the activity levels of BG and AP by 22.7%, 21.2%, 21.6%, 26.8%, and 16.1%, respectively. In terms of vegetation type, drought mainly affected the MBC and MBN in croplands and grasslands. Furthermore, the response ratio of BG, CBH, NAG, and LAP were negatively correlated with drought intensity, whereas MBN and MBP and the activity levels of BG and CBH were negatively correlated with drought duration. Additionally, the response ratio of BG and NAG were negatively correlated with MAT. In conclusion, drought significantly reduced soil microbial biomass and enzyme activity on a global scale. Our results highlight the strong impact of drought on soil microbial biomass and carbon- and phosphorus-acquiring enzyme activity.
Collapse
Affiliation(s)
- Qing Qu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
- Institute of Soil and Water Conservation, Chinese Academy of Sciences and Ministry of Water Resources, Yangling, China
| | - Zhen Wang
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Quan Gan
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| | - Rentao Liu
- Breeding Base for State Key Laboratory of Land Degradation and Ecological Restoration in Northwestern China, Key Laboratory of Restoration and Reconstruction of Degraded Ecosystems in Northwestern China of Ministry of Education, Ningxia University, Yinchuan, China
| | - Hongwei Xu
- College of Forestry, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
15
|
Mackay DS. Cannot see rhizosphere dynamics for the soil? A new multi-imaging study suggests otherwise. THE NEW PHYTOLOGIST 2023; 237:707-709. [PMID: 36528848 DOI: 10.1111/nph.18572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Affiliation(s)
- D Scott Mackay
- Department of Geography, University at Buffalo, 105 Wilkeson Quadrangle, Buffalo, NY, 14261, USA
- Department of Environment & Sustainability, 373 Cooke Hall, Buffalo, NY, 14260, USA
| |
Collapse
|