1
|
Chen J, Tan W. Platelet activation and immune response in diabetic microangiopathy. Clin Chim Acta 2020; 507:242-247. [DOI: 10.1016/j.cca.2020.04.042] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 04/29/2020] [Accepted: 04/29/2020] [Indexed: 01/19/2023]
|
2
|
Wei Z, Zhang Y, Chen J, Hu Y, Jia P, Wang X, Zhao Q, Deng Y, Li N, Zang Y, Qin J, Wang X, Lu W. Pathogenic CARD11 mutations affect B cell development and differentiation through a noncanonical pathway. Sci Immunol 2020; 4:4/41/eaaw5618. [PMID: 31784498 DOI: 10.1126/sciimmunol.aaw5618] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 06/29/2019] [Accepted: 10/24/2019] [Indexed: 01/10/2023]
Abstract
Pathogenic CARD11 mutations cause aberrant nuclear factor κB (NF-κB) activation, which is presumably responsible for multiple immunological disorders. However, whether there is an NF-κB-independent regulatory mechanism contributing to CARD11 mutations related to pathogenesis remains undefined. Using three distinct genetic mouse models, the Card11 knockout (KO) mouse model mimicking primary immunodeficiency, the CARD11 E134G point mutation mouse model representing BENTA (B cell expansion with NF-κB and T cell anergy) disease, and the mouse model bearing oncogenic K215M mutation, we show that CARD11 has a noncanonical function as a negative regulator of the AKT-FOXO1 signal axis, independent of NF-κB activation. Although BENTA disease-related E134G mutant elevates NF-κB activation, we find that E134G mutant mice phenotypically copy Card11 KO mice, in which NF-κB activation is disrupted. Mechanistically, the E134G mutant causes exacerbated AKT activation and reduced FOXO1 protein in B cells similar to that in Card11 KO cells. Moreover, the oncogenic CARD11 mutant K215M reinforces the importance of the noncanonical function of CARD11. In contrast to the E134G mutant, K215M shows a stronger inhibitory effect on AKT activation and more stabilized FOXO1. Likewise, E134G and K215M mutants have converse impacts on B cell development and differentiation. Our results demonstrate that, besides NF-κB, CARD11 also governs the AKT/FOXO1 signaling pathway in B cells. The critical role of CARD11 is further revealed by the effects of pathogenic CARD11 mutants on this noncanonical regulatory function on the AKT-FOXO1 signaling axis.
Collapse
Affiliation(s)
- Zheng Wei
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Zhang
- Division of Immunotherapy, Institute of Human Virology (IHV), School of Medicine, University of Maryland, Baltimore, MD, USA
| | - Jingjing Chen
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China
| | - Yu Hu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Pan Jia
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xuelei Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Qifang Zhao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yicong Deng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ni Li
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yi Zang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jun Qin
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoming Wang
- Department of Immunology, Nanjing Medical University, 101 Longmain Road, Nanjing 211166, China.
| | - Wei Lu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
3
|
Nfkbie-deficiency leads to increased susceptibility to develop B-cell lymphoproliferative disorders in aged mice. Blood Cancer J 2020; 10:38. [PMID: 32170099 PMCID: PMC7070037 DOI: 10.1038/s41408-020-0305-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 02/17/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Aberrant NF-κB activation is a hallmark of most B-cell malignancies. Recurrent inactivating somatic mutations in the NFKBIE gene, which encodes IκBε, an inhibitor of NF-κB-inducible activity, are reported in several B-cell malignancies with highest frequencies in chronic lymphocytic leukemia and primary mediastinal B-cell lymphoma, and account for a fraction of NF-κB pathway activation. The impact of NFKBIE deficiency on B-cell development and function remains, however, largely unknown. Here, we show that Nfkbie-deficient mice exhibit an amplification of marginal zone B cells and an expansion of B1 B-cell subsets. In germinal center (GC)-dependent immune response, Nfkbie deficiency triggers expansion of GC B-cells through increasing cell proliferation in a B-cell autonomous manner. We also show that Nfkbie deficiency results in hyperproliferation of a B1 B-cell subset and leads to increased NF-κB activation in these cells upon Toll-like receptor stimulation. Nfkbie deficiency cooperates with mutant MYD88 signaling and enhances B-cell proliferation in vitro. In aged mice, Nfkbie absence drives the development of an oligoclonal indolent B-cell lymphoproliferative disorders, resembling monoclonal B-cell lymphocytosis. Collectively, these findings shed light on an essential role of IκBε in finely tuning B-cell development and function.
Collapse
|
4
|
Wang Q, Tao S, Zhu N, Li T, Yu L. Silencing circular RNA circANKRD36 remits lipopolysaccharide-induced inflammatory damage by regulating microRNA-15/MyD88. J Cell Biochem 2019; 121:2704-2712. [PMID: 31692058 DOI: 10.1002/jcb.29490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 10/10/2019] [Indexed: 12/18/2022]
Abstract
Bedsore is a familiar disease, which fearfully harms the health of the patients. We investigated the efficacy and mechanism of circular RNA circANKRD36 on HaCaT cell in inflammatory damage. CCK-8 and flow cytometry were respectively used to investigate the efficacies of lipopolysaccharide (LPS), circANKRD36, and microRNA (miR)-15 on cell viability and apoptosis. Moreover, circANKRD36 and miR-15 expression were changed by cell transfection and investigated by reverse transcription-quantitative polymerase chain reaction. Furthermore, the levels of Bax, pro caspase-3, cleaved caspase-3, interleukin (IL)-1β, IL-6, and proteins of the pathway were investigated by Western blot. Otherwise, the levels of IL-1β and IL-6 were investigated by enzyme-linked immunosorbent assay. Reactive oxygen species (ROS) was investigated by ROS assay. The relation between myeloid differentiation factor 88 (MyD88) and miR-15 was investigated by luciferase assay. LPS caused inflammatory damage and upregulated circANKRD36. circANKRD36 was silenced in cells and si-circANKRD36 remitted inflammatory damage. Furthermore, si-circANKRD36 negatively regulated miR-15 and miR-15 inhibitor could reverse the efficacies of si-circANKRD36. Besides, si-circANKRD36 restrained the NF-κB pathway by upregulating miR-15. Finally, MyD88 was authenticated as a target of miR-15. circANKRD36 remitted cell inflammatory damage upregulating miR-15/MyD88 via the NF-κB pathway in HaCaT cells.
Collapse
Affiliation(s)
- Qiaoyan Wang
- Department of Hepatopathy II, Qingdao No. 6 People's Hospital, Qingdao, China
| | - Shujun Tao
- Department of Hepatopathy II, Qingdao No. 6 People's Hospital, Qingdao, China
| | - Nan Zhu
- Department of Hepatopathy II, Qingdao No. 6 People's Hospital, Qingdao, China
| | - Tingting Li
- Department of Hepatopathy II, Qingdao No. 6 People's Hospital, Qingdao, China
| | - Lingling Yu
- Department of Hepatopathy X, Qingdao No. 6 People's Hospital, Qingdao, China
| |
Collapse
|
5
|
Khoenkhoen S, Erikson E, Ádori M, Stark JM, Scholz JL, Cancro MP, Pedersen GK, Karlsson Hedestam GB. TACI expression and plasma cell differentiation are impaired in the absence of functional IκBNS. Immunol Cell Biol 2019; 97:485-497. [PMID: 30597621 PMCID: PMC6850186 DOI: 10.1111/imcb.12228] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 12/17/2018] [Accepted: 12/27/2018] [Indexed: 12/15/2022]
Abstract
Impaired classical NF‐κB pathway signaling causes reduced antibody responses to T‐independent (TI) antigens. We investigated the potential reasons for defective TI responses in mice lacking the atypical inhibitory kappa B (IκB) protein of the NF‐κB pathway, IκBNS. Analyses of the plasma cell compartment in vitro and in vivo after challenge with lipopolysaccharide (LPS) showed significant decreases in the frequencies of plasma cells in the absence of IκBNS. In vitro activation of B cells via the B cell receptor or via Toll‐like receptor 4 revealed that early activation events were unaffected in IκBNS‐deficient B cells, while proliferation was reduced compared to in similarly stimulated wildtype (wt) B cells. IκBNS‐deficient B cells also displayed impaired upregulation of the transmembrane activator and calcium modulator cyclophilin ligand interactor (TACI), which is essential for TI responses, and decreased sensitivity to TACI ligands upon stimulation. Furthermore, IκBNS‐deficient B cells, in contrast to wt B cells, displayed altered expression of IRF4, Blimp‐1 and Pax5 upon LPS‐induced differentiation, indicating impaired transcriptional regulation of plasma cell generation.
Collapse
Affiliation(s)
- Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Elina Erikson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Jean L Scholz
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Michael P Cancro
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | | |
Collapse
|
6
|
Nyhoff LE, Clark ES, Barron BL, Bonami RH, Khan WN, Kendall PL. Bruton's Tyrosine Kinase Is Not Essential for B Cell Survival beyond Early Developmental Stages. THE JOURNAL OF IMMUNOLOGY 2018; 200:2352-2361. [PMID: 29483358 DOI: 10.4049/jimmunol.1701489] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 01/30/2018] [Indexed: 12/21/2022]
Abstract
Bruton's tyrosine kinase (Btk) is a crucial regulator of B cell signaling and is a therapeutic target for lymphoma and autoimmune disease. BTK-deficient patients suffer from humoral immunodeficiency, as their B cells fail to progress beyond the bone marrow. However, the role of Btk in fully developed, mature peripheral B cells is not well understood. Analysis using BTK inhibitors is complicated by suboptimal inhibition, off-target effects, or failure to eliminate BTK's adaptor function. Therefore a Btkflox/Cre-ERT2 mouse model was developed and used to excise Btk after B cell populations were established. Mice lacking Btk from birth are known to have reduced follicular (FO) compartments, with expanded transitional populations, suggesting a block in development. In adult Btkflox/Cre-ERT2 mice, Btk excision did not reduce FO B cells, which persisted for weeks. Autoimmune-prone B1 cells also survived conditional Btk excision, contrasting their near absence in global Btk-deficient mice. Therefore, Btk supports BCR signaling during selection into the FO and B1 compartments, but is not needed to maintain these cell populations. B1-related natural IgM levels remained normal, contrasting global Btk deficiency, but B cell proliferation and T-independent type II immunization responses were blunted. Thus, B cells have nuanced signaling responses that are differentially regulated by Btk for development, survival, and function. These findings raise the possibility that Btk may also be expendable for survival of mature human B cells, therefore requiring prolonged dosing to be effective, and that success of BTK inhibitors may depend in part on off-target effects.
Collapse
Affiliation(s)
- Lindsay E Nyhoff
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232.,Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Emily S Clark
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Bridgette L Barron
- Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Rachel H Bonami
- Division of Rheumatology, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| | - Wasif N Khan
- Department of Microbiology and Immunology, Miller School of Medicine, University of Miami, Miami, FL 33136; and
| | - Peggy L Kendall
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University School of Medicine, Nashville, TN 37232; .,Division of Allergy, Pulmonary, and Critical Care, Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232
| |
Collapse
|
7
|
Habir K, Aeinehband S, Wermeling F, Malin S. A Role for the Transcription Factor Arid3a in Mouse B2 Lymphocyte Expansion and Peritoneal B1a Generation. Front Immunol 2017; 8:1387. [PMID: 29114251 PMCID: PMC5660704 DOI: 10.3389/fimmu.2017.01387] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 10/09/2017] [Indexed: 12/12/2022] Open
Abstract
The initiation, commitment, and terminal differentiation of the B cell lineage is stringently controlled by the coordinated action of various transcription factors. Among these, Arid3a has previously been implicated in regulating early B lymphopoiesis, humoral immune responses to phosphocholine, and furthermore to promote the B1 over the B2 cell lineage. We have now interrogated the function of Arid3a in the adult mouse using conditional mutagenesis. We demonstrate that loss of Arid3a does not affect early B cell development or lineage commitment but rather loss of this transcription factor results in a broad expansion of bone marrow B lymphopoiesis in a manner that reflects its developmental expression pattern. Furthermore, loss of Arid3a resulted in expanded splenic B cell numbers with the exception of the B1 lineage that was maintained at normal numbers. However, B1a lymphoyctes were reduced in the peritoneal cavity. In addition, antibody responses to phosphocholine were attenuated in the absence of Arid3a. Hence, functional Arid3a is required in mature B cells for specific immune responses and for generating normal numbers of B cells in a subset dependent manner.
Collapse
Affiliation(s)
- Katrin Habir
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Shahin Aeinehband
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Fredrik Wermeling
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Stephen Malin
- Department of Medicine, Center for Molecular Medicine, Karolinska University Hospital, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
8
|
PTIP chromatin regulator controls development and activation of B cell subsets to license humoral immunity in mice. Proc Natl Acad Sci U S A 2017; 114:E9328-E9337. [PMID: 29078319 PMCID: PMC5676899 DOI: 10.1073/pnas.1707938114] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
To provide optimal host defense, the full spectrum of antibody-based immunity requires natural antibodies and immunization-induced antigen-specific antibodies. Here we show that the PTIP (Pax transactivation domain-interacting protein) chromatin regulator is induced by B cell activation to potentiate the establishment of steady-state and postimmune serum antibody levels. It does so by promoting activation-associated proliferation and differentiation of all the major B cell subsets, at least in part, through regulating the NF-κB pathway. With the genetic basis still unknown for a majority of patients with common variable immunodeficiency, further work investigating how PTIP controls cell signaling may generate valuable new insight for human health and disease. B cell receptor signaling and downstream NF-κB activity are crucial for the maturation and functionality of all major B cell subsets, yet the molecular players in these signaling events are not fully understood. Here we use several genetically modified mouse models to demonstrate that expression of the multifunctional BRCT (BRCA1 C-terminal) domain-containing PTIP (Pax transactivation domain-interacting protein) chromatin regulator is controlled by B cell activation and potentiates steady-state and postimmune antibody production in vivo. By examining the effects of PTIP deficiency in mice at various ages during ontogeny, we demonstrate that PTIP promotes bone marrow B cell development as well as the neonatal establishment and subsequent long-term maintenance of self-reactive B-1 B cells. Furthermore, we find that PTIP is required for B cell receptor- and T:B interaction-induced proliferation, differentiation of follicular B cells during germinal center formation, and normal signaling through the classical NF-κB pathway. Together with the previously identified role for PTIP in promoting sterile transcription at the Igh locus, the present results establish PTIP as a licensing factor for humoral immunity that acts at several junctures of B lineage maturation and effector cell differentiation by controlling B cell activation.
Collapse
|
9
|
Pedersen GK, Ádori M, Stark JM, Khoenkhoen S, Arnold C, Beutler B, Karlsson Hedestam GB. Heterozygous Mutation in IκBNS Leads to Reduced Levels of Natural IgM Antibodies and Impaired Responses to T-Independent Type 2 Antigens. Front Immunol 2016; 7:65. [PMID: 26973645 PMCID: PMC4771772 DOI: 10.3389/fimmu.2016.00065] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Accepted: 02/12/2016] [Indexed: 11/24/2022] Open
Abstract
Mice deficient in central components of classical NF-κB signaling have low levels of circulating natural IgM antibodies and fail to respond to immunization with T-independent type 2 (TI-2) antigens. A plausible explanation for these defects is the severely reduced numbers of B-1 and marginal zone B (MZB) cells in such mice. By using an ethyl-N-nitrosourea mutagenesis screen, we identified a role for the atypical IκB protein IκBNS in humoral immunity. IκBNS-deficient mice lack B-1 cells and have severely reduced numbers of MZB cells, and thus resemble several other strains with defects in classical NF-κB signaling. We analyzed mice heterozygous for the identified IκBNS mutation and demonstrate that these mice have an intermediary phenotype in terms of levels of circulating IgM antibodies and responses to TI-2 antigens. However, in contrast to mice that are homozygous for the IκBNS mutation, the heterozygous mice had normal frequencies of B-1 and MZB cells. These results suggest that there is a requirement for IκBNS expression from two functional alleles for maintaining normal levels of circulating natural IgM antibodies and responses to TI-2 antigens.
Collapse
Affiliation(s)
- Gabriel K Pedersen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Monika Ádori
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Julian M Stark
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Sharesta Khoenkhoen
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet , Stockholm , Sweden
| | - Carrie Arnold
- Department of Genetics, The Scripps Research Institute , La Jolla, CA , USA
| | - Bruce Beutler
- Center for the Genetics of Host Defense, University of Texas Southwestern Medical Center , Dallas, TX , USA
| | | |
Collapse
|
10
|
Macias-Garcia A, Heizmann B, Sellars M, Marchal P, Dali H, Pasquali JL, Muller S, Kastner P, Chan S. Ikaros Is a Negative Regulator of B1 Cell Development and Function. J Biol Chem 2016; 291:9073-86. [PMID: 26841869 DOI: 10.1074/jbc.m115.704239] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Indexed: 12/19/2022] Open
Abstract
B1 B cells secrete most of the circulating natural antibodies and are considered key effector cells of the innate immune response. However, B1 cell-associated antibodies often cross-react with self-antigens, which leads to autoimmunity, and B1 cells have been implicated in cancer. How B1 cell activity is regulated remains unclear. We show that the Ikaros transcription factor is a major negative regulator of B1 cell development and function. Using conditional knock-out mouse models to delete Ikaros at different locations, we show that Ikaros-deficient mice exhibit specific and significant increases in splenic and bone marrow B1 cell numbers, and that the B1 progenitor cell pool is increased ∼10-fold in the bone marrow. Ikaros-null B1 cells resemble WT B1 cells at the molecular and cellular levels, but show a down-regulation of signaling components important for inhibiting proliferation and immunoglobulin production. Ikaros-null B1 cells hyper-react to TLR4 stimulation and secrete high amounts of IgM autoantibodies. These results indicate that Ikaros is required to limit B1 cell homeostasis in the adult.
Collapse
Affiliation(s)
- Alejandra Macias-Garcia
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Beate Heizmann
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France,
| | - MacLean Sellars
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Patricia Marchal
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France
| | - Hayet Dali
- Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, 67000 Strasbourg, France
| | - Jean-Louis Pasquali
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France, Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, 67000 Strasbourg, France, UFR Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Sylviane Muller
- Institut de Biologie Moléculaire et Cellulaire (IBMC), CNRS UPR3572, 67000 Strasbourg, France, Institut d'Etudes Avancées, Université de Strasbourg, 67000 Strasbourg, France, and
| | - Philippe Kastner
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France, Faculté de Médecine, Université de Strasbourg, 67000 Strasbourg, France
| | - Susan Chan
- From the Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), INSERM U964, CNRS UMR 7104, Université de Strasbourg, 67404 Illkirch, France,
| |
Collapse
|