1
|
Magner ET, Roy R, Hegeman AD, Carter CJ. In the nectar, there are answers: exploring the intersection of colored nectars and reactive oxygen species in manipulating pollinator behavior. THE NEW PHYTOLOGIST 2025; 246:901-910. [PMID: 40114421 PMCID: PMC11982784 DOI: 10.1111/nph.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 01/21/2025] [Indexed: 03/22/2025]
Abstract
Nectar, a vital mediator of plant-pollinator interactions, exhibits remarkable chemical diversity beyond sugars, including reactive oxygen species and specialized metabolites such as pigments. Colored nectars, present in over 70 species, function as visual signals, inhibitors of microbial growth, or nutritional rewards, underscoring their ecological importance. Reactive oxygen species contribute to pigment formation and nectar stability, highlighting their dual roles in nectar chemistry and defense. Advances in analytical techniques and interdisciplinary research have highlighted the complex interplay between nectar composition, pollinator behavior, and microbial communities, emphasizing nectar's multifaceted roles in plant fitness and ecosystem dynamics.
Collapse
Affiliation(s)
- Evin T. Magner
- Department of Plant & Microbial BiologyUniversity of Minnesota1479 Gortner AveSt PaulMN55108USA
| | - Rahul Roy
- Department of BiologySt Catherine UniversitySt PaulMN55105USA
| | - Adrian D. Hegeman
- Department of Plant & Microbial BiologyUniversity of Minnesota1479 Gortner AveSt PaulMN55108USA
- Department of Horticultural ScienceUniversity of MinnesotaSt PaulMN55108USA
| | - Clay J. Carter
- Department of Plant & Microbial BiologyUniversity of Minnesota1479 Gortner AveSt PaulMN55108USA
| |
Collapse
|
2
|
Maya-Lastra CA, Sweeney PW, Eaton DAR, Torrez V, Maldonado C, Ore-Rengifo MI, Arakaki M, Donoghue MJ, Edwards EJ. Caught in the Act: Incipient Speciation at the Southern Limit of Viburnum in the Central Andes. Syst Biol 2024; 73:629-643. [PMID: 38832843 DOI: 10.1093/sysbio/syae023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/02/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024] Open
Abstract
A fundamental objective of evolutionary biology is to understand the origin of independently evolving species. Phylogenetic studies of species radiations rarely are able to document ongoing speciation; instead, modes of speciation, entailing geographic separation and/or ecological differentiation, are posited retrospectively. The Oreinotinus clade of Viburnum has radiated recently from north to south through the cloud forests of Mexico and Central America to the Central Andes. Our analyses support a hypothesis of incipient speciation in Oreinotinus at the southern edge of its geographic range, from central Peru to northern Argentina. Although several species and infraspecific taxa have been recognized in this area, multiple lines of evidence and analytical approaches (including analyses of phylogenetic relationships, genetic structure, leaf morphology, and climatic envelopes) favor the recognition of just a single species, V. seemenii. We show that what has previously been recognized as V. seemenii f. minor has recently occupied the drier Tucuman-Bolivian forest region from Samaipata in Bolivia to Salta in northern Argentina. Plants in these populations form a well-supported clade with a distinctive genetic signature and they have evolved smaller, narrower leaves. We interpret this as the beginning of a within-species divergence process that has elsewhere in the neotropics resulted repeatedly in Viburnum species with a particular set of leaf ecomorphs. Specifically, the southern populations are in the process of evolving the small, glabrous, and entire leaf ecomorph that has evolved in four other montane areas of endemism. As predicted based on our studies of leaf ecomorphs in Chiapas, Mexico, these southern populations experience generally drier conditions, with large diurnal temperature fluctuations. In a central portion of the range of V. seemenii, characterized by wetter climatic conditions, we also document what may be the initial differentiation of the leaf ecomorph with larger, pubescent, and toothy leaves. The emergence of these ecomorphs thus appears to be driven by adaptation to subtly different climatic conditions in separate geographic regions, as opposed to parapatric differentiation along elevational gradients as suggested by Viburnum species distributions in other parts of the neotropics.
Collapse
Affiliation(s)
- Carlos A Maya-Lastra
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA
- Department of Biology, Angelo State University, ASU Station #10890, San Angelo, TX, 76909, USA
| | - Patrick W Sweeney
- Division of Botany, Peabody Museum of Natural History, Yale University, 170 Whitney Ave, New Haven, CT, 06520, USA
| | - Deren A R Eaton
- Department of Ecology, Evolution & Environmental Biology, Columbia University, 10th floor Schermerhorn Ext., 1200 Amsterdan Ave, New York, NY, 10027, USA
| | - Vania Torrez
- Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, P.O. Box 10077, La Paz, Bolivia
| | - Carla Maldonado
- Herbario Nacional de Bolivia, Instituto de Ecología, Universidad Mayor de San Andrés, P.O. Box 10077, La Paz, Bolivia
| | - Malu I Ore-Rengifo
- Department of Biology, University of Florida, P.O. Box 118525, Gainesville, FL, USA
| | - Mónica Arakaki
- Museo de Historia Natural & Facultad de Ciencias Biológicas, Universidad Nacional Mayor de San Marcos, P.O. Box 15072, Lima, Peru
| | - Michael J Donoghue
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA
| | - Erika J Edwards
- Department of Ecology and Evolutionary Biology, Yale University, P.O. Box 208106, New Haven, CT, USA
| |
Collapse
|
3
|
Zomer A, Ingham CJ, von Meijenfeldt FAB, Escobar Doncel Á, van de Kerkhof GT, Hamidjaja R, Schouten S, Schertel L, Müller KH, Catón L, Hahnke RL, Bolhuis H, Vignolini S, Dutilh BE. Structural color in the bacterial domain: The ecogenomics of a 2-dimensional optical phenotype. Proc Natl Acad Sci U S A 2024; 121:e2309757121. [PMID: 38990940 PMCID: PMC11260094 DOI: 10.1073/pnas.2309757121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 04/23/2024] [Indexed: 07/13/2024] Open
Abstract
Structural color is an optical phenomenon resulting from light interacting with nanostructured materials. Although structural color (SC) is widespread in the tree of life, the underlying genetics and genomics are not well understood. Here, we collected and sequenced a set of 87 structurally colored bacterial isolates and 30 related strains lacking SC. Optical analysis of colonies indicated that diverse bacteria from at least two different phyla (Bacteroidetes and Proteobacteria) can create two-dimensional packing of cells capable of producing SC. A pan-genome-wide association approach was used to identify genes associated with SC. The biosynthesis of uroporphyrin and pterins, as well as carbohydrate utilization and metabolism, was found to be involved. Using this information, we constructed a classifier to predict SC directly from bacterial genome sequences and validated it by cultivating and scoring 100 strains that were not part of the training set. We predicted that SCr is widely distributed within gram-negative bacteria. Analysis of over 13,000 assembled metagenomes suggested that SC is nearly absent from most habitats associated with multicellular organisms except macroalgae and is abundant in marine waters and surface/air interfaces. This work provides a large-scale ecogenomics view of SC in bacteria and identifies microbial pathways and evolutionary relationships that underlie this optical phenomenon.
Collapse
Affiliation(s)
- Aldert Zomer
- Division of Infectious Diseases and Immunology, Utrecht University, Utrecht3584 CL, the Netherlands
| | - Colin J. Ingham
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
| | - F. A. Bastiaan von Meijenfeldt
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht3584 CH, the Netherlands
- Department of Marine Microbiology & Biogeochemistry, Royal Netherlands Institute for Sea Research, ‘t Horntje1797 SZ, The Netherlands
| | | | - Gea T. van de Kerkhof
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | | | - Sanne Schouten
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
| | - Lukas Schertel
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Department of Physics, University of Fribourg, FribourgCH-1700, Switzerland
| | - Karin H. Müller
- Department of Physiology, Development and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, CambridgeCB2 3DY, United Kingdom
| | - Laura Catón
- Hoekmine Besloten Vennootschap, Utrecht3515 GJ, the Netherlands
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
| | - Richard L. Hahnke
- Leibniz Institute, German Collection of Microorganisms and Cell Cultures, Braunschweig38124, Germany
| | - Henk Bolhuis
- Department of Marine Microbiology & Biogeochemistry, Royal Netherlands Institute for Sea Research, ‘t Horntje1797 SZ, The Netherlands
| | - Silvia Vignolini
- Yusuf Hamied Department of Chemistry, University of Cambridge, CambridgeCB2 1EW, United Kingdom
- Sustainable and Bio-inspired Materials, Max Planck Institute of Colloids and Interfaces, Potsdam14476, Germany
| | - Bas E. Dutilh
- Theoretical Biology and Bioinformatics, Department of Biology, Science for Life, Utrecht University, Utrecht3584 CH, the Netherlands
- Institute of Biodiversity, Faculty of Biological Sciences, Cluster of Excellence Balance of the Microverse, Friedrich Schiller University Jena, Jena07743, Germany
| |
Collapse
|
4
|
Lundquist CR, Rudall PJ, Sukri RS, Conejero M, Smith A, Lopez-Garcia M, Vignolini S, Metali F, Whitney HM. Living jewels: iterative evolution of iridescent blue leaves from helicoidal cell walls. ANNALS OF BOTANY 2024; 134:131-150. [PMID: 38551515 PMCID: PMC11161568 DOI: 10.1093/aob/mcae045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/15/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND AND AIMS Structural colour is responsible for the remarkable metallic blue colour seen in the leaves of several plants. Species belonging to only ten genera have been investigated to date, revealing four photonic structures responsible for structurally coloured leaves. One of these is the helicoidal cell wall, known to create structural colour in the leaf cells of five taxa. Here we investigate a broad selection of land plants to understand the phylogenetic distribution of this photonic structure in leaves. METHODS We identified helicoidal structures in the leaf epidermal cells of 19 species using transmission electron microscopy. Pitch measurements of the helicoids were compared with the reflectance spectra of circularly polarized light from the cells to confirm the structure-colour relationship. RESULTS By incorporating species examined with a polarizing filter, our results increase the number of taxa with photonic helicoidal cell walls to species belonging to at least 35 genera. These include 19 monocot genera, from the orders Asparagales (Orchidaceae) and Poales (Cyperaceae, Eriocaulaceae, Rapateaceae) and 16 fern genera, from the orders Marattiales (Marattiaceae), Schizaeales (Anemiaceae) and Polypodiales (Blechnaceae, Dryopteridaceae, Lomariopsidaceae, Polypodiaceae, Pteridaceae, Tectariaceae). CONCLUSIONS Our investigation adds considerably to the recorded diversity of plants with structurally coloured leaves. The iterative evolution of photonic helicoidal walls has resulted in a broad phylogenetic distribution, centred on ferns and monocots. We speculate that the primary function of the helicoidal wall is to provide strength and support, so structural colour could have evolved as a potentially beneficial chance function of this structure.
Collapse
Affiliation(s)
- Clive R Lundquist
- School of Biological Sciences, University of Bristol, Bristol, UK
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Paula J Rudall
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Rahayu S Sukri
- Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | - María Conejero
- Jodrell Laboratory, Royal Botanic Gardens Kew, Richmond, Surrey, UK
| | - Alyssa Smith
- Department of Chemistry, University of Cambridge, UK
| | - Martin Lopez-Garcia
- Department of Nanophotonics, International Iberian Nanotechnology Laboratory, 4715-330 Braga, Portugal
| | - Silvia Vignolini
- Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Faizah Metali
- Faculty of Science, Universiti Brunei Darussalam, Bandar Seri Begawan, Brunei Darussalam
| | | |
Collapse
|
5
|
Middleton R, Tunstad SA, Knapp A, Winters S, McCallum S, Whitney H. Self-assembled, disordered structural color from fruit wax bloom. SCIENCE ADVANCES 2024; 10:eadk4219. [PMID: 38324684 PMCID: PMC10849586 DOI: 10.1126/sciadv.adk4219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/05/2024] [Indexed: 02/09/2024]
Abstract
Many visually guided frugivores have eyes highly adapted for blue sensitivity, which makes it perhaps surprising that blue pigmented fruits are not more common. However, some fruits are blue even though they do not contain blue pigments. We investigate dark pigmented fruits with wax blooms, like blueberries, plums, and juniper cones, and find that a structural color mechanism is responsible for their appearance. The chromatic blue-ultraviolet reflectance arises from the interaction of the randomly arranged nonspherical scatterers with light. We reproduce the structural color in the laboratory by recrystallizing wax bloom, allowing it to self-assemble to produce the blue appearance. We demonstrate that blue fruits and structurally colored fruits are not constrained to those with blue subcuticular structure or pigment. Further, convergent optical properties appear across a wide phylogenetic range despite diverse morphologies. Epicuticular waxes are elements of the future bioengineering toolbox as sustainable and biocompatible, self-assembling, self-cleaning, and self-repairing optical biomaterials.
Collapse
Affiliation(s)
- Rox Middleton
- University of Bristol, Bristol, UK
- Technische Universität Dresden, Dresden, Germany
| | | | | | - Sandra Winters
- University of Bristol, Bristol, UK
- University of Helsinki, Helsinki, Finland
| | | | | |
Collapse
|