1
|
Zhang H, Wang P, Song Y, Zhao H, Zuo Q, Chen X, Han F, Liu H, Nie Y, Liu M, Guo M, Niu S. The MADS-domain transcription factor DAL10 is a direct target of putative DAL1-mediated age pathway in conifers. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6462-6475. [PMID: 39082682 DOI: 10.1093/jxb/erae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 07/29/2024] [Indexed: 11/01/2024]
Abstract
The optimal timing of the transition from vegetative growth to reproductive growth is critical for plant reproductive success, and the underlying regulatory mechanisms have been well studied in angiosperm model species, but relatively little in gymnosperms. DAL1, a MADS domain transcription factor (TF) that shows a conserved age-related expression profile in conifers, may be an age timer. However, how DAL1 mediates the onset of reproductive growth remains poorly understood. Here, we showed that PtDAL1 directly regulates PtDAL10 transcription by binding to its promoter region in vitro. Both in vitro and in Nicotiana benthamiana PtDAL1 forms ternary complexes with PtDAL10 and PtMADS11, two potential candidate regulators of the vegetative to reproductive transition in Chinese pine (Pinus tabuliformis). In new shoots PtDAL10 was progressively induced with age and was also expressed in male and female cones. Overexpression of PtDAL10 rescued the flowering of ft-10 and soc1-1-2 mutants in Arabidopsis. We provide insights into the molecular components associated with PtDAL1, which integrates the vegetative to reproductive phase transition into age-mediated progressive development of the whole plant in conifers.
Collapse
Affiliation(s)
- Hui Zhang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Peiyi Wang
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yitong Song
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Huanhuan Zhao
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Quan Zuo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Xi Chen
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fangxu Han
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Hongmei Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yumeng Nie
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Meiqin Liu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Meina Guo
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shihui Niu
- State Key Laboratory of Efficient Production of Forest Resources, National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
2
|
Hussain SS, Ali A, Abbas M, Sun Y, Li Y, Li Q, Ragauskas AJ. Harnessing miRNA156: A molecular Toolkit for reshaping plant development and achieving ideal architecture. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109071. [PMID: 39186849 DOI: 10.1016/j.plaphy.2024.109071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 08/07/2024] [Accepted: 08/22/2024] [Indexed: 08/28/2024]
Abstract
Achieving ideal plant architecture is of utmost importance for plant improvement to meet the demands of ever-increasing population. The wish list of ideal plant architecture traits varies with respect to its utilization and environmental conditions. Late seed development in woody plants poses difficulties for their propagation, and an increase in regeneration capacity can overcome this problem. The transition of a plant through sequential developmental stages e.g., embryonic, juvenile, and maturity is a well-orchestrated molecular and physiological process. The manipulation in the timing of phase transition to achieve ideal plant traits and regulation of metabolic partitioning will unlock new plant potential. Previous studies demonstrate that micro RNA156 (miR156) impairs the expression of its downstream genes to resist the juvenile-adult-reproductive phase transition to prolonged juvenility. The phenomenon behind prolonged juvenility is the maintenance of stem cell integrity and regeneration is an outcome of re-establishment of the stem cell niche. The previously reported vital and diverse functions of miR156 make it a more important case of study to explore its functions and possible ways to use it in molecular breeding. In this review, we proposed how genetic manipulation of miR156 can be used to reshape plant development phase transition and achieve ideal plant architecture. We have summarized recent studies on miR156 to describe its functional pattern and networking with up and down-stream molecular factors at each stage of the plant developmental life cycle. In addition, we have highlighted unaddressed questions, provided insights and devised molecular pathways that will help researchers to design their future studies.
Collapse
Affiliation(s)
- Syed Sarfaraz Hussain
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China; Department of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
| | - Manzar Abbas
- Inner Mongolia Saikexing Institute of Breeding and Reproductive Biotechnology in Domestic Animals, Hohhot, China
| | - Yuhan Sun
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China
| | - Yun Li
- State Key Laboratory of Tree Genetics and Breeding, Engineering Technology Research Center of Black Locust of National Forestry and Grassland Administration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing, China.
| | - Quanzi Li
- Department of Forestry and Biotechnology, Zhejiang A & F University, Hangzhou 311300, China.
| | - Arthur J Ragauskas
- Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee Institute of Agriculture, Knoxville, TN, 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN, 37831, USA.
| |
Collapse
|
3
|
Westrin KJ, Kretzschmar WW, Emanuelsson O. ClusTrast: a short read de novo transcript isoform assembler guided by clustered contigs. BMC Bioinformatics 2024; 25:54. [PMID: 38302873 PMCID: PMC10836024 DOI: 10.1186/s12859-024-05663-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/18/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND Transcriptome assembly from RNA-sequencing data in species without a reliable reference genome has to be performed de novo, but studies have shown that de novo methods often have inadequate ability to reconstruct transcript isoforms. We address this issue by constructing an assembly pipeline whose main purpose is to produce a comprehensive set of transcript isoforms. RESULTS We present the de novo transcript isoform assembler ClusTrast, which takes short read RNA-seq data as input, assembles a primary assembly, clusters a set of guiding contigs, aligns the short reads to the guiding contigs, assembles each clustered set of short reads individually, and merges the primary and clusterwise assemblies into the final assembly. We tested ClusTrast on real datasets from six eukaryotic species, and showed that ClusTrast reconstructed more expressed known isoforms than any of the other tested de novo assemblers, at a moderate reduction in precision. For recall, ClusTrast was on top in the lower end of expression levels (<15% percentile) for all tested datasets, and over the entire range for almost all datasets. Reference transcripts were often (35-69% for the six datasets) reconstructed to at least 95% of their length by ClusTrast, and more than half of reference transcripts (58-81%) were reconstructed with contigs that exhibited polymorphism, measuring on a subset of reliably predicted contigs. ClusTrast recall increased when using a union of assembled transcripts from more than one assembly tool as primary assembly. CONCLUSION We suggest that ClusTrast can be a useful tool for studying isoforms in species without a reliable reference genome, in particular when the goal is to produce a comprehensive transcriptome set with polymorphic variants.
Collapse
Affiliation(s)
- Karl Johan Westrin
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 171 65, Solna, Sweden
| | - Warren W Kretzschmar
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 171 65, Solna, Sweden
- Department of Medicine Huddinge, Center for Hematology and Regenerative Medicine (HERM), Karolinska Institute, 141 52, Flemingsberg, Sweden
| | - Olof Emanuelsson
- Science for Life Laboratory, Department of Gene Technology, KTH Royal Institute of Technology, 171 65, Solna, Sweden.
| |
Collapse
|
4
|
Liao X, Su Y, Klintenäs M, Li Y, Sane S, Wu Z, Chen Q, Zhang B, Nilsson O, Ding J. Age-dependent seasonal growth cessation in Populus. Proc Natl Acad Sci U S A 2023; 120:e2311226120. [PMID: 37991940 PMCID: PMC10691234 DOI: 10.1073/pnas.2311226120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Accepted: 10/17/2023] [Indexed: 11/24/2023] Open
Abstract
In temperate and boreal regions, perennial plants adapt their annual growth cycle to the change of seasons. In natural forests, juvenile seedlings usually display longer growth seasons compared to adult trees to ensure their establishment and survival under canopy shade. However, how trees adjust their annual growth according to their age is not known. In this study, we show that age-dependent seasonal growth cessation is genetically controlled and found that the miR156-SPL3/5 module, a key regulon of vegetative phase change (VPC), also triggers age-dependent growth cessation in Populus trees. We show that miR156 promotes shoot elongation during vegetative growth, and its targets SPL3/5s function in the same pathway but as repressors. We find that the miR156-SPL3/5s regulon controls growth cessation in both leaves and shoot apices and through multiple pathways, but with a different mechanism compared to how the miR156-SPL regulon controls VPC in annual plants. Taken together, our results reveal an age-dependent genetic network in mediating seasonal growth cessation, a key phenological process in the climate adaptation of perennial trees.
Collapse
Affiliation(s)
- Xiaoli Liao
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Yunjie Su
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Maria Klintenäs
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Yue Li
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Shashank Sane
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Zhihao Wu
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Qihui Chen
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| | - Bo Zhang
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Ove Nilsson
- Department of Forest Genetics and Plant Physiology, Umeå Plant Science Centre, Swedish University of Agricultural Sciences, Umeå901 83, Sweden
| | - Jihua Ding
- National Key Laboratory for Germplasm Innovation and Utilization of Horticultural Crops, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
- Hubei Hongshan Laboratory, Wuhan430070, China
- Hubei Engineering Technology Research Center for Forestry Information, College of Horticulture and Forestry, Huazhong Agricultural University, Wuhan430070, China
| |
Collapse
|
5
|
Li Y, Chen T, Khan WU, An X. Regulatory roles of miRNAs associated with the aging pathway in tree vegetative phase changes. FORESTRY RESEARCH 2023; 3:9. [PMID: 39526265 PMCID: PMC11524259 DOI: 10.48130/fr-2023-0009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 03/17/2023] [Indexed: 11/16/2024]
Abstract
The transition from the vegetative juvenile phase to the adult phase is a crucial event in the life cycle of flowering plants, with flowering being the most important milestone. While the regulatory pathways of flowering have been well established in model plants such as Arabidopsis and a few crops, the flowering regulation pathways in perennial forest trees remain poorly understood. This paper summarizes the regulation of flowering time by miR156 and miR172, which are the main members of the aging pathway, and also presents new information on the role of miR159 and miR169. These two microRNAs interact with miR156 and miR172 to jointly regulate flowering time in forest trees. Overall, this review sheds light on the complex regulatory mechanisms underlying flowering time in forest trees and provides insights into potential targets for manipulating the flowering time of these economically and ecologically important species.
Collapse
Affiliation(s)
- Ying Li
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Tingting Chen
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Wasif Ullah Khan
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| | - Xinmin An
- State Key Laboratory of Tree Genetics and Breeding, National Engineering Research Center of Tree Breeding and Ecological Restoration, Beijing Advanced Innovation Center for Tree Breeding by Molecular Design, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
6
|
Ma J, Chen X, Han F, Song Y, Zhou B, Nie Y, Li Y, Niu S. The long road to bloom in conifers. FORESTRY RESEARCH 2022; 2:16. [PMID: 39525411 PMCID: PMC11524297 DOI: 10.48130/fr-2022-0016] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/16/2022] [Indexed: 11/16/2024]
Abstract
More than 600 species of conifers (phylum Pinophyta) serve as the backbone of the Earth's terrestrial plant community and play key roles in global carbon and water cycles. Although coniferous forests account for a large fraction of global wood production, their productivity relies largely on the use of genetically improved seeds. However, acquisition of such seeds requires recurrent selection and testing of genetically superior parent trees, eventually followed by the establishment of a seed orchard to produce the improved seeds. The breeding cycle for obtaining the next generation of genetically improved seeds can be significantly lengthened when a target species has a long juvenile period. Therefore, development of methods for diminishing the juvenile phase is a cost-effective strategy for shortening breeding cycle in conifers. The molecular regulatory programs associated with the reproductive transition and annual reproductive cycle of conifers are modulated by environmental cues and endogenous developmental signals. Mounting evidence indicates that an increase in global average temperature seriously threatens plant productivity, but how conifers respond to the ever-changing natural environment has yet to be fully characterized. With the breakthrough of assembling and annotating the giant genome of conifers, identification of key components in the regulatory cascades that control the vegetative to reproductive transition is imminent. However, comparison of the signaling pathways that control the reproductive transition in conifers and the floral transition in Arabidopsis has revealed many differences. Therefore, a more complete understanding of the underlying regulatory mechanisms that control the conifer reproductive transition is of paramount importance. Here, we review our current understanding of the molecular basis for reproductive regulation, highlight recent discoveries, and review new approaches for molecular research on conifers.
Collapse
Affiliation(s)
- Jingjing Ma
- Zhejiang Provincial Key Laboratory of Germplasm Innovation and Utilization for Garden Plants, College of Landscape and Architecture, Zhejiang Agriculture and Forestry University, Hangzhou 311300, Zhejiang, PR China
| | - Xi Chen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Fangxu Han
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yitong Song
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Biao Zhou
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Yumeng Nie
- Research Institute of Forestry, Chinese Academy of Forestry, Beijing 100091, PR China
| | - Yue Li
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| | - Shihui Niu
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
7
|
Wang Q, Gao G, Chen X, Liu X, Dong B, Wang Y, Zhong S, Deng J, Fang Q, Zhao H. Genetic studies on continuous flowering in woody plant Osmanthus fragrans. FRONTIERS IN PLANT SCIENCE 2022; 13:1049479. [PMID: 36407607 PMCID: PMC9671776 DOI: 10.3389/fpls.2022.1049479] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Continuous flowering is a key horticultural trait in ornamental plants, whereas the specific molecular regulation mechanism remains largely unknown. In sweet osmanthus (Osmanthus fragrans Lour.), plants based on their flowering characteristics are divided into once-flowering (OF) habit and continuous flowering (CF) habit. Here, we first described the flowering phenology shifts of OF and CF habits in sweet osmanthus through paraffin section and microscope assay. Phenotypic characterization showed that CF plants had constant new shoot growth, floral transition, and blooming for 1 year, which might lead to a continuous flowering trait. We performed the transcriptome sequencing of OF and CF sweet osmanthus and analyzed the transcriptional activity of flowering-related genes. Among the genes, three floral integrators, OfFT, OfTFL1, and OfBFT, had a differential expression during the floral transition process in OF and CF habits. The expression patterns of the three genes in 1 year were revealed. The results suggested that their accumulations corresponded to the new shoots occurring and the floral transition process. Function studies suggested that OfFT acted as a flowering activator, whereas OfBFT was a flowering inhibitor. Yeast one-hybrid assay indicated that OfSPL8 was a common upstream transcription factor of OfFT and OfBFT, suggesting the vital role of OfSPL8 in continuous flowering regulation. These results provide a novel insight into the molecular mechanism of continuous flowering.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Qiu Fang
- *Correspondence: Hongbo Zhao, ; Qiu Fang,
| | | |
Collapse
|