1
|
Cui Y, Gao J, Li Y, Zhang H, Zheng X, Qi Q, Zhang S, Kang BH, Jiang L. Seeing is believing: Whole-cell electron tomography models of vacuole morphology and formation in the early-stage root cortex of Arabidopsis. THE PLANT CELL 2025; 37:koaf057. [PMID: 40111182 PMCID: PMC11973638 DOI: 10.1093/plcell/koaf057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2025] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Grants
- 32270727 National Natural Science Foundation of China
- 2021J01029 Natural Science Foundation of Fujian Province
- 20720210094 Fundamental Research Funds for the Central Universities
- AoE/M-05/12, CUHK14106823, C4033-19E, C4002-20W, C4002-21EF, C2003-22WF, R4005-18, CRS_CUHK405/23, C4014-23G, G-CUHK409/23) Research Grants Council of Hong Kong
- SRFS2122-4S01 Senior Research Fellow Scheme (
- Chinese University of Hong Kong
- CUHK
- Research Committee, Science Faculty and CAS-Croucher Funding Scheme
- Joint Laboratories
Collapse
Affiliation(s)
- Yong Cui
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiayang Gao
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
| | - Yanbin Li
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Hai Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Xiaohui Zheng
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Qing Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Shengqi Zhang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen 361102, China
| | - Byung-Ho Kang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- AoE Centre for Organelle Biogenesis and Function, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Liwen Jiang
- School of Life Sciences, State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong, China
- AoE Centre for Organelle Biogenesis and Function, Centre for Cell and Developmental Biology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- Institute of Plant Molecular Biology and Agricultural Biotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong, China
- CUHK Shenzhen Research Institute, Shenzhen 518057, China
| |
Collapse
|
2
|
Wang T, Li X, Yu H, Zhang H, Xie Z, Gong Q. Inhibition of mitochondrial energy production leads to reorganization of the plant endomembrane system. PLANT PHYSIOLOGY 2025; 197:kiaf033. [PMID: 39874275 DOI: 10.1093/plphys/kiaf033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 01/02/2025] [Accepted: 01/02/2025] [Indexed: 01/30/2025]
Abstract
Mitochondria have generated the bulk of ATP to fuel cellular activities, including membrane trafficking, since the beginning of eukaryogenesis. How inhibition of mitochondrial energy production will affect the form and function of the endomembrane system and whether such changes are specific in today's cells remain unclear. Here, we treated Arabidopsis thaliana with antimycin A (AA), a potent inhibitor of the mitochondrial electron transport chain (mETC), as well as other mETC inhibitors and an uncoupler. We investigated the effects of AA on different endomembrane organelles connected by vesicle trafficking via anterograde and retrograde routes that heavily rely on ATP and GTP provision for SNARE and RAB/GEF function, respectively, in root cells. Similar to previous reports, AA inhibited root growth mainly by shortening the elongation zone (EZ) in an energy- and auxin-dependent way. We found that PIN-FORMED 2 (PIN2) and REQUIRES HIGH BORON 1 (BOR1), key proteins for EZ establishment and cell expansion, undergo accelerated endocytosis and accumulate at enlarged multivesicular bodies (MVBs) after AA treatment. Such accumulation is consistent with the observation that the central vacuole becomes fragmented and spherical and that the Arabidopsis Rab7 homolog RABG3f, a master regulator of MVB and vacuolar function, localizes to the tonoplast, likely in a GTP-bound form. We further examined organelles and vesicle populations along the secretory pathway and found that the Golgi apparatus-in particular, the endoplasmic reticulum-Golgi intermediate compartment (ERGIC)-cannot be maintained when mETC is inhibited. Our findings reveal the importance and specific impact of mitochondrial energy production on endomembrane homeostasis.
Collapse
Affiliation(s)
- Taotao Wang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Xinjing Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Hongying Yu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Heng Zhang
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Zhiping Xie
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| | - Qingqiu Gong
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, P. R. China
| |
Collapse
|
3
|
Zhang X, Wu J, Kong Z. Cellular basis of legume-rhizobium symbiosis. PLANT COMMUNICATIONS 2024; 5:101045. [PMID: 39099171 PMCID: PMC11589484 DOI: 10.1016/j.xplc.2024.101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 07/31/2024] [Indexed: 08/06/2024]
Abstract
The legume-rhizobium symbiosis represents the most important system for terrestrial biological nitrogen fixation on land. Efficient nitrogen fixation during this symbiosis depends on successful rhizobial infection and complete endosymbiosis, which are achieved by complex cellular events including cell-wall remodeling, cytoskeletal reorganizations, and extensive membrane expansion and trafficking. In this review, we explore the dynamic remodeling of the plant-specific cell wall-membrane system-cytoskeleton (WMC) continuum during symbiotic nitrogen fixation. We focus on key processes linked to efficient nitrogen fixation, including rhizobial uptake, infection thread formation and elongation, rhizobial droplet release, cytoplasmic bridge formation, and rhizobial endosymbiosis. Additionally, we discuss the advanced techniques for investigating the cellular basis of root-nodule symbiosis and provide insights into the unsolved mysteries of robust symbiotic nitrogen fixation.
Collapse
Affiliation(s)
- Xiaxia Zhang
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jingxia Wu
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhaosheng Kong
- State Key Laboratory of Plant Genomics, Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101, China; Houji Laboratory in Shanxi Province, Academy of Agronomy, Shanxi, China.
| |
Collapse
|
4
|
Bhandari DD, Brandizzi F. Linking secretion and cytoskeleton in immunity- a case for Arabidopsis TGNap1. Bioessays 2024; 46:e2400150. [PMID: 39302180 DOI: 10.1002/bies.202400150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/02/2024] [Accepted: 09/05/2024] [Indexed: 09/22/2024]
Abstract
In plants, robust defense depends on the efficient and resilient trafficking supply chains to the site of pathogen attack. Though the importance of intracellular trafficking in plant immunity has been well established, a lack of clarity remains regarding the contribution of the various trafficking pathways in transporting immune-related proteins. We have recently identified a trans-Golgi network protein, TGN-ASSOCIATED PROTEIN 1 (TGNap1), which functionally links post-Golgi vesicles with the cytoskeleton to transport immunity-related proteins in the model plant species Arabidopsis thaliana. We propose new hypotheses on the various functional implications of TGNap1 and then elaborate on the surprising heterogeneity of TGN vesicles during immunity revealed by the discovery of TGNap1 and other TGN-associated proteins in recent years.
Collapse
Affiliation(s)
- Deepak D Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, Michigan, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, Michigan, USA
- Department of Plant Biology, Michigan State University, East Lansing, Michigan, USA
| |
Collapse
|
5
|
Bhandari DD, Brandizzi F. Logistics of defense: The contribution of endomembranes to plant innate immunity. J Cell Biol 2024; 223:e202307066. [PMID: 38551496 PMCID: PMC10982075 DOI: 10.1083/jcb.202307066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/15/2024] [Accepted: 03/18/2024] [Indexed: 04/02/2024] Open
Abstract
Phytopathogens cause plant diseases that threaten food security. Unlike mammals, plants lack an adaptive immune system and rely on their innate immune system to recognize and respond to pathogens. Plant response to a pathogen attack requires precise coordination of intracellular traffic and signaling. Spatial and/or temporal defects in coordinating signals and cargo can lead to detrimental effects on cell development. The role of intracellular traffic comes into a critical focus when the cell sustains biotic stress. In this review, we discuss the current understanding of the post-immune activation logistics of plant defense. Specifically, we focus on packaging and shipping of defense-related cargo, rerouting of intracellular traffic, the players enabling defense-related traffic, and pathogen-mediated subversion of these pathways. We highlight the roles of the cytoskeleton, cytoskeleton-organelle bridging proteins, and secretory vesicles in maintaining pathways of exocytic defense, acting as sentinels during pathogen attack, and the necessary elements for building the cell wall as a barrier to pathogens. We also identify points of convergence between mammalian and plant trafficking pathways during defense and highlight plant unique responses to illustrate evolutionary adaptations that plants have undergone to resist biotic stress.
Collapse
Affiliation(s)
- Deepak D. Bhandari
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
| | - Federica Brandizzi
- MSU-DOE Plant Research Laboratory, Michigan State University, East Lansing, MI, USA
- Great Lakes Bioenergy Research Center, Michigan State University, East Lansing, MI, USA
- Department of Plant Biology, Michigan State University, East Lansing, MI, USA
| |
Collapse
|