1
|
Brownlee C, Wheeler GL. Cellular calcium homeostasis and regulation of its dynamic perturbation. QUANTITATIVE PLANT BIOLOGY 2025; 6:e5. [PMID: 40070722 PMCID: PMC11894410 DOI: 10.1017/qpb.2025.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 01/05/2025] [Accepted: 01/06/2025] [Indexed: 03/14/2025]
Abstract
Calcium ions (Ca2+) play pivotal roles in a host of cellular signalling processes. The requirement to maintain resting cytosolic Ca2+ levels in the 100-200 nM range provides a baseline for dynamic excursions from resting levels that determine the nature of many physiological responses to external stimuli and developmental processes. This review provides an overview of the key components of the Ca2+ homeostatic machinery, including known channel-mediated Ca2+ entry pathways along with transporters that act to shape the cytosolic Ca2+ signature. The relative roles of the vacuole and endoplasmic reticulum as sources or sinks for cytosolic Ca2+ are considered, highlighting significant gaps in our understanding. The components contributing to mitochondrial, chloroplast and nuclear Ca2+ homeostasis and organellar Ca2+ signals are also considered. Taken together, a complex picture of the cellular Ca2+ homeostatic machinery emerges with some clear differences from mechanisms operating in many animal cells.
Collapse
Affiliation(s)
- Colin Brownlee
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
- School of Ocean and Earth Sciences, University of Southampton, Southampton, UK
| | - Glen L. Wheeler
- Marine Biological Association, The Laboratory, Citadel Hill, Plymouth, UK
| |
Collapse
|
2
|
Vuong T, Shetty P, Kurtoglu E, Schultz C, Schrader L, Then P, Petersen J, Westermann M, Rredhi A, Chowdhury S, Mukherji R, Schmitt M, Popp J, Stallforth P, Mittag M. Metamorphosis of a unicellular green alga in the presence of acetate and a spatially structured three-dimensional environment. THE NEW PHYTOLOGIST 2025; 245:1180-1196. [PMID: 39639794 PMCID: PMC11711948 DOI: 10.1111/nph.20299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024]
Abstract
Photosynthetic protists, named microalgae, are key players in global primary production. The green microalga Chlamydomonas reinhardtii is a well-studied model organism. In nature, it dwells in acetate-rich paddy rice soil, which is not mimicked by standard liquid laboratory conditions. Here, we maintained the algae in a liquid environment with spatially structured 3-D components (S3-D) and acetate recreating natural conditions. We perform transcriptome sequencing, immunoblotting, fluorescence and electron microscopy, and Raman microspectroscopy to characterize the algae in S3-D vs homogeneous conditions. The algae undergo a metamorphosis-like process when transitioned from homogeneous aquatic to a lifestyle simulating acetate-rich rice soil. These conditions result in reduced cell size and cilia length, an enlarged eyespot and many cells with double-layered cell walls. RNA-Seq reveals alterations in c. 2400 transcripts. Four key photoreceptors including CRY-DASH1 and phototropin governing plastid metabolism along with its eyespot are altered in their protein expression. Consequently, photosynthetic pigments, lipids and starch levels vary as do starch distribution patterns. Fitness against antagonistic bacteria is enhanced concurrently with the downregulation of an involved Ca2+ channel transcript. This study highlights the profound impact of S3-D initiating processes inaccessible under homogeneous laboratory conditions. Thus, overexpression lines for certain photoreceptors and starch are naturally created.
Collapse
Affiliation(s)
- Trang Vuong
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Prateek Shetty
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
| | - Ece Kurtoglu
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Constanze Schultz
- Leibniz Institute of Photonic Technology (Leibniz‐IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI)Albert‐Einstein‐Str. 907745JenaGermany
| | - Laura Schrader
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Patrick Then
- Microverse Imaging Center, Balance of the Microverse Cluster of ExcellenceFriedrich Schiller University JenaPhilosophenweg 707743JenaGermany
| | - Jan Petersen
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | | | - Anxhela Rredhi
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
| | - Somak Chowdhury
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Ruchira Mukherji
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
| | - Michael Schmitt
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Jürgen Popp
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
- Leibniz Institute of Photonic Technology (Leibniz‐IPHT), Member of Leibniz Health Technologies, Member of the Leibniz Center for Photonics in Infection Research (LPI)Albert‐Einstein‐Str. 907745JenaGermany
- Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Member of the Leibniz Center for Photonics in Infection Research (LPI)Friedrich Schiller University JenaHelmholtzweg 407743JenaGermany
| | - Pierre Stallforth
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
- Department of Paleobiotechnology, Leibniz Institute for Natural Product Research and Infection BiologyHans Knöll Institute (HKI)Beutenbergstraße 11a07745JenaGermany
- Institute of Organic Chemistry and Macromolecular ChemistryFriedrich Schiller University JenaHumboldtstrasse 1007743JenaGermany
| | - Maria Mittag
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular BotanyFriedrich Schiller University Jena07743JenaGermany
- Cluster of Excellence Balance of the MicroverseFriedrich Schiller University Jena07743JenaGermany
| |
Collapse
|
3
|
Pivato M, Costa A, Wheeler G, Ballottari M. Abiotic Stress-Induced Chloroplast and Cytosolic Ca 2+ Dynamics in the Green Alga Chlamydomonas reinhardtii. PLANT, CELL & ENVIRONMENT 2025. [PMID: 39853747 DOI: 10.1111/pce.15401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 11/15/2024] [Accepted: 01/08/2025] [Indexed: 01/26/2025]
Abstract
Calcium (Ca2+)-dependent signalling plays a well-characterised role in the perception and response mechanisms to environmental stimuli in plant cells. In the context of a constantly changing environment, it is fundamental to understand how crop yield and microalgal biomass productivity are affected by external factors. Ca2+ signalling is known to be important in different physiological processes in microalgae but many of these signal transduction pathways still need to be characterised. Here, compartment-specific Ca2+ dynamics were monitored in Chlamydomonas reinhardtii cells in response to environmental stressors, such as nutrient availability, osmotic stress, temperature fluctuations and carbon sensing. An in vivo single-cell imaging approach was adopted to directly visualise changes of Ca2+ concentrations at the level of specific subcellular compartments, using C. reinhardtii lines expressing a genetically encoded ratiometric Ca2+ indicator. Hyper-osmotic shock caused cytosolic and chloroplast Ca2+ elevations, whereas high temperature and inorganic carbon availability primarily induced Ca2+ transients in the chloroplast. In contrast, hypo-osmotic stress only induced Ca2+ elevations in the cytosol. The results herein reported show that in Chlamydomonas cells compartment-specific Ca2+ transients are closely related to specific external environmental stimuli, providing useful guidance for studying signal transduction mechanisms exploited by microalgae to respond to specific natural conditions.
Collapse
Affiliation(s)
- Matteo Pivato
- Department of Biotechnology, University of Verona, Verona, Italy
| | - Alex Costa
- Department of Biosciences, University of Milan, Milan, Italy
- Institute of Biophysics, National Research Council of Italy (CNR), Milano, Italy
| | - Glen Wheeler
- Marine Biological Association, The Laboratory, Plymouth, UK
| | | |
Collapse
|
4
|
Flori S, Dickenson J, Gaikwad T, Cole I, Smirnoff N, Helliwell KE, Brownlee C, Wheeler GL. Diatoms exhibit dynamic chloroplast calcium signals in response to high light and oxidative stress. PLANT PHYSIOLOGY 2024; 197:kiae591. [PMID: 39515781 DOI: 10.1093/plphys/kiae591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/09/2024] [Accepted: 09/21/2024] [Indexed: 11/16/2024]
Abstract
Diatoms are a group of silicified algae that play a major role in marine and freshwater ecosystems. Diatom chloroplasts were acquired by secondary endosymbiosis and exhibit important structural and functional differences from the primary plastids of land plants and green algae. Many functions of primary plastids, including photoacclimation and inorganic carbon acquisition, are regulated by calcium-dependent signaling processes. Calcium signaling has also been implicated in the photoprotective responses of diatoms; however, the nature of calcium elevations in diatom chloroplasts and their wider role in cell signaling remains unknown. Using genetically encoded calcium indicators, we find that the diatom Phaeodactylum tricornutum exhibits dynamic calcium elevations within the chloroplast stroma. Stromal calcium ([Ca2+]str) acts independently from the cytosol and is not elevated by stimuli that induce large cytosolic calcium ([Ca2+]cyt) elevations. In contrast, high light and exogenous hydrogen peroxide (H2O2) induce large, sustained [Ca2+]str elevations that are not replicated in the cytosol. Measurements using the fluorescent H2O2 sensor roGFP2-Oxidant Receptor Peroxidase 1 (Orp1) indicate that [Ca2+]str elevations induced by these stimuli correspond to the accumulation of H2O2 in the chloroplast. [Ca2+]str elevations were also induced by adding methyl viologen, which generates superoxide within the chloroplast, and by treatments that disrupt nonphotochemical quenching (NPQ). The findings indicate that diatoms generate specific [Ca2+]str elevations in response to high light and oxidative stress that likely modulate the activity of calcium-sensitive components in photoprotection and other regulatory pathways.
Collapse
Affiliation(s)
- Serena Flori
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Jack Dickenson
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Trupti Gaikwad
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Isobel Cole
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Nicholas Smirnoff
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Katherine E Helliwell
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
- Biosciences, College of Life and Environmental Sciences, University of Exeter, Exeter EX4 4QD, UK
| | - Colin Brownlee
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| | - Glen L Wheeler
- The Marine Biological Association, The Laboratory, Plymouth PL1 2PB, UK
| |
Collapse
|
5
|
Wang J, Sun H, Mou H, Yang S. Protein and lysine improvement harnessed by a signal chain of red light-emitting diode light in Chlorella pyrenoidosa. BIORESOURCE TECHNOLOGY 2024; 414:131620. [PMID: 39393645 DOI: 10.1016/j.biortech.2024.131620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Microalgae are emerging as a novel single-cell protein source that can substitute traditional plant protein feeds. In this investigation, lysine and protein accumulation in Chlorella pyrenoidosa were significantly enhanced under red light-emitting diode light, addressing challenge of limiting amino acid in plant proteins. The study employed targeted metabolomics, HPLC, and qRT-PCR to validate the light-induced pathway triggering lysine biosynthesis. Specifically, the pathway involves Ca2+-CaM as an intermediary in signal transduction, which directly inhibits PEPC activity. This inhibition directs a significant carbon flux towards central carbon metabolism, resulting in increased pyruvate levels-a critical precursor for lysine biosynthesis via the diaminopimelate pathway. Ultimately, the content of protein and lysine under red light increased by 36.02 % and 99.56 %, respectively, compared to those under white light. These findings provide a novel orientation for the precise regulation of lysine accumulation in microalgae, and moreover lay a solid theoretical foundation for producing microalgal proteins.
Collapse
Affiliation(s)
- Jia Wang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Han Sun
- School of Resources and Environment, Nanchang University, Nanchang 330031, China
| | - Haijin Mou
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Shufang Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China.
| |
Collapse
|
6
|
Fu X, Li R, Liu X, Cheng L, Ge S, Wang S, Cai Y, Zhang T, Shi CL, Meng S, Tan C, Jiang CZ, Li T, Qi M, Xu T. CPK10 regulates low light-induced tomato flower drop downstream of IDL6 in a calcium-dependent manner. PLANT PHYSIOLOGY 2024; 196:2014-2029. [PMID: 39218791 DOI: 10.1093/plphys/kiae406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 05/13/2024] [Accepted: 06/01/2024] [Indexed: 09/04/2024]
Abstract
Flower drop is a major cause for yield loss in many crops. Previously, we found that the tomato (Solanum lycopersicum) INFLORESCENCE DEFICIENT IN ABSCISSION-Like (SlIDL6) gene contributes to flower drop induced by low light. However, the molecular mechanisms by which SlIDL6 acts as a signal to regulate low light-induced abscission remain unclear. In this study, SlIDL6 was found to elevate cytosolic Ca2+ concentrations ([Ca2+]cyt) in the abscission zone (AZ), which was required for SlIDL6-induced flower drop under low light. We further identified that 1 calcium-dependent protein kinase gene, SlCPK10, was highly expressed in the AZ and upregulated by SlIDL6-triggered [Ca2+]cyt. Overexpression and knockout of SlCPK10 in tomato resulted in accelerated and delayed abscission, respectively. Genetic evidence further indicated that knockout of SlCPK10 significantly impaired the function of SlIDL6 in accelerating abscission. Furthermore, Ser-371 phosphorylation in SlCPK10 dependent on SlIDL6 was necessary and sufficient for its function in regulating flower drop, probably by stabilizing the SlCPK10 proteins. Taken together, our findings reveal that SlCPK10, as a downstream component of the IDL6 signaling pathway, regulates flower drop in tomato under low-light stress.
Collapse
Affiliation(s)
- Xin Fu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Ruizhen Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Xianfeng Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Lina Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Siqi Ge
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Sai Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Yue Cai
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tong Zhang
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | | | - Sida Meng
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Changhua Tan
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Cai-Zhong Jiang
- Crops Pathology and Genetic Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA
- Department of Plant Sciences, University of California at Davis, CA 95616, USA
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| | - Tao Xu
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
- Key Laboratory of Protected Horticulture of Ministry of Education, Shenyang, Liaoning Province, China
| |
Collapse
|
7
|
Hemker F, Ammelburger N, Jahns P. Intervening dark periods negatively affect the photosynthetic performance of Chlamydomonas reinhardtii during growth under fluctuating high light. PLANT, CELL & ENVIRONMENT 2024; 47:4246-4258. [PMID: 38946377 DOI: 10.1111/pce.15020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 06/11/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024]
Abstract
The acclimation of the green algae Chlamydomoas reinhardtii to high light (HL) has been studied predominantly under continuous illumination of the cells. Here, we investigated the impact of fluctuating HL in alternation with either low light (LL) or darkness on photosynthetic performance and on photoprotective responses. Compared to intervening LL phases, dark phases led to (1) more pronounced reduction of the photosystem II quantum efficiency, (2) reduced degradation of the PsbS protein, (3) lower energy dissipation capacity and (4) an increased pool size of the xanthophyll cycle pigments. These characteristics indicate increased photo-oxidative stress when HL periods are interrupted by dark phases instead of LL phases. This overall trend was similar when comparing long (8 h) and short (30 min) HL phases being interrupted by long (16 h) and short (60 min) phases of dark or low light, respectively. Only the degradation of PsbS was clearly more efficient during long (16 h) LL phases when compared to short (60 min) LL phases.
Collapse
Affiliation(s)
- Fritz Hemker
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Nicolas Ammelburger
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| | - Peter Jahns
- Photosynthesis and Stress Physiology of Plants, Heinrich-Heine-University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
8
|
Ghosh S, Dahiya M, Kumar A, Bheri M, Pandey GK. Calcium imaging: a technique to monitor calcium dynamics in biological systems. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2023; 29:1777-1811. [PMID: 38222278 PMCID: PMC10784449 DOI: 10.1007/s12298-023-01405-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 12/07/2023] [Accepted: 12/11/2023] [Indexed: 01/16/2024]
Abstract
Calcium ion (Ca2+) is a multifaceted signaling molecule that acts as an important second messenger. During the course of evolution, plants and animals have developed Ca2+ signaling in order to respond against diverse stimuli, to regulate a large number of physiological and developmental pathways. Our understanding of Ca2+ signaling and its components in physiological phenomena ranging from lower to higher organisms, and from single cell to multiple tissues has grown exponentially. The generation of Ca2+ transients or signatures for various stress factor is a well-known mechanism adopted in plant and animal systems. However, the decoding of such remarkable signatures is an uphill task and is always an interesting goal for the scientific community. In the past few decades, studies on the concentration and dynamics of intracellular Ca2+ are significantly increasing and have become a trend in modern biology. The advancement in approaches from Ca2+ binding dyes to in vivo Ca2+ imaging through the use of Ca2+ biosensors to achieve spatio-temporal resolution in micro and milliseconds range, provide us phenomenal opportunities to study live cell Ca2+ imaging or dynamics. Here, we describe the usage, improvement and advancement of Ca2+ based dyes, genetically encoded probes and sensors to achieve extraordinary Ca2+ imaging in plants and animals. Graphical abstract
Collapse
Affiliation(s)
- Soma Ghosh
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Monika Dahiya
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Amit Kumar
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Malathi Bheri
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| | - Girdhar K. Pandey
- Department of Plant Molecular Biology, University of Delhi South Campus, Benito Juarez Road, Dhaula Kuan, New Delhi, 110021 India
| |
Collapse
|