1
|
Pei Y, Tang W, Huang Y, Li H, Liu X, Chen H, He R, Niu W, Du Q, Chu Y, Deng H, Liu M, Gong R. The PavMYB.C2-UFGT module contributes to fruit coloration via modulating anthocyanin biosynthesis in sweet cherry. PLoS Genet 2025; 21:e1011761. [PMID: 40526782 DOI: 10.1371/journal.pgen.1011761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Accepted: 06/04/2025] [Indexed: 06/19/2025] Open
Abstract
Anthocyanins, vital secondary metabolites responsible for fruit coloration and health benefits, yet the genetic mechanisms regulating anthocyanin biosynthesis in fruits remain incompletely understood. In this study, we conducted a metabolomic analysis that revealed both the total anthocyanin content and the relative abundance of individual anthocyanin species are critical contributors of the color variation observed between yellow- and dark red-fruited cultivars. Integrating transcriptomic data with metabolic profiles, we identified a gene module central to anthocyanin biosynthesis, with PavMYB.C2 emerging as a key transcriptional activator. Functional validation through overexpression and silencing of PavMYB.C2 in cherry fruit confirmed its essential role in regulating both total anthocyanin and cyanidin-3-glucoside (Cy3G) levels. Furthermore, PavMYB.C2 upregulates transcription of the anthocyanin biosynthetic gene UFGT via its serine (S) 68 residue within the MYB domain, leading to enhanced Cy3G accumulation. These findings highlight the PavMYB.C2-UFGT regulatory module as a critical determinant of fruit coloration, offering potential avenues for improving fruit quality through genetic manipulation.
Collapse
Affiliation(s)
- Yangang Pei
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Wanjia Tang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yidi Huang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Hongfen Li
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiaowei Liu
- College of Agriculture and Horticulture, Chengdu Agricultural College, Chengdu, Sichuan, China
| | - Hongxu Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Runmei He
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Wenyi Niu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Quanyan Du
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yizhe Chu
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Heng Deng
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan, China
| | - Mingchun Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan, China
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
2
|
Huang H, Tang C, Liu F, Ren Y, Cheng S, Peng Y, Chen R, Liu Q. Comparative nutrient profiling of three Murraya species through combined metabolomic and transcriptomic analyses. Genomics 2025; 117:111051. [PMID: 40328358 DOI: 10.1016/j.ygeno.2025.111051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 04/16/2025] [Accepted: 04/27/2025] [Indexed: 05/08/2025]
Abstract
Murraya, a valuable plant resource, plays a critical role in medicine, industry, and landscaping. Despite its significance, research on Murraya, as well as its development and utilization, remains limited. Therefore, investigating the metabolites and metabolic pathways within its germplasm is of considerable importance. In this study, we utilized LC-MS to comprehensively profile amino acids, nucleotides, saccharides, and vitamins in the leaves of three Murraya materials. In parallel, transcriptome analysis was conducted to unravel the metabolic pathways associated with key metabolites and to identify candidate genes. Our metabolomic profiling identified a total of 215 metabolites, including 95 saccharides, 85 amino acids, 25 nucleotides, and 10 vitamins. Among these, D-(+)-Maltose Monohydrate, L(+)-Arabinose, and DL-Xylose were identified as pivotal candidate metabolites contributing to the distinct characteristics of Murraya materials through differential metabolite analysis. Furthermore, transcriptome and qPCR analysis revealed 11 differentially expressed genes, which are proposed as potential regulators influencing the differential accumulation of these key metabolites. Our study reveals that among the three materials examined, Murraya tetramera exhibits heightened potential for medicinal and industrial applications. This research significantly advances our comprehension of the metabolic regulatory mechanisms at play within Murraya species. Furthermore, it lays a vital scientific groundwork that is instrumental for the advancement of medicinal resources, the enhancement of plant varieties, the expansion of industrial utilization, and the promotion of sustainable agricultural practices for Murraya.
Collapse
Affiliation(s)
- Huaxi Huang
- Key Laboratory for Resource Plants Protection and Utilization of Yili Valley in Xinjiang, Yili Normal University, Yining 835000, China
| | - Chunfeng Tang
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530000, China
| | - Fanglin Liu
- Key Laboratory for Resource Plants Protection and Utilization of Yili Valley in Xinjiang, Yili Normal University, Yining 835000, China
| | - Yong Ren
- Key Laboratory for Resource Plants Protection and Utilization of Yili Valley in Xinjiang, Yili Normal University, Yining 835000, China
| | - Siren Cheng
- Key Laboratory for Resource Plants Protection and Utilization of Yili Valley in Xinjiang, Yili Normal University, Yining 835000, China
| | - Yude Peng
- National Center for TCM Inheritance and Innovation, Guangxi Botanical Garden of Medicinal Plants, Nanning 530000, China
| | - Rong Chen
- Key Laboratory for Resource Plants Protection and Utilization of Yili Valley in Xinjiang, Yili Normal University, Yining 835000, China.
| | - Qin Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin 537000, China.
| |
Collapse
|
3
|
Wu Y, Liu J, Zou J, Zhang M, Hu Z, Zeng Y, Dai J, Wei L, Liu S, Liu G, Huang G. Time-series analysis reveals metabolic and transcriptional dynamics during mulberry fruit development and ripening. Int J Biol Macromol 2025; 301:140288. [PMID: 39863218 DOI: 10.1016/j.ijbiomac.2025.140288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/12/2025] [Accepted: 01/22/2025] [Indexed: 01/27/2025]
Abstract
Understanding the global transcriptomic and metabolic changes during mulberry growth and development is essential for the enhancing fruit quality and optimizing breeding strategies. By integrating phenotypic, metabolomic, and transcriptomic data across 18 developmental and ripening stages of Da10 mulberry fruit, a global map of gene expression and metabolic changes was generated. Analysis revealed a gradual progression of morphological, metabolic, and transcriptional changes throughout the development and ripening phases. In this study, a new transcriptome transition, which was highly related to stress resistance, was observed after the full ripening stage. Moreover, a novel method was devised by integrating metabolome and phenotypic data to assess fruit quality and determine optimal harvest times early in the supply chain. Phase-specific co-expression networks involved in photosynthesis, quality regulation, and plant immunity were also constructed. Notably, eight flavonoids and six hub genes emerged as potential natural edible coatings or gene-editing targets for mulberry fruit to enhance resistance against biotic and abiotic stress. These findings should facilitate further research on stress resistance, post-harvest management, and sustainable agricultural development.
Collapse
Affiliation(s)
- Yilei Wu
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Jiang Liu
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Jian Zou
- College of Life Science, China West Normal University, Nanchong, Sichuan, China.
| | - Minhui Zhang
- College of Life Science, China West Normal University, Nanchong, Sichuan, China.
| | - Zhou Hu
- College of Life Science, China West Normal University, Nanchong, Sichuan, China.
| | - Yichun Zeng
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Jie Dai
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Ling Wei
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Sanmei Liu
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Gang Liu
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| | - Gaiqun Huang
- Sericultural Research Institute, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China; Institute of Special Economic Animal and Plant, Sichuan Academy of Agricultural Sciences, Nanchong, Sichuan, China.
| |
Collapse
|
4
|
Zhao YW, Zhao TT, Sun Q, Liu XL, Huang XY, Li LG, Wang HB, Li WK, Wang CK, Wang WY, Xiang Y, Ma CN, Chen XS, Cheng L, Hu DG. Enrichment of two important metabolites D-galacturonic acid and D-glucuronic acid inhibits MdHb1-mediated fruit softening in apple. NATURE PLANTS 2025; 11:891-908. [PMID: 40247144 DOI: 10.1038/s41477-025-01964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 02/27/2025] [Indexed: 04/19/2025]
Abstract
In apples, fruit firmness is a crucial quality trait influencing fruit storability, transportability, shelf life and consumer preference. However, the genetic network underlying this trait remains unclear. Therefore, the present study investigated the changes in apple fruit at different stages of postharvest storage using a combination of transcriptomic and metabolomic analyses. With prolonged storage, we detected a significant increase in two metabolites, D-galacturonic acid (D-GalUA) and D-glucuronic acid (D-GlcA), which are associated with a key class 1 non-symbiotic haemoglobin (MdHb1). We innovatively found that MdHb1 regulates fruit softening by catalysing the conversion from protopectin to water-soluble pectin. Biochemical analysis demonstrated that MdMYB2/MdNAC14/MdNTL9 transcription factors directly bind to the MdHb1 promoter to activate its transcriptional expression and promote fruit softening. Further injection experiments in apple fruit and histological as well as transmission electron microscopy analyses of the fruit samples revealed that D-GalUA and D-GlcA reduce the transcription of MdHb1, or through the MdMYB2/MdNAC14/MdNTL9-MdHb1 regulatory module, thereby delaying fruit softening. Our study provides novel insights into the role of two important metabolites, D-GalUA and D-GlcA, in the regulation of MdHb1-mediated fruit softening in apples.
Collapse
Affiliation(s)
- Yu-Wen Zhao
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ting-Ting Zhao
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Quan Sun
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Long Liu
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xiao-Yu Huang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lin-Guang Li
- Shandong Institute of Pomology, Key Laboratory for Fruit Biotechnology Breeding of Shandong, Tai'an, Shandong, China
| | - Hai-Bo Wang
- Shandong Institute of Pomology, Key Laboratory for Fruit Biotechnology Breeding of Shandong, Tai'an, Shandong, China
| | - Wan-Kun Li
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Chu-Kun Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Wen-Yan Wang
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Ying Xiang
- Department of Horticulture, Agriculture College, Shihezi University, Shihezi, China
| | - Chang-Ning Ma
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Xue-Sen Chen
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China
| | - Lailiang Cheng
- Section of Horticulture, School of Integrative Plant Science, Cornell University, Ithaca, NY, USA
| | - Da-Gang Hu
- National Research Center for Apple Engineering and Technology; Shandong Collaborative Innovation Center of Fruit and Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, China.
| |
Collapse
|
5
|
Fu H, Xiong L, Ma M, Lu B. The potential function of chalcone isomerase (CHI) gene on flavonoid accumulation in Amomum tsao-ko fruit by transcriptome and metabolome. Int J Biol Macromol 2025; 297:139897. [PMID: 39818395 DOI: 10.1016/j.ijbiomac.2025.139897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/18/2025]
Abstract
Flavonoids are the major medicinally active ingredients that exert potential effects in Amomum tsao-ko. In total, 277 flavonoid metabolites were identified in fresh and dried fruits of three different accessions of A. tsao-ko (Amomum tsao-ko), which could be classified into eight classes with more metabolites classified as flavonol. Furthermore, 193 differential flavonoid metabolites (DFMs) were selected from the six samples (three fresh and dried fruits), the main DFMs identified in the fresh and dried fruits of A. tsao-ko were apigenin and its derivatives, and 11 main DFMs were identified. Upon analyzing the variations in flavonoid content between fresh and dried fruits, our findings indicate that the L accession demonstrate a superior accumulation of flavonoid metabolites in their dried fruits. Combination with transcriptome data, the synthesis of flavone and isoflavone metabolites in fresh fruits of A. tsao-ko may be affected by the changes in the expression of chalcone isomerase genes and regulated by the NAC and AP2 transcription factor. This study provides an important theoretical basis for the functional study of flavonoid synthesis-related genes and transcription factors in A. tsao-ko fruits and for the breeding of these fruits with high flavonoid content.
Collapse
Affiliation(s)
- Hongbo Fu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China
| | - Lina Xiong
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China
| | - Mengli Ma
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China.
| | - Bingyue Lu
- Key Laboratory for Research and Utilization of Characteristic Biological Resources in Southern Yunnan, College of Biological and Agricultural Sciences, Honghe University, Mengzi 661199, Yunnan, China.
| |
Collapse
|
6
|
Shen S, Tang Y, Liu D, Chen L, Zhang Y, Ye K, Sun F, Wei X, Du H, Zhao H, Li J, Qu C, Yin N. Untargeted Metabolomics Analysis Reveals Differential Accumulation of Flavonoids Between Yellow-Seeded and Black-Seeded Rapeseed Varieties. PLANTS (BASEL, SWITZERLAND) 2025; 14:753. [PMID: 40094714 PMCID: PMC11902209 DOI: 10.3390/plants14050753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/19/2025] [Accepted: 02/27/2025] [Indexed: 03/19/2025]
Abstract
Rapeseed (Brassica napus) is an important oilseed crop and yellow-seeded and black-seeded varieties have different metabolite profiles, which determines the quality and edibility of their oil. In this study, we performed a non-targeted metabolomics analysis of seeds from four rapeseed varieties at eight developmental stages. This analysis identified 4540 features, of which 366 were annotated as known metabolites. The content of these metabolites was closely related to seed developmental stage, with the critical period for seed metabolite accumulation being between 10 and 20 days after pollination. Through a comparative analysis, we identified 18 differentially abundant flavonoid features between yellow-seeded and black-seeded rapeseed varieties. By combining the flavonoid data with transcriptome data, we constructed a gene regulatory network that may reflect the accumulation of differentially abundant flavonoid features. Finally, we predicted 38 unknown features as being flavonoid features through molecular networking. These results provide valuable metabolomics information for the breeding of yellow-seeded rapeseed varieties.
Collapse
Affiliation(s)
- Shulin Shen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yunshan Tang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Daiqin Liu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Lulu Chen
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Yi Zhang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Kaijie Ye
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Fujun Sun
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Xingzhi Wei
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Hai Du
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Huiyan Zhao
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Jiana Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Cunmin Qu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| | - Nengwen Yin
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, College of Agronomy and Biotechnology, Southwest University, Chongqing 400715, China; (S.S.); (J.L.)
- Academy of Agricultural Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
7
|
Yang S, Wang Y, Wang W, Wang N, Yan R, Li S, Zhang T, Liu J, Zeng X, Zhao S, Zhang X, Dong Q, Luan H, Guo S, Qi G, Jia P. Analysis of WD40 genes in kiwifruit reveals the key role of the light-induced AcTTG1-AcMYB75-AcbHLH2 complex in anthocyanin accumulation. Int J Biol Macromol 2025; 297:139758. [PMID: 39809390 DOI: 10.1016/j.ijbiomac.2025.139758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/05/2025] [Accepted: 01/09/2025] [Indexed: 01/16/2025]
Abstract
WD40 superfamily genes are integral to various aspects of plant growth and development. Despite the economic importance and agricultural significance of the kiwifruit (Actinidia chinensis), a comprehensive characterization of the WD40 superfamily in this species remains elusive. In this study, we identified 280 WD40-encoding genes within the kiwifruit genome and systematically analyzed their phylogenetic relationships, gene structures, functional domains, and synteny. Our results reveal that AcWD40 genes exhibit diverse expression profiles with distinct spatio-temporal patterns. AcWD40.063, encoding TTG1 homolog (designated AcTTG1), was upregulated during light-induced anthocyanin accumulation. Heterologous expression, yeast two-hybrid (Y2H) interaction assays, and dual-luciferase reporter experiments revealed that AcTTG1 interacts with AcMYB75 and AcbHLH2, collectively promoting anthocyanin accumulation and enhancing the expression of anthocyanin biosynthesis genes, particularly AcANS. This study provides a robust framework for understanding the roles of AcWD40 gene family members and offers valuable insights for molecular breeding strategies aimed at improving kiwifruit quality.
Collapse
Affiliation(s)
- Siyu Yang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Yuan Wang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
| | - Wenxiu Wang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Ning Wang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Rui Yan
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Siyu Li
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Tianle Zhang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Jiale Liu
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xinfeng Zeng
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Shengnan Zhao
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Xuemei Zhang
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Qinglong Dong
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Haoan Luan
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Suping Guo
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China
| | - Guohui Qi
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
| | - Peng Jia
- College of Forestry/State Key L aboratory of North China Crop Improvement and Regulation, Hebei Agricultural University, Baoding 071000, China.
| |
Collapse
|
8
|
Lembo M, Eramo V, Riggi R, Forniti R, Bellincontro A, Botondi R. Destructive and Non-Destructive Evaluation of Anthocyanin Content and Quality Attributes in Red Kiwifruit Subjected to Plant Spray Treatment with Cis-3-Hexenyl Butyrate. Foods 2025; 14:480. [PMID: 39942073 PMCID: PMC11818034 DOI: 10.3390/foods14030480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/16/2025] Open
Abstract
This work evaluated red kiwifruit plants' spray treatment with cis-3-hexenyl butyrate (HB) as an inductor of some metabolic mechanisms related to fruit ripening, including an increase in anthocyanin content and the red hue color parameter. Considering their key role as ripening parameters for postharvest fruit quality and sorting assessment, the soluble solid content (SSC) and the flesh firmness penetrometer (FFP) were also measured. Treated plants received an application of 50 mM HB, administered exactly 2 and 4 weeks before the commercial harvest. At harvest time and during postharvest fruit ripening, near-infrared (NIR) spectral acquisitions were performed in order to check the feasibility of a rapid and non-destructive prediction of fruit anthocyanin content and SSC, coupled to destructive measurements and chemometric modelling. Regarding technological and chemical results, HB treatment indicates an optimum overall qualitative storage at 30 days. The fruit from treated plants is characterized by good quality parameters, including higher SSC, enhanced red hue (a* value) and increased anthocyanin content, despite similar weight loss to the untreated fruit. The obtained chemometric results underscore the promise and feasibility of NIRs in terms of detecting and estimating anthocyanin content and SSC in red kiwifruit, in order to pursue an evident perspective of improvement.
Collapse
Affiliation(s)
| | | | | | | | | | - Rinaldo Botondi
- Department for Innovation in Biological, Agro-Food and Forest Systems, University of Tuscia, 01100 Viterbo, Italy; (M.L.); (V.E.); (R.R.); (R.F.); (A.B.)
| |
Collapse
|
9
|
Li X, Shi Q, Liu Y, Jiang J, Lin M, Li X. Comprehensive transcriptomic analysis revealed the mechanism of ZjLAR and ZjANR promoting proanthocyanidin biosynthesis in jujube fruit. Int J Biol Macromol 2025; 288:138291. [PMID: 39631607 DOI: 10.1016/j.ijbiomac.2024.138291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/06/2024] [Accepted: 12/01/2024] [Indexed: 12/07/2024]
Abstract
Jujube (Ziziphus jujuba Mill.) is a traditional fruit tree in China with immense economic and ecological value. Jujube fruits are abundant in polyphenolic secondary metabolites, particularly proanthocyanidins (PAs), which play a crucial role in enhancing the quality of jujube fruits. However, the mechanism underlying the biosynthesis of PAs remains unclear. The PA contents of sour jujube 'Qingjiansuanzao' and cultivated jujube 'Junzao' were compared at different developmental stages to unravel this mechanism. The PA contents of sour jujube were higher than that of cultivated jujube and decreased during fruit development. Combined with transcriptome analysis, a large number of differentially expressed genes related to PA biosynthesis were screened. Correlation analysis showed that ZjLAR and ZjANR played an active role in promoting the biosynthesis of PAs. Transient overexpression of ZjLAR and ZjANR in jujube fruits resulted in higher total PAs and monomeric catechin, but the PAs decreased after transient silencing. Overexpressing ZjLAR and ZjANR in Arabidopsis and tomato increased the content of PAs in Arabidopsis seeds and tomato fruits. These findings provide a new basis for further understanding of the biosynthesis of jujube PAs and are significant for improving the quality of jujube fruit.
Collapse
Affiliation(s)
- Xi Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Qianqian Shi
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Yu Liu
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Junjun Jiang
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China
| | - Minjuan Lin
- College of Horticulture and Forestry, Tarim University, Alar 843300, China
| | - Xingang Li
- College of Forestry, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China; Key Comprehensive Laboratory of Forestry of Shaanxi Province, Northwest Agriculture and Forestry University, Yangling 712100, Shaanxi, China; College of Horticulture and Forestry, Tarim University, Alar 843300, China.
| |
Collapse
|
10
|
Li D, Zeng X, Wu Y, Li K, Tian S, Li J, Luo C, Khatoon S, Wang H. Dynamic Lipidomics and Transcriptome Profiling Reveals the Transcriptional Regulatory Mechanism Governing TAGs Formation in Seeds of Safflower. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1244-1256. [PMID: 39737697 DOI: 10.1021/acs.jafc.4c07770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2025]
Abstract
Safflower (Carthamus tinctorius L.) is a valuable oil crop due to its bioactive ingredients and high linoleic acid content, which contribute to its antioxidant properties and potential for preventing atherosclerosis. Current research on safflower focuses on understanding the biosynthesis of seed oil through omics strategies, yet there is a lack of comprehensive knowledge of the dynamic changes in lipids and the regulatory mechanisms during seed development. Here, we performed combined quantitative lipidomics profiles and transcriptomic analyses to characterize the lipid accumulation patterns of safflower seeds, investigate gene networks, and identify vital candidate genes and transcription factors (TFs) involved in triacylglycerol (TAGs) biosynthesis in safflower. A total of 417 lipid compounds and their corresponding coexpressed genes were categorized into seven distinct lipid metabolite vs gene modules. By integrating bioinformatic analyses, one TFs-genes transcriptional regulatory network for major lipid compounds was proposed, involving 10 hub transcription factors and 12 structure genes that participate in regulating the accumulation of triacylglycerols (TAGs) and fatty acids (FAs). Furthermore, the results of yeast one-hybrid assay suggested that CtAP2.1 and CtAP2.4, the homologous genes of AINTEGUMENTA-Like 5 and 6 (AIL5 and AIL6) in Arabidopsis thaliana, may play important roles in the TAGs biosynthesis in safflower seeds. Our findings provide insight into the regulatory network of lipid compounds in safflower seeds and offer potential gene resources for enhanced oil content through targeted crop breeding.
Collapse
Affiliation(s)
- Dandan Li
- Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China
| | - Xiaohui Zeng
- Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China
| | - Yao Wu
- Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China
| | - Kaijie Li
- Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China
| | - Shanjun Tian
- Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China
| | - Jinling Li
- Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China
| | - Chunli Luo
- Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China
| | - Sadia Khatoon
- Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China
| | - Hualei Wang
- Agronomy College, Guizhou University, Huaxi, 550025 Guiyang, Guizhou, P. R. China
| |
Collapse
|
11
|
Zeng Z, Li Y, Zhu M, Wang X, Wang Y, Li A, Chen X, Han Q, Nieuwenhuizen NJ, Ampomah-Dwamena C, Deng X, Cheng Y, Xu Q, Xiao C, Zhang F, Atkinson RG, Zeng Y. Kiwifruit spatiotemporal multiomics networks uncover key tissue-specific regulatory processes throughout the life cycle. PLANT PHYSIOLOGY 2024; 197:kiae567. [PMID: 39673719 DOI: 10.1093/plphys/kiae567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/24/2024] [Indexed: 12/16/2024]
Abstract
Kiwifruit (Actinidia chinensis), a recently commercialized horticultural crop, is rich in various nutrient compounds. However, the regulatory networks controlling the dynamic changes in key metabolites among different tissues remain largely unknown. Here, high-resolution spatiotemporal datasets obtained by ultraperformance liquid chromatography-tandem mass spectrometry methodology and RNA-seq were employed to investigate the dynamic changes in the metabolic and transcriptional landscape of major kiwifruit tissues across different developmental stages, including from fruit skin, outer pericarp, inner pericarp, and fruit core. Kiwifruit spatiotemporal regulatory networks (KSRN) were constructed by integrating the 1,243 identified metabolites and co-expressed genes into 10 different clusters and 11 modules based on their biological functions. These networks allowed the generation of a global map for the major metabolic and transcriptional changes occurring throughout the life cycle of different kiwifruit tissues and discovery of the underlying regulatory networks. KSRN predictions confirmed previously established regulatory networks, including the spatiotemporal accumulation of anthocyanin and ascorbic acid (AsA). More importantly, the networks led to the functional characterization of three transcription factors: an A. chinensis ethylene response factor 1, which negatively controls sugar accumulation and ethylene production by perceiving the ripening signal, a basic-leucine zipper 60 (AcbZIP60) transcription factor, which is involved in the biosynthesis of AsA as part of the L-galactose pathway, and a transcription factor related to apetala 2.4 (RAP2.4), which directly activates the expression of the kiwi fruit aroma terpene synthase gene AcTPS1b. Our findings provide insights into spatiotemporal changes in kiwifruit metabolism and generate a valuable resource for the study of metabolic regulatory processes in kiwifruit as well as other fruits.
Collapse
Affiliation(s)
- Zhebin Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yawei Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Man Zhu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
- College of Horticulture, Xinyang Agriculture and Forestry University, Xinyang 464000, P.R. China
| | - Xiaoyao Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yan Wang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ang Li
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Xiaoya Chen
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qianrong Han
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Niels J Nieuwenhuizen
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Charles Ampomah-Dwamena
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Xiuxin Deng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Yunjiang Cheng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Qiang Xu
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Cui Xiao
- Fruit and Tea Research Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, P.R. China
| | - Fan Zhang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| | - Ross G Atkinson
- The New Zealand Institute for Plant and Food Research Ltd (PFR), Private Bag, Auckland 92169, New Zealand
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Joint International Research Laboratory of Germplasm Innovation & Utilization of Horticultural Crops, National R&D Centre for Citrus Preservation, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan 430070, P.R. China
| |
Collapse
|
12
|
Song H, Zhao K, Wang X, Jiang G, Li J, He C, Wang L, Sun S, Tu M, Wang Q, Gong R, Chen D. Multi-Omics Analysis Uncovers the Mechanism for Enhanced Organic Acid Accumulation in Peach ( Prunus persica L.) Fruit from High-Altitude Areas. PLANTS (BASEL, SWITZERLAND) 2024; 13:3171. [PMID: 39599380 PMCID: PMC11597949 DOI: 10.3390/plants13223171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/29/2024]
Abstract
The early-ripening peach industry has undergone rapid development in the Panxi region of the Sichuan Basin in recent years. However, after the introduction of some new peach varieties to the high-altitude peach-producing areas in Panxi, the titratable acid content in peach fruit has significantly increased. This study compared the fruit quality indicators of early-ripening peach varieties cultivated in Xide County (a high-altitude peach-producing area) and Longquanyi District (a low-altitude peach-producing area) in Sichuan Province and analyzed the differences in organic acid metabolism by combining primary metabolomic and transcriptomic approaches. The results showed that the 'Zhongtaohongyu' fruit from the high-altitude peach-producing area had a much higher accumulation of malic acid and, accordingly, a significantly higher organic acid content than the other samples. The lower annual average temperature and stronger ultraviolet radiation in high-altitude peach-producing areas may lead to the increased expression of genes (PpNAD-ME1, PpNADP-ME3, and PpPEPC1) in the organic acid synthesis pathway and the decreased expression of genes (PpACO2, PpNAD-MDH2/3/4/5, and PpPEPCK2) in the organic acid degradation pathway in peach fruit, ultimately resulting in the accumulation of more organic acids. Among them, the downregulation of the key genes PpNAD-MDH3/4/5 involved in malic acid metabolism may be the main reason for the higher malic acid accumulation in peach fruit from high-altitude peach-producing areas. Overall, this study elucidates the mechanism by which environmental factors enhance the accumulation of organic acids in peach fruit from high-altitude peach-producing areas from a multi-omics perspective, as well as providing a theoretical basis for screening key genes involved in organic acid metabolism in peach fruit.
Collapse
Affiliation(s)
- Haiyan Song
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Ke Zhao
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Xiaoan Wang
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
- College of Horticulture, Sichuan Agricultural University, Chengdu 6111130, China;
| | - Guoliang Jiang
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Jing Li
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Chengyong He
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Lingli Wang
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Shuxia Sun
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Meiyan Tu
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| | - Qiang Wang
- Chengdu Agricultural Technology Extension Station, Chengdu 610095, China;
| | - Ronggao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu 6111130, China;
| | - Dong Chen
- Institute of Horticulture, Sichuan Academy of Agricultural Sciences, Chengdu 610066, China; (H.S.); (K.Z.); (X.W.); (G.J.); (J.L.); (C.H.); (L.W.); (S.S.); (M.T.)
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwest China, Ministry of Agriculture and Rural Affairs, Chengdu 610066, China
| |
Collapse
|
13
|
Liu Y, Zhang H, Zhao K, Wei X, Li L, Tang Y, Xiong Y, Xu J. Expression Profiling Analysis of the SWEET Gene Family in In Vitro Pitaya Under Low-Temperature Stress and Study of Its Cold Resistance Mechanism. PLANTS (BASEL, SWITZERLAND) 2024; 13:3092. [PMID: 39520008 PMCID: PMC11548471 DOI: 10.3390/plants13213092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 10/28/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
Pitaya (Hylocereus undatus) fruit is an attractive, nutrient-rich tropical fruit with commercial value. However, low-temperature stress severely affects the yield and quality of pitaya. The relevant mechanisms involved in the response of pitaya to low-temperature stress remain unclear. To study whether the SWEET gene family mediates the response of H. undatus to low-temperature stress and the related mechanisms, we performed genome-wide identification of the SWEET gene family in pitaya, and we used 'Baiyulong' tissue-cultured plantlets as material in the present study. We identified 28 members of the SWEET gene family from the H. undatus genome and divided these family members into four groups. Members of this gene family presented some differences in the sequences of introns and exons, but the gene structure, especially the motifs, presented relatively conserved characteristics. The promoter regions of most HuSWEETs have multiple stress- or hormone-related cis-elements. Three duplicated gene pairs were identified, including one tandem duplication gene and two fragment duplication gene pairs. The results revealed that the SWEET genes may regulate the transport and distribution of soluble sugars in plants; indirectly regulate the enzyme activities of CAT, POD, and T-SOD through its expression products; and are involved in the response of pitaya to low-temperature stress and play vital roles in this process. After ABA and MeJA treatment, the expression of HuSWEETs changed significantly, and the cold stress was also alleviated. This study elucidated the molecular mechanism and physiological changes in the SWEET gene in sugar metabolism and distribution of pitaya when it experiences low-temperature stress and provided a theoretical basis for cold-resistant pitaya variety breeding.
Collapse
Affiliation(s)
- Youjie Liu
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Hanyao Zhang
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (H.Z.); (K.Z.)
| | - Ke Zhao
- Key Laboratory of Biodiversity Conservation in Southwest China, National Forest and Grassland Administration, Southwest Forestry University, Kunming 650224, China; (H.Z.); (K.Z.)
| | - Xiuqing Wei
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Liang Li
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Yajun Tang
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Yueming Xiong
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| | - Jiahui Xu
- Fruit Science Institute, Fujian Academy of Agricultural Sciences, Fuzhou 350013, China; (Y.L.); (X.W.); (Y.T.); (Y.X.)
| |
Collapse
|
14
|
Du Q, Yu H, Zhang Y, Qiao Q, Wang J, Zhang T, Xue L, Lei J. Uncovering fruit flavor and genetic diversity across diploid wild Fragaria species via comparative metabolomics profiling. Food Chem 2024; 456:140013. [PMID: 38878536 DOI: 10.1016/j.foodchem.2024.140013] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/04/2024] [Accepted: 06/06/2024] [Indexed: 07/24/2024]
Abstract
Wild Fragaria resources exhibit extensive genetic diversity and desirable edible traits, such as high soluble solid content and flavor compounds. However, specific metabolites in different wild strawberry fruits remain unknown. In this study, we characterized 1008 metabolites covering 11 subclasses among 13 wild diploid resources representing eight species, including F. vesca, F. nilgerrensis, F. viridis, F. nubicola, F. pentaphylla, F. mandschurica, F. chinensis, and F. emeiensis. Fifteen potential metabolite biomarkers were identified to distinguish fruit flavors among the 13 diploid wild Fragaria accessions. A total of nine distinct modules were employed to explore key metabolites related to fruit quality through weighted gene co-expression module analysis, with significant enrichment in amino acid biosynthesis pathway. Notably, the identified significantly different key metabolites highlighted the close association of amino acids, sugars, and anthocyanins with flavor formation. These findings offer valuable resources for improving fruit quality through metabolome-assisted breeding.
Collapse
Affiliation(s)
- Qiuling Du
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Haoming Yu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Yuanyuan Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China
| | - Jian Wang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Ticao Zhang
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| | - Li Xue
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| | - Jiajun Lei
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China.
| |
Collapse
|
15
|
Xuan L, Xiao H, Zhao Z, Feng J, Ni L, Wu J. Integrated Transcriptomics and Metabolomics Reveal Key Insights into Iridoid Biosynthesis in Gentiana crassicaulis Seeds during Germination. Genes (Basel) 2024; 15:1255. [PMID: 39457379 PMCID: PMC11507440 DOI: 10.3390/genes15101255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/24/2024] [Accepted: 09/25/2024] [Indexed: 10/28/2024] Open
Abstract
Background:Gentiana crassicaulis Duthie ex Burk., a key species used in traditional Chinese medicine for treating rheumatic pain and stroke, contains iridoids as its primary active component. However, the biosynthetic mechanisms underlying iridoid production are not fully understood. Methods: This study focused on iridoid biosynthesis during the germination of G. crassicaulis seeds, integrating metabolomic and transcriptomic analyses to uncover the underlying pathways and key candidate genes. Results: 196,132 unigenes and 10 iridoid compounds were identified through RNA-seq and ultra performance liquid chromatography-quadrupole time of flight-mass spectrometer (UPLC-Q-TOF-MS), respectively. The intersection of results from Pearson correlation analysis and weighted gene co-expression network analysis (WGCNA) revealed a significant correlation between 26 genes and iridoid levels, suggesting their potential role in the iridoid metabolism. Notably, six highly expressed candidate genes (DL7H, SLS, CYP76, CYP72A2, CYP84A1, and 13-LOX3) and five iridoids (loganic acid, sweroside, swertiamarin, gentiopicroside, and 6'-O-β-D-glucosyl-gentiopicroside) responded to methyl jasmonate stimulation in G. crassicaulis seedlings. Conclusions: by combining the known functions of candidate gene families, It is hypothesized that the CYP716 and LOX families exert indirect influences on iridoid metabolism, while the CYP71, CYP81, CYP72, CYP76, CYP710 families, 2OG-FeII family, and the glucosyltransferase family are likely to play direct roles in the biosynthetic transformations of the five iridoids. This study provides a theoretical basis for further functional gene validation and metabolic engineering aimed at enhancing iridoid production. The insights gained could lead to improved iridoid production efficiency in medicinal plants, ultimately benefiting the quality and efficacy of medicinal materials.
Collapse
Affiliation(s)
| | | | | | - Jingxian Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Lianghong Ni
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jinrong Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
16
|
Li X, Huo L, Li X, Zhang C, Gu M, Fan J, Xu C, Gong J, Hu X, Zheng Y, Sun X. Genomes of diverse Actinidia species provide insights into cis-regulatory motifs and genes associated with critical traits. BMC Biol 2024; 22:200. [PMID: 39256695 PMCID: PMC11389309 DOI: 10.1186/s12915-024-02002-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Accepted: 09/03/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Kiwifruit, belonging to the genus Actinidia, represents a unique fruit crop characterized by its modern cultivars being genetically diverse and exhibiting remarkable variations in morphological traits and adaptability to harsh environments. However, the genetic mechanisms underlying such morphological diversity remain largely elusive. RESULTS We report the high-quality genomes of five Actinidia species, including Actinidia longicarpa, A. macrosperma, A. polygama, A. reticulata, and A. rufa. Through comparative genomics analyses, we identified three whole genome duplication events shared by the Actinidia genus and uncovered rapidly evolving gene families implicated in the development of characteristic kiwifruit traits, including vitamin C (VC) content and fruit hairiness. A range of structural variations were identified, potentially contributing to the phenotypic diversity in kiwifruit. Notably, phylogenomic analyses revealed 76 cis-regulatory elements within the Actinidia genus, predominantly associated with stress responses, metabolic processes, and development. Among these, five motifs did not exhibit similarity to known plant motifs, suggesting the presence of possible novel cis-regulatory elements in kiwifruit. Construction of a pan-genome encompassing the nine Actinidia species facilitated the identification of gene DTZ79_23g14810 specific to species exhibiting extraordinarily high VC content. Expression of DTZ79_23g14810 is significantly correlated with the dynamics of VC concentration, and its overexpression in the transgenic roots of kiwifruit plants resulted in increased VC content. CONCLUSIONS Collectively, the genomes and pan-genome of diverse Actinidia species not only enhance our understanding of fruit development but also provide a valuable genomic resource for facilitating the genome-based breeding of kiwifruit.
Collapse
Affiliation(s)
- Xiaolong Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Liuqing Huo
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xinyi Li
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Chaofan Zhang
- State Key Laboratory of Rice Biology, Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Biotechnology, Zhejiang University, Hangzhou, Zhejiang, 310058, China
| | - Miaofeng Gu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jialu Fan
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Changbin Xu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Jinli Gong
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Xiaoli Hu
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China
| | - Yi Zheng
- Bioinformatics Center, Beijing University of Agriculture, Beijing, 102206, China
| | - Xuepeng Sun
- Collaborative Innovation Center for Efficient and Green Production of Agriculture in Mountainous Areas of Zhejiang Province, College of Horticulture Science, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
- Key Laboratory of Quality and Safety Control for Subtropical Fruit and Vegetable, Ministry of Agriculture and Rural Affairs, Zhejiang A&F University, Hangzhou, Zhejiang, 311300, China.
| |
Collapse
|
17
|
Su D, Shu P, Hu N, Chen Y, Wu Y, Deng H, Du X, Zhang X, Wang R, Li H, Zeng Y, Li D, Xie Y, Li M, Hong Y, Liu K, Liu M. Dynamic m6A mRNA methylation reveals the involvement of AcALKBH10 in ripening-related quality regulation in kiwifruit. THE NEW PHYTOLOGIST 2024; 243:2265-2278. [PMID: 39056285 DOI: 10.1111/nph.20008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024]
Abstract
Kiwifruit ripening is a complex and highly coordinated process that occurs in conjunction with the formation of fruit edible quality. The significance of epigenetic changes, particularly the impact of N6-methyladenosine (m6A) RNA modification on fruit ripening and quality formation, has been largely overlooked. We monitored m6A levels and gene expression changes in kiwifruit at four different stages using LC-MS/MS, MeRIP, RNA-seq, and validated the function of AcALKBH10 through heterologous transgenic expression in tomato. Notable m6A modifications occurred predominantly at the stop codons and the 3' UTRs and exhibited a gradual reduction in m6A levels during the fruit ripening process. Moreover, these m6A modifications in the aforementioned sites demonstrated a discernible inverse relationship with the levels of mRNA abundance throughout the ripening process, suggesting a repression effect of m6A modification in the modulation of kiwifruit ripening. We further demonstrated that AcALKBH10 rather than AcECT9 predominantly regulates m6A levels in ripening-related genes, thereby exerting the regulatory control over the ripening process and the accumulation of soluble sugars and organic acids, ultimately influencing fruit ripening and quality formation. In conclusion, our findings illuminate the epi-regulatory mechanism involving m6A in kiwifruit ripening, offering a fresh perspective for cultivating high-quality kiwifruit with enhanced nutritional attributes.
Collapse
Affiliation(s)
- Dan Su
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Peng Shu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
- Clinical Medical Research Center, Xinqiao Hospital, Army Medical University, Chongqing, 400037, China
| | - Nan Hu
- College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, Henan, China
| | - Yuan Chen
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Yi Wu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Heng Deng
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xiaofei Du
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Xumeng Zhang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Ruochen Wang
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Huajia Li
- Institute of Agro-Products Processing Science and Technology, Sichuan Academy of Agricultural Sciences, Chengdu, 610066, China
| | - Yunliu Zeng
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, College of Horticulture and Forestry Science, Huazhong Agricultural University, Wuhan, 430070, China
| | - Dawei Li
- Wuhan Botanical Garden, Chinese Academy of Sciences, Jiufeng 1 Road, Wuhan, 430074, Hubei, China
| | - Yue Xie
- China-New Zealand the Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu, 610041, China
| | - Mingzhang Li
- China-New Zealand the Belt and Road Joint Laboratory on Kiwifruit, Kiwifruit Breeding and Utilization Key Laboratory of Sichuan Province, Sichuan Academy of Natural Resource Sciences, Chengdu, 610041, China
| | - Yiguo Hong
- School of Science and the Environment, University of Worcester, Worcester, WR2 6AJ, UK
- State Key Laboratory of North China Crop Improvement and Regulation, College of Horticulture, Hebei Agricultural University, Baoding, 071000, China
| | - Kaidong Liu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, 524048, China
| | - Mingchun Liu
- Key Laboratory of Bio-resource and Eco-environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, China
| |
Collapse
|
18
|
Chen X, Yang Y, Wang M, Tian Q, Jiang Q, Hu X, Ye W, Shen W, Luo X, Chen X, Yuan C, Wang D, Wu T, Li Y, Fu W, Guan L, Li X, Zhang L, Wang Z, Pan Y, Yan X, Yu F. Spatiotemporal analysis of microstructure, sensory attributes, and full-spectrum metabolomes reveals the relationship between bitterness and nootkatone in Alpinia oxyphylla miquel fruit peel and seeds. Food Res Int 2024; 191:114718. [PMID: 39059915 DOI: 10.1016/j.foodres.2024.114718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/28/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024]
Abstract
The Alpinia oxyphylla fruit (AOF) is a popular condiment and traditional Chinese medicine in Asia, known for its neuroprotective compound nootkatone. However, there has not been a comprehensive study of its flavor or the relationship between sensory and bioactive compounds. To address this issue, we examined AOF's microstructure, flavor, and metabolomic profiles during fruit maturation. The key markers used to distinguish samples included fruit expansion, testa pigmentation, aril liquefaction, oil cell expansion, peel spiciness, aril sweetness, and seed bitterness. A full-spectrum metabolomic analysis, combining a nontargeted metabolomics approach for volatile compounds and a widely targeted metabolomics approach for nonvolatile compounds, identified 1,448 metabolites, including 1,410 differentially accumulated metabolites (DAMs). Notably, 31 DAMs, including nootkatone, were associated with spicy peel, sweet aril, and bitter seeds. Correlational analysis indicated that bitterness intensity is an easy-to-use biomarker for nootkatone content in seeds. KEGG enrichment analysis linked peel spiciness to phenylpropanoid and capsaicin biosynthesis, seed bitterness to terpenoid (especially nootkatone) biosynthesis, and aril sweetness to starch and sucrose metabolism. This investigation advances the understanding of AOF's complex flavor chemistry and underlying bioactive principle, encapsulating the essence of the adage: "no bitterness, no intelligence" within the realm of phytochemistry.
Collapse
Affiliation(s)
- Xiaolu Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Yong Yang
- College of Food Science and Engineering, Hainan University/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China
| | - Maoyuan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Qin Tian
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Qian Jiang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Xuan Hu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Weiguo Ye
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Wanyun Shen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Xueting Luo
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; The College of Tropical Crops, Yunnan Agricultural University, Puer 665000, China
| | - Xueyan Chen
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang 550025, China
| | - Chao Yuan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Dan Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Tianrong Wu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; The College of Tropical Crops, Yunnan Agricultural University, Puer 665000, China
| | - Yulan Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Wenna Fu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China; The College of Tropical Crops, Yunnan Agricultural University, Puer 665000, China
| | - Lingliang Guan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Xingfei Li
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Lingyan Zhang
- The College of Tropical Crops, Yunnan Agricultural University, Puer 665000, China
| | - Zhunian Wang
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China
| | - Yonggui Pan
- College of Food Science and Engineering, Hainan University/Key Laboratory of Food Nutrition and Functional Food of Hainan Province, Haikou 570228, China.
| | - Xiaoxia Yan
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China.
| | - Fulai Yu
- Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences/Key Laboratory of Biology and Cultivation of Herb Medicine (Haikou), Ministry of Agriculture and Rural Affairs/Hainan Provincial Engineering Research Center for Tropical Medicinal Plants, Haikou 571101, China.
| |
Collapse
|
19
|
Gao H, Huang X, Lin P, Hu Y, Zheng Z, Yang Q. Transcriptome-associated metabolomics reveals the molecular mechanism of flavonoid biosynthesis in Desmodium styracifolium (Osbeck.) Merr under abiotic stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1431148. [PMID: 39224850 PMCID: PMC11366580 DOI: 10.3389/fpls.2024.1431148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 07/31/2024] [Indexed: 09/04/2024]
Abstract
The primary pharmacological components of Desmodium styracifolium (Osbeck.) Merr. are flavonoids, which have a broad range of pharmacological effects and are important in many applications. However, there have been few reports on the molecular mechanisms underlying flavonoid biosynthesis in the pharmacodynamic constituents of D. styracifolium. Flavonoid biosynthesis in D. styracifolium pharmacodynamic constituents has, however, been rarely studied. In this study, we investigated how salt stress, 6-BA (6-Benzylaminopurine) treatment, and PEG 6000-simulated drought stress affect flavonoid accumulation in D. styracifolium leaves. We integrated metabolomics and transcriptomic analysis to map the secondary metabolism regulatory network of D. styracifolium and identify key transcription factors involved in flavonoid biosynthesis. We then constructed overexpression vectors for the transcription factors and used them to transiently infiltrate Nicotiana benthamiana for functional validation. This experiment confirmed that the transcription factor DsMYB60 promotes the production of total flavonoids in Nicotiana tabacum L. leaves. This study lays the foundation for studying flavonoid biosynthesis in D. styracifolium at the molecular level. Furthermore, this study contributes novel insights into the molecular mechanisms involved in the biosynthesis of active ingredients in medicinal plants.
Collapse
Affiliation(s)
- Hongyang Gao
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Xi Huang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Pengfei Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Shenzhen Traditional Chinese Medicine Manufacturing Innovation Ceter Co., Ltd., Shenzhen, China
| | - Yuqing Hu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ziqi Zheng
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
| | - Quan Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, China
- Guangdong Provincial Research Center on Good Agricultural Practice & Comprehensive Agricultural Development Engineering Technology of Cantonese Medicinal Materials, Guangzhou, China
- Comprehensive Experimental Station of Guangzhou, Chinese Material Medica, China Agriculture Research System (CARS-21-16), Guangzhou, China
- Key Laboratory of State Administration of Traditional Chinese Medicine for Production & Development of Cantonese Medicinal Materials, Guangzhou, China
| |
Collapse
|
20
|
Nazir MF, Lou J, Wang Y, Zou S, Huang H. Kiwifruit in the Omics Age: Advances in Genomics, Breeding, and Beyond. PLANTS (BASEL, SWITZERLAND) 2024; 13:2156. [PMID: 39124274 PMCID: PMC11313697 DOI: 10.3390/plants13152156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/30/2024] [Accepted: 08/02/2024] [Indexed: 08/12/2024]
Abstract
The kiwifruit, Actinidia genus, has emerged as a nutritionally rich and economically significant crop with a history rooted in China. This review paper examines the global journey of the kiwifruit, its genetic diversity, and the role of advanced breeding techniques in its cultivation and improvement. The expansion of kiwifruit cultivation from China to New Zealand, Italy, Chile and beyond, driven by the development of new cultivars and improved agricultural practices, is discussed, highlighting the fruit's high content of vitamins C, E, and K. The genetic resources within the Actinidia genus are reviewed, with emphasis on the potential of this diversity in breeding programs. The review provides extensive coverage to the application of modern omics technologies, including genomics, transcriptomics, proteomics, and metabolomics, which have revolutionized the understanding of the biology of kiwifruit and facilitated targeted breeding efforts. It examines both conventional breeding methods and modern approaches, like marker-assisted selection, genomic selection, mutation breeding, and the potential of CRISPR-Cas9 technology for precise trait enhancement. Special attention is paid to interspecific hybridization and cisgenesis as strategies for incorporating beneficial traits and developing superior kiwifruit varieties. This comprehensive synthesis not only sheds light on the current state of kiwifruit research and breeding, but also outlines the future directions and challenges in the field, underscoring the importance of integrating traditional and omics-based approaches to meet the demands of a changing global climate and market preferences.
Collapse
Affiliation(s)
- Mian Faisal Nazir
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Jinpeng Lou
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Yu Wang
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Shuaiyu Zou
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
| | - Hongwen Huang
- Key Laboratory of Ex Situ Plant Conservation and Utilization of Jiangxi Province, Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 330022, China; (M.F.N.)
- South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
21
|
Sun L, Li L, Chen H, Han X, Liu L, Liu C. Widely Targeted Metabolomics Provides New Insights into Nutritional Profiling and Reveals the Flavonoid Pathway of Pea ( Pisum sativum L.). Foods 2024; 13:1970. [PMID: 38998476 PMCID: PMC11240900 DOI: 10.3390/foods13131970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/19/2024] [Accepted: 05/30/2024] [Indexed: 07/14/2024] Open
Abstract
To learn more about the nutritional composition and health benefits for human consumers of peas, we used a widely targeted metabolomics-based approach to reveal the metabolite components from three main varieties, and a total of 1095 metabolites were identified. A comparison of 487 differentially accumulated metabolites shared among three varieties of fresh and dried peas found most of the amino acids and derivatives were downregulated and most of the lipids and flavonoids were upregulated in dried peas. Furthermore, comparing the main nutrient profiles exclusively showed that there were few differences in free fatty acids, sugars, vitamins, and alkaloids between dried and fresh peas. Peas are especially enriched with B-group vitamins. Through detailed identification and classification, the flavonoid pathway of peas was revealed; a variety of glycosylated derivatives from kaempferol, quercetin, and luteolin were confirmed to be abundant in peas. It was also found that isoflavones are richer in peas than in many other plants, and putatively the isoflavone synthesis pathway originates from liquiritigenin and naringenin. Our study not only offers guidance for understanding the nutritional components of peas, but also provides the basis for healthy diet analysis of the edible value and health benefits of peas.
Collapse
Affiliation(s)
- Longqing Sun
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Li Li
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Hongwei Chen
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xuesong Han
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Liangjun Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Changyan Liu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| |
Collapse
|
22
|
Jin J, Li L, Fan D, Du Y, Jia H, Yang L, Jia W, Hao Q. Budding mutation reprogrammed flavonoid biosynthesis in jujube by deploying MYB41 and bHLH93. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108665. [PMID: 38735155 DOI: 10.1016/j.plaphy.2024.108665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/14/2024]
Abstract
Budding mutations are known to cause metabolic changes in new jujube varieties; however, the mechanisms underlying these changes are still unclear. Here, we performed muti-omics analysis to decipher the detailed metabolic landscape of "Saimisu 1" (S1) and its budding mutation line "Saimisu 2" (S2) at all fruit stages. We found that the genes involved in the biosyntheses of flavonoids, phenylpropanoids, and amino acids were upregulated in S2 fruits at all stages, especially PAL and DFR, resulting in increased accumulation of related compounds in S2 mature fruits. Further co-expression regulatory network analysis showed that the transcription factors MYB41 and bHLH93 potentially regulated the expression of PAL and DFR, respectively, by directly binding to their promoters. Moreover, the overexpression of MYB41 or bHLH93 induced their expression levels to redirect the flux of the flavonoid biosynthetic pathway, eventually leading to high levels of related compounds in S2 fruits. Overall, this study revealed the metabolic variations between S1 and S2 and contributed to the understanding of the mechanisms underlying budding mutation-mediated metabolic variations in plants, eventually providing the basis for breeding excellent jujube varieties using budding mutation lines.
Collapse
Affiliation(s)
- Juan Jin
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Lili Li
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Dingyu Fan
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Youwei Du
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Hongchen Jia
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Lei Yang
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| | - Wensuo Jia
- College of Horticulture, China Agricultural University, Beijing, 100193, China.
| | - Qing Hao
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions (Preparation), Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticulture Crops, Xinjiang Academy of Agricultural Sciences, Urumqi, 830091, China.
| |
Collapse
|
23
|
Wang Y, Liu Y. Recent advances of kwifruit genome and genetic transformation. MOLECULAR HORTICULTURE 2024; 4:19. [PMID: 38725051 PMCID: PMC11084073 DOI: 10.1186/s43897-024-00096-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2024]
Affiliation(s)
- Yingzhen Wang
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, P. R. China
| | - Yongsheng Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, P. R. China.
| |
Collapse
|
24
|
Song HY, Zhao K, Pei YG, Chen HX, Wang XA, Jiang GL, Xie HJ, Chen D, Gong RG. Multi-omics analysis provides new insights into the changes of important nutrients and fructose metabolism in loquat bud sport mutant. FRONTIERS IN PLANT SCIENCE 2024; 15:1374925. [PMID: 38606078 PMCID: PMC11008694 DOI: 10.3389/fpls.2024.1374925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024]
Abstract
Bud sport is a common and stable somatic variation in perennial fruit trees, and often leads to significant modification of fruit traits and affects the breeding value. To investigate the impact of bud sport on the main metabolites in the fruit of white-fleshed loquat, we conducted a multi-omics analysis of loquat fruits at different developmental stages of a white-fleshed bud sport mutant of Dongting loquat (TBW) and its wild type (TBY). The findings from the detection of main fruit quality indices and metabolites suggested that bud sport resulted in a reduction in the accumulation of carotenoids, fructose, titratable acid and terpenoids at the mature stage of TBW, while leading to the accumulation of flavonoids, phenolic acids, amino acids and lipids. The comparably low content of titratable acid further enhances the balanced and pleasent taste profile of TBW. Expression patterns of differentially expressed genes involved in fructose metabolism exhibited a significant increase in the expression level of S6PDH (EVM0006243, EVM0044405) prior to fruit maturation. The comparison of protein sequences and promoter region of S6PDH between TBY and TBW revealed no structural variations that would impact gene function or expression, indicating that transcription factors may be responsible for the rapid up-regulation of S6PDH before maturation. Furthermore, correlation analysis helped to construct a comprehensive regulatory network of fructose metabolism in loquat, including 23 transcription factors, six structural genes, and nine saccharides. Based on the regulatory network and existing studies, it could be inferred that transcription factors such as ERF, NAC, MYB, GRAS, and bZIP may promote fructose accumulation in loquat flesh by positively regulating S6PDH. These findings improve our understanding of the nutritional value and breeding potential of white-fleshed loquat bud sport mutant, as well as serve as a foundation for exploring the genes and transcription factors that regulate fructose metabolism in loquat.
Collapse
Affiliation(s)
- Hai-yan Song
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
- College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Ke Zhao
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Yan-Gang Pei
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
- College of Life Science, Sichuan University, Chengdu, Sichuan, China
| | - Hong-xu Chen
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Xiao-an Wang
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Guo-Liang Jiang
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Hong-Jiang Xie
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Dong Chen
- Horticulture Research Institute, Sichuan Academy of Agricultural Sciences, Chengdu, Sichuan, China
- Key Laboratory of Horticultural Crop Biology and Germplasm Creation in Southwestern China of the Ministry of Agriculture and Rural Affairs, Chengdu, Sichuan, China
| | - Rong-gao Gong
- College of Horticulture, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
25
|
Mao J, Gao Z, Wang X, Lin M, Chen L, Ning X. Combined Widely Targeted Metabolomic, Transcriptomic, and Spatial Metabolomic Analysis Reveals the Potential Mechanism of Coloration and Fruit Quality Formation in Actinidia chinensis cv. Hongyang. Foods 2024; 13:233. [PMID: 38254533 PMCID: PMC10814455 DOI: 10.3390/foods13020233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/02/2024] [Accepted: 01/09/2024] [Indexed: 01/24/2024] Open
Abstract
Postharvest kiwifruit (Actinidia chinensis cv. Hongyang) pulp is mainly composed of outer yellow-flesh (LR) and inner red-flesh (HR). However, information about the differences in coloration and fruit quality between these two parts are limited. In this study, widely targeted metabolomic, transcriptomic, and spatial metabolomic analyses were used to reveal the potential mechanism of coloration and fruit quality formation. The results show that a total of 1001 metabolites were identified in Hongyang kiwifruit, and the accumulation of 211 metabolites were significantly higher in the HR than LR, including 69 flavonoids, 53 phenolic acids, and 38 terpenoids. There were no significant differences in the content of citric acid, quinic acid, glucose, fructose, or sucrose between the LR and HR. These results were consistent with the results from the RNA-seq profile and spatial metabolomic analysis. In addition, a total of 23 key candidate genes related to flesh color and fruit quality formation were identified and validated by qRT-PCR analysis. This study provides a theoretical basis for elucidating the underlying mechanism of the formation of kiwifruit flesh color and fruit quality.
Collapse
Affiliation(s)
- Jipeng Mao
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Zhu Gao
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Xiaoling Wang
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Mengfei Lin
- Jiangxi Kiwifruit Engineering Research Center, Institute of Biological Resources, Jiangxi Academy of Sciences, Nanchang 330096, China; (J.M.)
| | - Lu Chen
- Jinggangshan Institute of Biotechnology, Jiangxi Academy of Sciences, Ji’an 343009, China;
| | - Xinyi Ning
- College of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang 330063, China
| |
Collapse
|
26
|
Jia C, Lai Q, Zhu Y, Feng J, Dan X, Zhang Y, Long Z, Wu J, Wang Z, Qumu X, Wang R, Wang J. Intergrative metabolomic and transcriptomic analyses reveal the potential regulatory mechanism of unique dihydroxy fatty acid biosynthesis in the seeds of an industrial oilseed crop Orychophragmus violaceus. BMC Genomics 2024; 25:29. [PMID: 38172664 PMCID: PMC10765717 DOI: 10.1186/s12864-023-09906-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Accepted: 12/14/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Orychophragmus violaceus is a potentially important industrial oilseed crop due to the two 24-carbon dihydroxy fatty acids (diOH-FA) that was newly identified from its seed oil via a 'discontinuous elongation' process. Although many research efforts have focused on the diOH-FA biosynthesis mechanism and identified the potential co-expressed diacylglycerol acyltranferase (DGAT) gene associated with triacylglycerol (TAG)-polyestolides biosynthesis, the dynamics of metabolic changes during seed development of O. violaceus as well as its associated regulatory network changes are poorly understood. RESULTS In this study, by combining metabolome and transcriptome analysis, we identified that 1,003 metabolites and 22,479 genes were active across four stages of seed development, which were further divided into three main clusters based on the patterns of metabolite accumulation and/or gene expression. Among which, cluster2 was mostly related to diOH-FA biosynthesis pathway. We thus further constructed transcription factor (TF)-structural genes regulatory map for the genes associated with the flavonoids, fatty acids and diOH-FA biosynthesis pathway in this cluster. In particular, several TF families such as bHLH, B3, HD-ZIP, MYB were found to potentially regulate the metabolism associated with the diOH-FA pathway. Among which, multiple candidate TFs with promising potential for increasing the diOH-FA content were identified, and we further traced the evolutionary history of these key genes among species of Brassicaceae. CONCLUSION Taken together, our study provides new insight into the gene resources and potential relevant regulatory mechanisms of diOH-FA biosynthesis uniquely in seeds of O. violaceus, which will help to promote the downstream breeding efforts of this potential oilseed crop and advance the bio-lubricant industry.
Collapse
Affiliation(s)
- Changfu Jia
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiang Lai
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yiman Zhu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiajun Feng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xuming Dan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yulin Zhang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zhiqin Long
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Jiali Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zeng Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiner Qumu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Rui Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| | - Jing Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China.
| |
Collapse
|
27
|
Li P, Zhang Y, Liang J, Hu X, He Y, Miao T, Ouyang Z, Yang Z, Amin AK, Ling C, Liu Y, Zhou X, Lv X, Wang R, Liu Y, Huo H, Liu Y, Tang W, Wang S. Agrobacterium rhizogenes-mediated marker-free transformation and gene editing system revealed that AeCBL3 mediates the formation of calcium oxalate crystal in kiwifruit. MOLECULAR HORTICULTURE 2024; 4:1. [PMID: 38167546 PMCID: PMC10759683 DOI: 10.1186/s43897-023-00077-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 12/12/2023] [Indexed: 01/05/2024]
Abstract
The transformation and gene editing of the woody species kiwifruit are difficult and time-consuming. The fast and marker-free genetic modification system for kiwifruit has not been developed yet. Here, we establish a rapid and efficient marker-free transformation and gene editing system mediated by Agrobacterium rhizogenes for kiwifruit. Moreover, a removing-root-tip method was developed to significantly increase the regeneration efficiency of transgenic hairy roots. Through A. rhizogenes-mediated CRISPR/Cas9 gene editing, the editing efficiencies of CEN4 and AeCBL3 achieved 55 and 50%, respectively. And several homozygous knockout lines for both genes were obtained. Our method has been successfully applied in the transformation of two different species of kiwifruit (Actinidia chinensis 'Hongyang' and A.eriantha 'White'). Next, we used the method to study the formation of calcium oxalate (CaOx) crystals in kiwifruit. To date, little is known about how CaOx crystal is formed in plants. Our results indicated that AeCBL3 overexpression enhanced CaOx crystal formation, but its knockout via CRISPR/Cas9 significantly impaired crystal formation in kiwifruit. Together, we developed a fast maker-free transformation and highly efficient CRISPR-Cas9 gene editing system for kiwifruit. Moreover, our work revealed a novel gene mediating CaOx crystal formation and provided a clue to elaborate the underlying mechanisms.
Collapse
Affiliation(s)
- Pengwei Li
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yiling Zhang
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Jing Liang
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xufan Hu
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan He
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Tonghao Miao
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zhiyin Ouyang
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Zuchi Yang
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Abdul Karim Amin
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Chengcheng Ling
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yize Liu
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiuhong Zhou
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Xiaoran Lv
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Runze Wang
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Yajing Liu
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Heqiang Huo
- Mid-Florida Research and Education Center, University of Florida, Institute of Food and Agricultural Sciences, Apopka, FL, 32703, USA
| | - Yongsheng Liu
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China
| | - Wei Tang
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Songhu Wang
- Anhui Provincial Key Laboratory of Horticultural Crop Quality Biology, School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
28
|
Wang P, Feng X, Jiang J, Yan P, Li Z, Luo W, Chen Y, Ye W. Transcriptome Analysis Reveals Fruit Quality Formation in Actinidia eriantha Benth. PLANTS (BASEL, SWITZERLAND) 2023; 12:4079. [PMID: 38140408 PMCID: PMC10747155 DOI: 10.3390/plants12244079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/26/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023]
Abstract
Actinidia chinensis Planch. is a fruit tree originating from China that is abundant in the wild. Actinidia eriantha Benth. is a type of A. chinensis that has emerged in recent years. The shape of A. eriantha is an elongated oval, and the skin is covered with dense, non-shedding milk-white hairs. The mature fruit has flesh that is bright green in colour, and the fruit has a strong flavour and a grass-like smell. It is appreciated for its rich nutrient content and unique flavour. Vitamin C, sugar, and organic acids are key factors in the quality and flavour composition of A. eriantha but have not yet been systematically analysed. Therefore, we sequenced the transcriptome of A. eriantha at three developmental stages and labelled them S1, S2, and S3, and comparisons of S1 vs. S2, S1 vs. S3, and S2 vs. S3 revealed 1218, 4019, and 3759 upregulated differentially expressed genes and 1823, 3415, and 2226 downregulated differentially expressed genes, respectively. Furthermore, the upregulated differentially expressed genes included 213 core genes, and Gene Ontology enrichment analysis showed that they were enriched in hormones, sugars, organic acids, and many organic metabolic pathways. The downregulated differentially expressed genes included 207 core genes, which were enriched in the light signalling pathway. We further constructed the metabolic pathways of sugars, organic acids, and vitamin C in A. eriantha and identified the genes involved in vitamin C, sugar, and organic acid synthesis in A. eriantha fruits at different stages. During fruit development, the vitamin C content decreased, the carbohydrate compound content increased, and the organic acid content decreased. The gene expression patterns were closely related to the accumulation patterns of vitamin C, sugars, and organic acids in A. eriantha. The above results lay the foundation for the accumulation of vitamin C, sugars, and organic acids in A. eriantha and for understanding flavour formation in A. eriantha.
Collapse
Affiliation(s)
- Peiyu Wang
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.); (J.J.); (Z.L.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Xin Feng
- Fruit Tree Research Institute of Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Jinlan Jiang
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.); (J.J.); (Z.L.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Peipei Yan
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.); (J.J.); (Z.L.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Zunwen Li
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.); (J.J.); (Z.L.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| | - Weihong Luo
- Institute of Horticultural Plant Bioengineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Yiting Chen
- Fruit Tree Research Institute of Fujian Academy of Agricultural Sciences, Fuzhou 350002, China;
| | - Wei Ye
- Sanming Academy of Agricultural Sciences, Shaxian 365051, China; (P.W.); (J.J.); (Z.L.)
- The Key Laboratory of Crop Genetic Improvement and Innovative Utilization in Fujian Province (Mountain Area), Shaxian 365051, China
| |
Collapse
|
29
|
Ye L, Bai F, Zhang L, Luo M, Gao L, Wang Z, Peng J, Chen Q, Luo X. Transcriptome and metabolome analyses of anthocyanin biosynthesis in post-harvest fruits of a full red-type kiwifruit ( Actinidia arguta) 'Jinhongguan'. FRONTIERS IN PLANT SCIENCE 2023; 14:1280970. [PMID: 37877082 PMCID: PMC10591155 DOI: 10.3389/fpls.2023.1280970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 09/22/2023] [Indexed: 10/26/2023]
Abstract
Anthocyanin is the main component of pigment in red-fleshed kiwifruit. 'Jinhongguan' is a new cultivar of Actinidia arguta with red peel and flesh after harvest. However, the specific types of anthocyanin in the 'Jinhongguan' fruit and its biosynthesis pathways remain largely unknown. Here, the total anthocyanin content in the fruit color conversion process was determined. The results showed that total anthocyanin content increased with the deepening color of the peel and flesh. To identify the genes related to anthocyanin biosynthesis and the types of anthocyanins in the 'Jinhongguan' fruit, a combined analysis of transcriptome and anthocyanin-targeted metabolome was carried out. A total of 5751 common differentially expressed genes (DEGs) at different stages of peel and flesh were identified, of which 2767 were common up-DEGs and 2976 were common down-DEGs. KEGG and GO enrichment analyses showed that the common up-DEGs were significantly enriched in anthocyanin synthesis-related pathways, suggesting some up-DEGs are involved in anthocyanin biosynthesis. In total, 29 metabolites were detected in the flesh by anthocyanin-targeted metabolome. Among these, nine were differential accumulation metabolites (DAMs) in comparison to red flesh vs green flesh. Six DAMs were up-regulated, with five of them were cyanidins. The content of cyanidin-3-O-galactoside was much higher than that of other DAMs, making it the main pigment in 'Jinhongguan'. Moreover, a total of 36 anthocyanin synthesis-related structural genes, 27 MYB transcription factors (TFs), 37 bHLH TFs and 9 WDR TFs were screened from the common DEGs. Correlation analysis of transcriptome and metabolome revealed that 9 structural genes, 6 MYB TFs, 6 bHLH TFs and 1 WDR TF were significantly associated with cyanidin-3-O-galactoside. Further, qRT-PCR analysis demonstrated that structural genes (AaPAL3, Aa4CL3, AaCHS2/3/8/9/11, AaDFR1/2, AaANR1, UFGT3a and UFGT6b) and TFs (MYB108, bHLH30, bHLH94-1 and WD43) play important roles in cyanidin biosynthesis. Overall, this study identified cyanidin-3-O-galactoside as the main anthocyanin type and revealed key candidate genes of red coloration of post-harvest fruit in Actinidia arguta. These findings provided new insights into the color formation mechanism of post-harvest fruit and offered a theoretical basis for color regulation in kiwifruit.
Collapse
Affiliation(s)
- Lixia Ye
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Fuxi Bai
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Lei Zhang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Minmin Luo
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
- College of Horticulture and Gardening, Yangtze University, Jingzhou, China
| | - Lei Gao
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Zhi Wang
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Jue Peng
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Qinghong Chen
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| | - Xuan Luo
- Hubei Key Laboratory of Germplasm Innovation and Utilization of Fruit Trees, Institute of Fruit and Tea, Hubei Academy of Agricultural Science, Wuhan, China
| |
Collapse
|
30
|
Wang F, Hu Y, Chen H, Chen L, Liu Y. Exploring the roles of microorganisms and metabolites in the 30-year aging process of the dried pericarps of Citrus reticulata 'Chachi' based on high-throughput sequencing and comparative metabolomics. Food Res Int 2023; 172:113117. [PMID: 37689884 DOI: 10.1016/j.foodres.2023.113117] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 09/11/2023]
Abstract
GuangChenpi (GCP), the dried pericarps of Citrus reticulata 'Chachi', has been consumed daily as a food and dietary supplement in China for centuries. Its health benefits are generally recognized to be dependent on storage time. However, the specific roles of microorganisms and metabolites during long-term storage are still unclear. In this study, comparative metabolomics and high-throughput sequencing techniques were used to investigate the effects of co-existing microorganisms on the metabolites in GCP stored from 1 to 30 years. In total, 386 metabolites were identified and characterized. Most compounds were flavonoids (37%), followed by phenolic acids (20%). Seventeen differentially upregulated metabolites were identified as potential key metabolites in GCP, and 8 of them were screened out as key active ingredients by Venn diagram comparative analyses and verified by network pharmacology and molecular docking. In addition, long-term storage could promote the accumulation of secondary metabolites. Regarding the GCP microbiota, Xeromyces dominated the whole 30-year aging process.Moreover, Spearman correlation analysis indicated that Bacillus thuringiensis and Xeromyces bisporus, the dominant bacterial and fungal species, were strongly associated with the key active metabolites. Our results suggested that the change of active ingredients caused by the dominant microbial is one of the mechanisms affecting the GCP aging process. Our study provides novel functional insights and research perspectives on microorganism-associated metabolite changes that may improve the GCP aging process.
Collapse
Affiliation(s)
- Fu Wang
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Yuan Hu
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Hongping Chen
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China
| | - Lin Chen
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| | - Youping Liu
- Department of Pharmacy, Chengdu University of TCM, State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu, Sichuan, China.
| |
Collapse
|
31
|
Cui M, Liang Z, Liu Y, Sun Q, Wu D, Luo L, Hao Y. Flavonoid profile of Anoectochilus roxburghii (Wall.) Lindl. Under short-term heat stress revealed by integrated metabolome, transcriptome, and biochemical analyses. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 201:107896. [PMID: 37473674 DOI: 10.1016/j.plaphy.2023.107896] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 07/11/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023]
Abstract
Global warming severely threatens plant growth, and could lead to yield reduction. Although findings suggest that flavonoids play important roles in biological process in plants, their response to heat stress in Anoectochilus roxburghii (Wall.) Lindl. remains unclear. Here, we aimed to examine the flavonoid profile of A. roxburghii under heat stress and assess the effect of exogenous application of quercetin on heat stress tolerance. Metabolome analysis showed that quercetin, tricetin, isorhamnetin, scutellarein, and 4',7-Isoflavandiol were the main upregulated flavonoids in A. roxburghii, based on variable importance in the projection >1 and with fold change >2. Determination of the concentrations of the flavonoids using a standard curve revealed that quercetin, kaempferol, and isorhamnetin contents increased by 8.24-, 7.55-, and 5.01-fold, respectively, during heat stress, whereas rutin concentration decreased from 83.04 to 80.89 mg/kg (dry weight). Additionally, transcriptome analysis indicated increased expression of several genes in flavonoid biosynthesis pathways, including phenylalanine ammonia-lyase and chalcone synthase. Moreover, exogenous application of quercetin improved the antioxidant capacity and physiological parameters, including photosynthetic rate and chlorophyll content, of A. roxburghii under heat stress. Overall, the flavonoid profile of A. roxburghii under short-term heat stress was characterized based on integrated metabolomic, transcriptomic, and biochemical analyses, providing new insights for improving the biological value of A. roxburghii.
Collapse
Affiliation(s)
- Meng Cui
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Zhiyan Liang
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Yuxin Liu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Qifang Sun
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Dong Wu
- School of Life Sciences, Nanchang University, Nanchang, 330031, China
| | - Liping Luo
- School of Life Sciences, Nanchang University, Nanchang, 330031, China; State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, 330031, China.
| | - Yingbin Hao
- School of Life Sciences, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|