1
|
Silva LM, Pereira L, Kaack L, Guan X, Pfaff J, Trabi CL, Jansen S. The potential link between gas diffusion and embolism spread in angiosperm xylem: Evidence from flow-centrifuge experiments and modelling. PLANT, CELL & ENVIRONMENT 2024; 47:4977-4991. [PMID: 39119783 DOI: 10.1111/pce.15084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 06/19/2024] [Accepted: 07/27/2024] [Indexed: 08/10/2024]
Abstract
Understanding xylem embolism formation is challenging due to dynamic changes and multiphase interactions in conduits. Here, we hypothesise that embolism spread involves gas diffusion in xylem, and is affected by time. We measured hydraulic conductivity (Kh) in flow-centrifuge experiments over 1 h at a given pressure and temperature for stem samples of three angiosperm species. Temporal changes in Kh at 5, 22, and 35°C, and at various pressures were compared to modelled gas concentration changes in a recently embolised vessel in the centre of a centrifuge sample. Temporal changes in Kh were logarithmic and species-specific. Maximum relative increases of Kh between 6% and 40% happened at 22°C for low centrifugal speed (<3250 RPM), while maximum decreases between 41% and 61% occurred at higher speeds. These reductions in Kh were experimentally shown to be associated with a temporal increase of embolism at the centre of centrifuge samples, which was likely associated with gas concentration increases in recently embolized vessels. Although embolism is mostly pressure-driven, our experimental and modelled data indicate that time, conduit characteristics, and temperature are involved due to their potential role in gas diffusion. Gas diffusion, however, does not seem to cover the entire process of embolism spread.
Collapse
Affiliation(s)
| | | | - Lucian Kaack
- Institute of Botany, Ulm University, Ulm, Germany
- Botanical Garden of Ulm University, Hans-Krebs-Weg, Ulm, Germany
| | - Xinyi Guan
- Institute of Botany, Ulm University, Ulm, Germany
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, China
| | - Jonas Pfaff
- Institute of Botany, Ulm University, Ulm, Germany
| | - Christophe L Trabi
- Institute of Botany, Ulm University, Ulm, Germany
- Core Facility Confocal and Multiphoton Microscopy, Ulm University, Ulm, Germany
| | | |
Collapse
|
2
|
Miranda MT, Pires GS, Pereira L, de Lima RF, da Silva SF, Mayer JLS, Azevedo FA, Machado EC, Jansen S, Ribeiro RV. Rootstocks affect the vulnerability to embolism and pit membrane thickness in Citrus scions. PLANT, CELL & ENVIRONMENT 2024; 47:3063-3075. [PMID: 38660960 DOI: 10.1111/pce.14924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 04/08/2024] [Accepted: 04/10/2024] [Indexed: 04/26/2024]
Abstract
Embolism resistance of xylem tissue varies among species and is an important trait related to drought resistance, with anatomical attributes like pit membrane thickness playing an important role in avoiding embolism spread. Grafted Citrus trees are commonly grown in orchards, with the rootstock being able to affect the drought resistance of the whole plant. Here, we evaluated how rootstocks affect the vulnerability to embolism resistance of the scion using several rootstock/scion combinations. Scions of 'Tahiti' acid lime, 'Hamlin', 'Pera' and 'Valencia' oranges grafted on a 'Rangpur' lime rootstock exhibit similar vulnerability to embolism. In field-grown trees, measurements of leaf water potential did not suggest significant embolism formation during the dry season, while stomata of Citrus trees presented an isohydric response to declining water availability. When 'Valencia' orange scions were grafted on 'Rangpur' lime, 'IAC 1710' citrandarin, 'Sunki Tropical' mandarin or 'Swingle' citrumelo rootstocks, variation in intervessel pit membrane thickness of the scion was found. The 'Rangpur' lime rootstock, which is known for its drought resistance, induced thicker pit membranes in the scion, resulting in higher embolism resistance than the other rootstocks. Similarly, the rootstock 'IAC 1710' citrandarin generated increased embolism resistance of the scion, which is highly relevant for citriculture.
Collapse
Affiliation(s)
- Marcela T Miranda
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center of Agricultural and Post-Harvest Biosystems, Agronomic Institute (IAC), Campinas, SP, Brazil
- Institute of Botany, Ulm University, Ulm, Germany
| | - Gabriel S Pires
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | | | - Rodrigo F de Lima
- Laboratory of Plant Anatomy, Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Simone F da Silva
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Juliana L S Mayer
- Laboratory of Plant Anatomy, Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernando A Azevedo
- Center of Citriculture Sylvio Moreira, Agronomic Institute (IAC), Cordeirópolis, SP, Brazil
| | - Eduardo C Machado
- Laboratory of Plant Physiology 'Coaracy M. Franco', Center of Agricultural and Post-Harvest Biosystems, Agronomic Institute (IAC), Campinas, SP, Brazil
| | | | - Rafael V Ribeiro
- Laboratory of Crop Physiology (LCroP), Department of Plant Biology, Institute of Biology, State University of Campinas (UNICAMP), Campinas, SP, Brazil
| |
Collapse
|
3
|
Jiang GF, Qin BT, Pang YK, Qin LL, Pereira L, Roddy AB. Limited effects of xylem anatomy on embolism resistance in cycad leaves. THE NEW PHYTOLOGIST 2024; 243:1329-1346. [PMID: 38898642 DOI: 10.1111/nph.19914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/01/2024] [Indexed: 06/21/2024]
Abstract
Drought-induced xylem embolism is a primary cause of plant mortality. Although c. 70% of cycads are threatened by extinction and extant cycads diversified during a period of increasing aridification, the vulnerability of cycads to embolism spread has been overlooked. We quantified the vulnerability to drought-induced embolism, pressure-volume curves, in situ water potentials, and a suite of xylem anatomical traits of leaf pinnae and rachises for 20 cycad species. We tested whether anatomical traits were linked to hydraulic safety in cycads. Compared with other major vascular plant clades, cycads exhibited similar embolism resistance to angiosperms and pteridophytes but were more vulnerable to embolism than noncycad gymnosperms. All 20 cycads had both tracheids and vessels, the proportions of which were unrelated to embolism resistance. Only vessel pit membrane fraction was positively correlated to embolism resistance, contrary to angiosperms. Water potential at turgor loss was significantly correlated to embolism resistance among cycads. Our results show that cycads exhibit low resistance to xylem embolism and that xylem anatomical traits - particularly vessels - may influence embolism resistance together with tracheids. This study highlights the importance of understanding the mechanisms of drought resistance in evolutionarily unique and threatened lineages like the cycads.
Collapse
Affiliation(s)
- Guo-Feng Jiang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Bo-Tao Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Yu-Kun Pang
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
| | - Lan-Li Qin
- Guangxi Key Laboratory of Forest Ecology and Conservation, Guangxi Colleges and Universities Key Laboratory for Cultivation and Utilization of Subtropical Forest Plantation, and State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Forestry, Guangxi University, Daxuedonglu 100, Nanning, Guangxi, 530004, China
- College of Chemistry and Bioengineering, Hechi University, Yizhou, Guangxi, 546300, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Adam B Roddy
- Department of Biological Sciences, Institute of Environment, Florida International University, Miami, FL, 33199, USA
| |
Collapse
|
4
|
Zhang Y, Pereira L, Kaack L, Liu J, Jansen S. Gold perfusion experiments support the multi-layered, mesoporous nature of intervessel pit membranes in angiosperm xylem. THE NEW PHYTOLOGIST 2024; 242:493-506. [PMID: 38404029 DOI: 10.1111/nph.19608] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 01/30/2024] [Indexed: 02/27/2024]
Abstract
Fluid transport across intervessel pit membranes of angiosperm xylem plays a major role in plant transpiration, with transport resistance largely depending on pore constriction sizes. Traditionally, fluid particles traversing pit membranes are assumed to cross a single instead of multiple pore constrictions. We tested a multi-layered pit membrane model in xylem of eight angiosperm species by estimating the size frequency of pore constrictions in relation to pit membrane thickness and compared modelled data with perfusion characteristics of nanoscale gold particles based on transmission electron microscopy. The size frequency of modelled pore constrictions showed similar patterns to the measured number of perfused particle sizes inside pit membranes, although frequency values measured were 10-50 times below modelled data. Small particles enter pit membranes most easily, especially when injected in thin pit membranes. The trapping of gold particles by pore constrictions becomes more likely with increasing pore constriction number and pit membrane thickness. While quantitative differences between modelled and experimental data are due to various practical limitations, their qualitative agreement supports a multi-layered pit membrane model with multiple pore constrictions. Pore constrictions between 5 and 50 nm are realistic, and confirm the mesoporous nature of pit membranes.
Collapse
Affiliation(s)
- Ya Zhang
- Anhui Provincial Key Laboratory of the Conservation and Exploitation of Biological Resources, College of Life Sciences, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Luciano Pereira
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Lucian Kaack
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| | - Jiabao Liu
- College of Ecology and Environment, Anhui Normal University, Beijingzhong Road 2, Wuhu, 241000, China
| | - Steven Jansen
- Institute of Botany, Ulm University, Albert-Einstein-Allee 11, Ulm, D-89081, Germany
| |
Collapse
|