1
|
Zhang J, Liu C, Ling J, Zhou W, Wang Y, Cheng H, Huang X, Yang Q, Zhang W, Liang T, Zhang Y, Dong J. Revealing the potential of biochar for heavy metal polluted seagrass remediation from microbial perspective. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117991. [PMID: 40037084 DOI: 10.1016/j.ecoenv.2025.117991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/06/2025]
Abstract
Seagrass meadows are under threat due to climate change and human activities, including heavy metal contamination, which can accumulate in seagrass tissues and harm their health and productivity. Despite extensive research, effective remediation strategies are lacking. This study investigated biochar's potential as a remediation agent for seagrass meadows affected by heavy metal pollution. Heavy metal pollution was simulated by adding copper (Cu) and chromium (Cd) to seagrass Thalassia hemprichii, and the remediation effects of biochar were evaluated by monitoring seagrass physiology, root-associated microbial communities, and heavy metal concentrations. Seagrasses can accumulate heavy metals, which adversely affect their health and alter microbial communities. Seagrasses may resist heavy metal stress by releasing dissolved organic carbon (DOC) and recruiting beneficial bacteria. Biochar reduced heavy metal bioavailability and restored seagrass ecosystem health, as evidenced by restored microbial community dynamics. This study highlights biochar's promising role in seagrass meadow restoration impacted by heavy metal pollution.
Collapse
Affiliation(s)
- Jian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Cong Liu
- College of Life Sciences and Oceanography, Shenzhen University, Shenzhen 518060, China
| | - Juan Ling
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| | - Weiguo Zhou
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Youshao Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Hao Cheng
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xiaofang Huang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
| | - Qingsong Yang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China
| | - Wenqian Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Tongyin Liang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Ying Zhang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Junde Dong
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572000, China.
| |
Collapse
|
2
|
Smale DA, King NG. Marine macrophytes in a changing world: mechanisms underpinning responses and resilience to environmental stress - an introduction to a Virtual Issue. THE NEW PHYTOLOGIST 2024; 244:1675-1677. [PMID: 39506199 DOI: 10.1111/nph.20215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
This Editorial introduces the Virtual Issue ‘Marine macrophytes in a changing world: mechanisms underpinning responses and resilience to environmental stress’ that includes the following papers: Campbell et al. (2018), Collier et al. (2018), Ferreira et al. (2014), Jung et al. (2023), Konotchick et al. (2013), Litsi‐Mizan et al. (2023), McIntire & Fajardo (2014), Murúa et al. (2020), Pedersen et al. (2016), Saha et al. (2024), Schmidt & Saha (2021), Smale (2020), Viana et al. (2019). Access the Virtual Issue at www.newphytologist.com/virtualissues.
Collapse
Affiliation(s)
- Dan A Smale
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, PL1 2PB, UK
| | - Nathan G King
- Marine Biological Association of the United Kingdom, The Laboratory, Plymouth, PL1 2PB, UK
| |
Collapse
|
3
|
Hinz H, Terrados J, Moranta J, Reñones O, Ruiz-Frau A, Catalán IA. A risk-based approach to the analysis of potential climate change effects on fish communities associated to Posidonia oceanica in the Mediterranean. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106618. [PMID: 38959782 DOI: 10.1016/j.marenvres.2024.106618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/07/2024] [Accepted: 06/19/2024] [Indexed: 07/05/2024]
Abstract
The Mediterranean is recognized as a climate change hotspot, with ongoing warming anticipated to impact its habitats and their associated fish fauna. Among these habitats, the seagrass Posidonia oceanica stands out as a foundational species, critical for the stability of coastal fish communities. However, our understanding of climate change consequences on P. oceanica associated fish fauna to date remains limited in part due to a lack of long-term data. This study aimed to highlight potential climate change risks to fish species associated with Posidonia, integrating data on species' thermal envelopes with their habitat and depth preferences into a climate change risk index. Specifically, 9 species, including three pipefish and several wrasse species of the genus Symphodus, emerged as being at higher potential risk from climatic change. A historical time series from Palma Bay (Balearic Islands, Spain), spanning 45 years and providing clear evidence of warming, was employed to evaluate trends in species abundance and occurrence in relation to their relative climate risk score. While certain high-risk species like Symphodus cinereus and Diplodus annularis showed an increase in abundance over time, others, such as the pipefish Syngnathus acus, Syngnathus typhle and Nerophis maculatus experienced declines. The absence of observed declines in some high-risk species could be attributed to several factors, such as acclimation, adaptation, or unmet response thresholds. However, this does not rule out the potential for future changes in these species. Factors such as increased nutrient influx due to growing human populations and changes in fishing regulations may also have contributed to the observed trends. These findings underscore the intricate interplay of environmental and anthropogenic factors and accentuate the pressing need for sustained, long-term data acquisition to fathom the implications of climate change on this highly important marine ecosystem.
Collapse
Affiliation(s)
- Hilmar Hinz
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190, Esporles, Balearic Islands, Spain.
| | - Jorge Terrados
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190, Esporles, Balearic Islands, Spain
| | - Joan Moranta
- Centre Oceanogràfic de Balears (COB, IEO-CSIC) Moll de Ponent, s/n, 07015, Palma, Balearic Islands, Spain
| | - Olga Reñones
- Centre Oceanogràfic de Balears (COB, IEO-CSIC) Moll de Ponent, s/n, 07015, Palma, Balearic Islands, Spain
| | - Ana Ruiz-Frau
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190, Esporles, Balearic Islands, Spain
| | - Ignacio A Catalán
- Mediterranean Institute for Advanced Studies (IMEDEA, UIB-CSIC), 07190, Esporles, Balearic Islands, Spain
| |
Collapse
|
4
|
Bockel T, Marre G, Delaruelle G, Agel N, Boissery P, Guilhaumon F, Mouquet N, Mouillot D, Guilbert A, Deter J. Early signals of Posidonia oceanica meadows recovery in a context of wastewater treatment improvements. MARINE POLLUTION BULLETIN 2024; 201:116193. [PMID: 38428047 DOI: 10.1016/j.marpolbul.2024.116193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/21/2024] [Accepted: 02/21/2024] [Indexed: 03/03/2024]
Abstract
Natural ecological restoration is a cornerstone of modern conservation science and managers need more documented "success stories" to lead the way. In French mediterranean sea, we monitored Posidonia oceanica lower limit using acoustic telemetry and photogrammetry and investigated the descriptors driving its variations, at a national scale and over more than a decade. We showed significant effects of environmental descriptors (region, sea surface temperature and bottom temperature) but also of wastewater treatment plant (WWTP) effluents proxies (size of WWTP, time since conformity, and distance to the closest effluent) on the meadows lower limit progression. This work indicates a possible positive response of P. oceanica meadows to improvements in wastewater treatment and a negative effect of high temperatures. While more data is needed, the example of French wastewater policy should inspire stakeholders and coastal managers in their efforts to limit anthropogenic pressures on vulnerable ecosystems.
Collapse
Affiliation(s)
- Thomas Bockel
- Andromède océanologie, 7 place Cassan, Carnon plage, 34130 Mauguio, France; MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095 Montpellier Cedex, France.
| | - Guilhem Marre
- Andromède océanologie, 7 place Cassan, Carnon plage, 34130 Mauguio, France
| | | | - Noémie Agel
- Andromède océanologie, 7 place Cassan, Carnon plage, 34130 Mauguio, France
| | - Pierre Boissery
- Agence de l'Eau Rhône-Méditerranée-Corse, Délégation de Marseille, immeuble CMCI, 2 rue Henri Barbusse, CS 90464, 13207 Marseille Cedex 01, France
| | - François Guilhaumon
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095 Montpellier Cedex, France
| | - Nicolas Mouquet
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095 Montpellier Cedex, France; FRB - CESAB, Institut Bouisson Bertrand, 5, rue de l'École de médecine, 34000 Montpellier, France
| | - David Mouillot
- MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095 Montpellier Cedex, France
| | - Antonin Guilbert
- Andromède océanologie, 7 place Cassan, Carnon plage, 34130 Mauguio, France
| | - Julie Deter
- Andromède océanologie, 7 place Cassan, Carnon plage, 34130 Mauguio, France; MARBEC, UMR IRD-CNRS-UM-IFREMER 9190, Université Montpellier, 34095 Montpellier Cedex, France
| |
Collapse
|
5
|
Litsi-Mizan V, Kalantzi I, Tsapakis M, Pergantis SA, Karakassis I, Apostolaki ET. Trajectories of trace element accumulation in seagrass (Posidonia oceanica) over a decade reveal the footprint of fish farming. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:28139-28152. [PMID: 38532209 PMCID: PMC11058863 DOI: 10.1007/s11356-024-32910-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/10/2024] [Indexed: 03/28/2024]
Abstract
To evaluate the effect of trace element (TE) release from fish farms on seagrass Posidonia oceanica, we compared TE concentrations (As, Cd, Co, Cu, Mn, Mo, Ni, Pb, V, Zn) in shoots near fish cages (Station 'Cage') with those away from them (Station 'Control') in two fish farm facilities (Site 1 and Site 2, North Aegean Sea, Greece). We assessed the present (i.e., 2021, year of sampling) and past (reconstructed period 2012-2020) accumulation of TEs using the living compartments (leaf blades, sheaths, rhizomes, roots, epiphytes) and the dead sheaths, respectively. We also assessed possible seagrass degradation by reconstructing past rhizome production. P. oceanica rhizome production at the 'Cage' stations was up to 50% lower than at the 'Control' stations. Most TE concentrations were higher at 'Cage' stations, but the differences often depended on the seagrass living compartment. Significant differentiation between 'Cage' and 'Control' stations was observed based on the TE concentrations of the dead sheaths during 2012-2020. The contamination level at the 'Cage' stations was mostly moderate in Site 1 and low in Site 2, during the reconstructed period, while an increasing contamination trend was found for certain potential phytotoxic TEs (As, Cu, Cd, Mo, V). Our results emphasize the need for the aquaculture industry to work towards a more ecologically aware approach.
Collapse
Affiliation(s)
- Victoria Litsi-Mizan
- Biology Department, University of Crete, Voutes University Campus, P.O. Box 2208, 70013, Heraklion, Crete, Greece
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Ioanna Kalantzi
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Manolis Tsapakis
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece
| | - Spiros A Pergantis
- Department of Chemistry, Environmental Chemical Processes Laboratory, University of Crete, Voutes University Campus, P.O. Box 2208, 70013, Heraklion, Crete, Greece
| | - Ioannis Karakassis
- Biology Department, University of Crete, Voutes University Campus, P.O. Box 2208, 70013, Heraklion, Crete, Greece
| | - Eugenia T Apostolaki
- Institute of Oceanography, Hellenic Centre for Marine Research, P.O. Box 2214, 71003, Heraklion, Crete, Greece.
| |
Collapse
|
6
|
Ravaglioli C, De Marchi L, Anselmi S, Dattolo E, Fontanini D, Pretti C, Procaccini G, Rilov G, Renzi M, Silverman J, Bulleri F. Ocean acidification impairs seagrass performance under thermal stress in shallow and deep water. ENVIRONMENTAL RESEARCH 2024; 241:117629. [PMID: 37967703 DOI: 10.1016/j.envres.2023.117629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/21/2023] [Accepted: 11/07/2023] [Indexed: 11/17/2023]
Abstract
Despite the effects of ocean acidification (OA) on seagrasses have been widely investigated, predictions of seagrass performance under future climates need to consider multiple environmental factors. Here, we performed a mesocosm study to assess the effects of OA on shallow and deep Posidonia oceanica plants. The experiment was run in 2021 and repeated in 2022, a year characterized by a prolonged warm water event, to test how the effects of OA on plants are modulated by thermal stress. The response of P. oceanica to experimental conditions was investigated at different levels of biological organization. Under average seawater temperature, there were no effects of OA in both shallow and deep plants, indicating that P. oceanica is not limited by current inorganic carbon concentration, regardless of light availability. In contrast, under thermal stress, exposure of plants to OA increased lipid peroxidation and decreased photosynthetic performance, with deep plants displaying higher levels of heat stress, as indicated by the over-expression of stress-related genes and the activation of antioxidant systems. In addition, warming reduced plant growth, regardless of seawater CO2 and light levels, suggesting that thermal stress may play a fundamental role in the future development of seagrass meadows. Our results suggest that OA may exacerbate the negative effects of future warming on seagrasses.
Collapse
Affiliation(s)
- Chiara Ravaglioli
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Lucia De Marchi
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy.
| | - Serena Anselmi
- Bioscience Research Center, Via Aurelia Vecchia, 32, 58015, Orbetello, GR, Italy.
| | - Emanuela Dattolo
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy.
| | - Debora Fontanini
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy.
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università of Pisa, Via Livornese (lato monte), 56122, San Piero a Grado, Pisa, Italy; Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N.Sauro 4, 57128, Livorno, Italy.
| | - Gabriele Procaccini
- Stazione Zoologica Anton Dohrn, Villa Comunale, 80121, Napoli, Italy; National Biodiversity Future Centre (NBFC), Palermo, Italy.
| | - Gil Rilov
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | - Monia Renzi
- Dipartimento di Scienze Della Vita, Università di Trieste, Via Giorgieri, 10, 34127, Trieste, Italy.
| | - Jacob Silverman
- National Institute of Oceanography, Israel Oceanographic and Limnological Research, Haifa, Israel.
| | - Fabio Bulleri
- Dipartimento di Biologia, Università di Pisa, CoNISMa, Via Derna 1, 56126, Pisa, Italy; Centro Interdipartimentale di Ricerca per Lo Studio Degli Effetti Del Cambiamento Climatico (CIRSEC), Università di Pisa, Italy.
| |
Collapse
|