1
|
Ribicoff G, Garner M, Pham K, Althaus KN, Cavender-Bares J, Crowl AA, Gray S, Gugger P, Hahn M, Liao S, Manos PS, Mohn RA, Pearse IS, Steichmann NR, Tuffin AL, Whittemore AT, Hipp AL. Introgression, Phylogeography, and Genomic Species Cohesion in the Eastern North American White Oak Syngameon. Mol Ecol 2025:e17822. [PMID: 40491223 DOI: 10.1111/mec.17822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 04/15/2025] [Accepted: 05/25/2025] [Indexed: 06/11/2025]
Abstract
Hybridization and interspecific gene flow play a substantial role in the evolution of plant taxa. The eastern North American white oak syngameon, a group of approximately 15 ecologically, morphologically and genomically distinguishable species, has long been recognised as a model system for studying introgressive hybridization in temperate trees. However, the prevalence, genomic context and environmental correlates of introgression in this system remain largely unknown. To assess introgression in the eastern North American white oak syngameon and population structure within the widespread Quercus macrocarpa, we conducted a rangewide survey of Q. macrocarpa and four sympatric eastern North American white oak species. Using a Hyb-Seq approach, we assembled a dataset of 3412 thinned single-nucleotide polymorphisms (SNPs) in 445 enriched target loci including 62 genes putatively associated with various ecological functions, as well as associated intronic regions and some off-target intergenic regions (not associated with the exons). Admixture analysis and hybrid class inference demonstrated species coherence despite hybridization and introgressive gene flow (due to backcrossing of F1s to one or both parents). Additionally, we recovered a genetic structure within Q. macrocarpa associated with latitude. Generalised linear mixed models (GLMMs) indicate that proximity to range edge predicts interspecific admixture, but rates of genetic differentiation do not appear to vary between putative functional gene classes. Our study suggests that gene flow between eastern North American white oak species may not be as rampant as previously assumed and that hybridization is most strongly predicted by proximity to a species' range margin.
Collapse
Affiliation(s)
- Gabe Ribicoff
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| | - Mira Garner
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
- Pritzker Lab, The Field Museum, Chicago, Illinois, USA
| | - Kasey Pham
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
- Case Western Reserve University, Cleveland, Ohio, USA
| | - Kieran N Althaus
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, USA
| | - Jeannine Cavender-Bares
- Harvard University Herbaria, Cambridge, Massachusetts, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, Massachusetts, USA
| | - Andrew A Crowl
- Florida Museum of Natural History, University of Florida, Gainesville, Florida, USA
| | - Samantha Gray
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| | - Paul Gugger
- Panepistemion, Chester Township, New Jersey, USA
| | - Marlene Hahn
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| | - Shuai Liao
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
- State Key Laboratory of Plant Diversity and Specialty Crops, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Paul S Manos
- Department of Biology, Duke University, Durham, North Carolina, USA
| | - Rebekah A Mohn
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
- Department of Plant and Microbial Biology, University of Minnesota, St. Paul, Minnesota, USA
| | - Ian S Pearse
- U.S. Geological Survey, Fort Collins Science Center, Fort Collins, Colorado, USA
| | | | - Ashley L Tuffin
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
- Institute of Ecology and Evolution, The University of Edinburgh, Edinburgh, UK
- Principal's Research Group, Scotland's Rural College (SRUC), Edinburgh, UK
| | - Alan T Whittemore
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
| | - Andrew L Hipp
- Herbarium and Center for Tree Science, The Morton Arboretum, Lisle, Illinois, USA
- Pritzker Lab, The Field Museum, Chicago, Illinois, USA
- Committee on Evolutionary Biology, The University of Chicago, Chicago, Illinois, USA
| |
Collapse
|
2
|
Kipkoech A, Li K, Milne RI, Oyebanji OO, Wambulwa MC, Fu XG, Wakhungu DA, Wu ZY, Liu J. An integrative approach clarifies species delimitation and biogeographic history of Debregeasia (Urticaceae). PLANT DIVERSITY 2025; 47:229-243. [PMID: 40182483 PMCID: PMC11962966 DOI: 10.1016/j.pld.2024.11.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 11/19/2024] [Accepted: 11/21/2024] [Indexed: 04/05/2025]
Abstract
Integrative data from plastid and nuclear loci are increasingly utilized to resolve species boundaries and phylogenetic relationships within major angiosperm clades. Debregeasia (Urticaceae), an economically important genus, presents challenges in species delimitation due to its overlapping morphological traits and unstable taxonomic assignments. Here, we analyzed 14 morphological traits and generated 12 data matrices from the plastomes and nrDNA using genome skimming from the nine recognized morphospecies to clarify species boundaries and assess barcode performance in Debregeasia. We also used a universal set of 353 nuclear genes to explore reticulate evolution and biogeographic history of Debregeasia. Plastomes of Debregeasia exhibited the typical quadripartite structure with conserved gene content and marginal independent variations in the SC/IR boundary at inter- and intra-specific levels. Three Debregeasia species were non-monophyletic and could not be discerned by any barcode; however, ultra-barcodes identified the remaining six (67%), outperforming standard barcodes (56%). Our phylogenetic analyses placed Debregeasia wallichiana outside the genus and suggested six monophyletic clades in Debregeasia, although the placement between Debregeasia hekouensis and Debregeasia libera varied. There was extensive trait overlap in key morphologically diagnostic characters, with reticulation analysis showing potentially pervasive hybridization, likely influenced by speciation patterns and overlaps between species ranges. We inferred that Debregeasia crown diversification began at ca. 12.82 Ma (95% HPD: 11.54-14.63 Ma) in the mid-Miocene within Australia, followed by vicariance and later long-distance dispersal, mainly out of southern China. Our findings highlight the utility of genomic data with integrative lines of evidence to refine species delimitation and explore evolutionary relationships in complex plant lineages.
Collapse
Affiliation(s)
- Amos Kipkoech
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Ke Li
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- School of Ecology and Environment Science, Yunnan University, Kunming, China
| | - Richard I. Milne
- Institute of Molecular Plant Sciences, School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3JH, UK
| | - Oyetola Olusegun Oyebanji
- Department of Biology, University of Louisiana, Lafayette, LA, USA
- Department of Biological Sciences, University of Arkansas, Fayetteville, AR, USA
| | - Moses C. Wambulwa
- Department of Life Sciences, School of Science and Computing, South Eastern Kenya University, Kitui, Kenya
| | - Xiao-Gang Fu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Dennis A. Wakhungu
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- University of Chinese Academy of Sciences, Beijing 100093, China
| | - Zeng-Yuan Wu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| | - Jie Liu
- Germplasm Bank of Wild Species & Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
- CAS Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, Yunnan, China
| |
Collapse
|
3
|
Hodač L, Karbstein K, Kösters L, Rzanny M, Wittich HC, Boho D, Šubrt D, Mäder P, Wäldchen J. Deep learning to capture leaf shape in plant images: Validation by geometric morphometrics. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 120:1343-1357. [PMID: 39383323 DOI: 10.1111/tpj.17053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/26/2024] [Accepted: 09/18/2024] [Indexed: 10/11/2024]
Abstract
Plant leaves play a pivotal role in automated species identification using deep learning (DL). However, achieving reproducible capture of leaf variation remains challenging due to the inherent "black box" problem of DL models. To evaluate the effectiveness of DL in capturing leaf shape, we used geometric morphometrics (GM), an emerging component of eXplainable Artificial Intelligence (XAI) toolkits. We photographed Ranunculus auricomus leaves directly in situ and after herbarization. From these corresponding leaf images, we automatically extracted DL features using a neural network and digitized leaf shapes using GM. The association between the extracted DL features and GM shapes was then evaluated using dimension reduction and covariation models. DL features facilitated the clustering of leaf images by source populations in both in situ and herbarized leaf image datasets, and certain DL features were significantly associated with biological leaf shape variation as inferred by GM. DL features also enabled leaf classification into morpho-phylogenomic groups within the intricate R. auricomus species complex. We demonstrated that simple in situ leaf imaging and DL reproducibly captured leaf shape variation at the population level, while combining this approach with GM provided key insights into the shape information extracted from images by computer vision, a necessary prerequisite for reliable automated plant phenotyping.
Collapse
Affiliation(s)
- Ladislav Hodač
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Kevin Karbstein
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Lara Kösters
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Michael Rzanny
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
| | - Hans Christian Wittich
- Data-intensive Systems and Visualization Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - David Boho
- Data-intensive Systems and Visualization Group, Technische Universität Ilmenau, Ilmenau, Germany
| | - David Šubrt
- Faculty of Science, Jan Evangelista Purkyně University in Ústí nad Labem, Ústí nad Labem, Czech Republic
| | - Patrick Mäder
- Data-intensive Systems and Visualization Group, Technische Universität Ilmenau, Ilmenau, Germany
- German Centre for Integrative Biodiversity Research - iDiv (Halle-Jena-Leipzig), Leipzig, Germany
- Faculty of Biological Sciences, Friedrich Schiller University Jena, Jena, Germany
| | - Jana Wäldchen
- Department Biogeochemical Integration, Max Planck Institute for Biogeochemistry, Jena, Germany
- German Centre for Integrative Biodiversity Research - iDiv (Halle-Jena-Leipzig), Leipzig, Germany
| |
Collapse
|
4
|
Wu Y, Linan AG, Hoban S, Hipp AL, Ricklefs RE. Divergent ecological selection maintains species boundaries despite gene flow in a rare endemic tree, Quercus acerifolia (maple-leaf oak). J Hered 2024; 115:575-587. [PMID: 38881254 DOI: 10.1093/jhered/esae033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 06/11/2024] [Indexed: 06/18/2024] Open
Abstract
Strong gene flow from outcrossing relatives tends to blur species boundaries, while divergent ecological selection can counteract gene flow. To better understand how these two forces affect the maintenance of species boundaries, we focused on a species complex including a rare species, maple-leaf oak (Quercus acerifolia), which is found in only four disjunct ridges in Arkansas. Its limited range and geographic proximity to co-occurring close relatives create the possibility for genetic swamping. In this study, we gathered genome-wide single nucleotide polymorphisms (SNPs) using restriction-site-associated DNA sequencing (RADseq) from 190 samples of Q. acerifolia and three of its close relatives, Q. shumardii, Q. buckleyi, and Q. rubra. We found that Q. shumardii and Q. acerifolia are reciprocally monophyletic with low support, suggesting incomplete lineage sorting, introgression between Q. shumardii and Q. acerifolia, or both. Analyses that model allele distributions demonstrate that admixture contributes strongly to this pattern. Populations of Q. acerifolia experience gene flow from Q. shumardii and Q. rubra, but we found evidence that divergent selection is likely maintaining species boundaries: 1) ex situ collections of Q. acerifolia have a higher proportion of hybrids compared to the mature trees of the wild populations, suggesting ecological selection against hybrids at the seed/seedling stage; 2) ecological traits co-vary with genomic composition; and 3) Q. acerifolia shows genetic differentiation at loci hypothesized to influence tolerance of radiation, drought, and high temperature. Our findings strongly suggest that in maple-leaf oak, selection results in higher divergence at regions of the genome despite gene flow from close relatives.
Collapse
Affiliation(s)
- Yingtong Wu
- Biology Department, University of Missouri-St. Louis, St. Louis, MO, United States
- Whitney R. Harris World Ecology Center, University of Missouri-St. Louis, St. Louis, MO, United States
| | - Alexander G Linan
- Center for Conservation and Sustainable Development, Missouri Botanical Garden, St. Louis, MO, United States
| | - Sean Hoban
- Center for Tree Science, The Morton Arboretum, Lisle, IL, United States
| | - Andrew L Hipp
- Center for Tree Science, The Morton Arboretum, Lisle, IL, United States
- The Field Museum, Integrative Research Center, Chicago, IL, United States
| | - Robert E Ricklefs
- Biology Department, University of Missouri-St. Louis, St. Louis, MO, United States
| |
Collapse
|
5
|
Patten NN, Gaynor ML, Soltis DE, Soltis PS. Geographic And Taxonomic Occurrence R-based Scrubbing (gatoRs): An R package and workflow for processing biodiversity data. APPLICATIONS IN PLANT SCIENCES 2024; 12:e11575. [PMID: 38638614 PMCID: PMC11022233 DOI: 10.1002/aps3.11575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 04/20/2024]
Abstract
Premise Digitized biodiversity data offer extensive information; however, obtaining and processing biodiversity data can be daunting. Complexities arise during data cleaning, such as identifying and removing problematic records. To address these issues, we created the R package Geographic And Taxonomic Occurrence R-based Scrubbing (gatoRs). Methods and Results The gatoRs workflow includes functions that streamline downloading records from the Global Biodiversity Information Facility (GBIF) and Integrated Digitized Biocollections (iDigBio). We also created functions to clean downloaded specimen records. Unlike previous R packages, gatoRs accounts for differences in download structure between GBIF and iDigBio and allows for user control via interactive cleaning steps. Conclusions Our pipeline enables the scientific community to process biodiversity data efficiently and is accessible to the R coding novice. We anticipate that gatoRs will be useful for both established and beginning users. Furthermore, we expect our package will facilitate the introduction of biodiversity-related concepts into the classroom via the use of herbarium specimens.
Collapse
Affiliation(s)
- Natalie N. Patten
- Department of MathematicsUniversity of FloridaGainesville32611FloridaUSA
- Present address:
Department of MathematicsThe Ohio State UniversityColumbus43210OhioUSA
| | - Michelle L. Gaynor
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - Douglas E. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
- Department of BiologyUniversity of FloridaGainesville32611FloridaUSA
| | - Pamela S. Soltis
- Florida Museum of Natural HistoryUniversity of FloridaGainesville32611FloridaUSA
| |
Collapse
|
6
|
Koontz AC, Schumacher EK, Spence ES, Hoban SM. Ex situ conservation of two rare oak species using microsatellite and SNP markers. Evol Appl 2024; 17:e13650. [PMID: 38524684 PMCID: PMC10960078 DOI: 10.1111/eva.13650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/26/2024] Open
Abstract
Plant collections held by botanic gardens and arboreta are key components of ex situ conservation. Maintaining genetic diversity in such collections allows them to be used as resources for supplementing wild populations. However, most recommended minimum sample sizes for sufficient ex situ genetic diversity are based on microsatellite markers, and it remains unknown whether these sample sizes remain valid in light of more recently developed next-generation sequencing (NGS) approaches. To address this knowledge gap, we examine how ex situ conservation status and sampling recommendations differ when derived from microsatellites and single nucleotide polymorphisms (SNPs) in garden and wild samples of two threatened oak species. For Quercus acerifolia, SNPs show lower ex situ representation of wild allelic diversity and slightly lower minimum sample size estimates than microsatellites, while results for each marker are largely similar for Q. boyntonii. The application of missing data filters tends to lead to higher ex situ representation, while the impact of different SNP calling approaches is dependent on the species being analyzed. Measures of population differentiation within species are broadly similar between markers, but larger numbers of SNP loci allow for greater resolution of population structure and clearer assignment of ex situ individuals to wild source populations. Our results offer guidance for future ex situ conservation assessments utilizing SNP data, such as the application of missing data filters and the usage of a reference genome, and illustrate that both microsatellites and SNPs remain viable options for botanic gardens and arboreta seeking to ensure the genetic diversity of their collections.
Collapse
Affiliation(s)
| | | | - Emma S. Spence
- Morton ArboretumCenter for Tree ScienceLisleIllinoisUSA
- Cornell UniversityDepartment of Public and Ecosystem HealthIthacaNew YorkUSA
| | - Sean M. Hoban
- Morton ArboretumCenter for Tree ScienceLisleIllinoisUSA
| |
Collapse
|
7
|
De Luna-Bonilla OÁ, Valencia-Á S, Ibarra-Manríquez G, Morales-Saldaña S, Tovar-Sánchez E, González-Rodríguez A. Leaf morphometric analysis and potential distribution modelling contribute to taxonomic differentiation in the Quercus microphylla complex. JOURNAL OF PLANT RESEARCH 2024; 137:3-19. [PMID: 37740854 PMCID: PMC10764464 DOI: 10.1007/s10265-023-01495-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Accepted: 08/31/2023] [Indexed: 09/25/2023]
Abstract
Mexico is a major center of evolutionary radiation for the genus Quercus, with oak species occurring across different habitat types and showing a wide variation in morphology and growth form. Despite representing about 20% of Mexican species, scrub oaks have received little attention and even basic aspects of their taxonomy and geographic distribution remain unresolved. In this study, we analyzed the morphological and climatic niche differentiation of scrub oak populations forming a complex constituted by six named species, Quercus cordifolia, Quercus frutex, Quercus intricata, Quercus microphylla, Quercus repanda, Quercus striatula and a distinct morphotype of Q. striatula identified during field and herbarium work (hereafter named Q. striatula II). Samples were obtained from 35 sites covering the geographic distribution of the complex in northern and central Mexico. Morphological differentiation was analyzed through geometric morphometrics of leaf shape and quantification of trichome traits. Our results indicated the presence of two main morphological groups with geographic concordance. The first was formed by Q. frutex, Q. microphylla, Q. repanda and Q. striatula, distributed in the Trans-Mexican Volcanic Belt, the Sierra Madre Occidental and a little portion of the south of the Mexican Altiplano (MA). The second group consists of Q. cordifola, Q. intricata and Q. striatula II, found in the Sierra Madre Oriental and the MA. Therefore, our evidence supports the distinctness of the Q. striatula II morphotype, indicating the need for a taxonomic revision. Within the two groups, morphological differentiation among taxa varied from very clear to low or inexistent (i.e. Q. microphylla-Q. striatula and Q. cordifolia-Q. striatula II) but niche comparisons revealed significant niche differentiation in all pairwise comparisons, highlighting the relevance of integrative approaches for the taxonomic resolution of complicated groups such as the one studied here.
Collapse
Affiliation(s)
- Oscar Ángel De Luna-Bonilla
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México
- Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio A, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, 04510, Ciudad de Mexico, México
| | - Susana Valencia-Á
- Herbario de la Facultad de Ciencias, Departamento de Biología Comparada, Universidad Nacional Autónoma de México, Circuito Exterior, s.n, Ciudad Universitaria, Coyoacán, 04510, México City, México
| | - Guillermo Ibarra-Manríquez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México
| | - Saddan Morales-Saldaña
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, CP, 62209, Cuernavaca, Morelos, Mexico
| | - Antonio González-Rodríguez
- Instituto de Investigaciones en Ecosistemas y Sustentabilidad, Universidad Nacional Autónoma de México, 58190, Morelia, México.
| |
Collapse
|
8
|
Corlett RT. Achieving zero extinction for land plants. TRENDS IN PLANT SCIENCE 2023; 28:913-923. [PMID: 37142532 DOI: 10.1016/j.tplants.2023.03.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 03/16/2023] [Accepted: 03/18/2023] [Indexed: 05/06/2023]
Abstract
Despite the importance of plants for humans and the threats to their future, plant conservation receives far less support compared with vertebrate conservation. Plants are much cheaper and easier to conserve than are animals, but, although there are no technical reasons why any plant species should become extinct, inadequate funding and the shortage of skilled people has created barriers to their conservation. These barriers include the incomplete inventory, the low proportion of species with conservation status assessments, partial online data accessibility, varied data quality, and insufficient investment in both in and ex situ conservation. Machine learning, citizen science (CS), and new technologies could mitigate these problems, but we need to set national and global targets of zero plant extinction to attract greater support.
Collapse
Affiliation(s)
- Richard T Corlett
- Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China; Center of Conservation Biology, Core Botanical Gardens, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Yunnan 666303, China.
| |
Collapse
|