1
|
Lee D, Kang J, Kim A. TAD-dependent sub-TAD is required for enhancer-promoter interaction enabling the β-globin transcription. FASEB J 2024; 38:e70181. [PMID: 39545685 PMCID: PMC11698014 DOI: 10.1096/fj.202401526rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 10/28/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Topologically associating domains (TADs) are chromatin domains in the eukaryotic genome. TADs often comprise several sub-TADs. The boundaries of TADs and sub-TADs are enriched in CTCF, an architectural protein. Deletion of CTCF-binding motifs at one boundary disrupts the domains, often resulting in a transcriptional decrease in genes inside the domains. However, it is not clear how TAD and sub-TAD affect each other in the domain formation. Unaffected gene transcription was observed in the β-globin locus when one boundary of TAD or sub-TAD was destroyed. Here, we disrupted β-globin TAD and sub-TAD by deleting CTCF motifs at both boundaries in MEL/ch11 cells. Disruption of TAD impaired sub-TAD, but sub-TAD disruption did not affect TAD. Both TAD and sub-TAD disruption compromised the β-globin transcription, accompanied by the loss of enhancer-promoter interactions. However, histone H3 occupancy and H3K27ac were largely maintained across the β-globin locus. Genome-wide analysis showed that putative enhancer-promoter interactions and gene transcription were decreased by the disruption of CTCF-mediated topological domains in neural progenitor cells. Collectively, our results indicate that there is unequal relationship between TAD and sub-TAD formation. TAD is likely not sufficient for gene transcription, and, therefore, sub-TAD appears to be required. TAD-dependently formed sub-TADs are considered to provide chromatin environments for enhancer-promoter interactions enabling gene transcription.
Collapse
Affiliation(s)
- Dasoul Lee
- Department of Molecular Biology, College of Natural SciencesPusan National UniversityBusanRepublic of Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural SciencesPusan National UniversityBusanRepublic of Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural SciencesPusan National UniversityBusanRepublic of Korea
| |
Collapse
|
2
|
TFIID dependency of steady-state mRNA transcription altered epigenetically by simultaneous functional loss of Taf1 and Spt3 is Hsp104-dependent. PLoS One 2023; 18:e0281233. [PMID: 36757926 PMCID: PMC9910645 DOI: 10.1371/journal.pone.0281233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 01/18/2023] [Indexed: 02/10/2023] Open
Abstract
In Saccharomyces cerevisiae, class II gene promoters have been divided into two subclasses, TFIID- and SAGA-dominated promoters or TFIID-dependent and coactivator-redundant promoters, depending on the experimental methods used to measure mRNA levels. A prior study demonstrated that Spt3, a TBP-delivering subunit of SAGA, functionally regulates the PGK1 promoter via two mechanisms: by stimulating TATA box-dependent transcriptional activity and conferring Taf1/TFIID independence. However, only the former could be restored by plasmid-borne SPT3. In the present study, we sought to determine why ectopically expressed SPT3 is unable to restore Taf1/TFIID independence to the PGK1 promoter, identifying that this function was dependent on the construction protocol for the SPT3 taf1 strain. Specifically, simultaneous functional loss of Spt3 and Taf1 during strain construction was a prerequisite to render the PGK1 promoter Taf1/TFIID-dependent in this strain. Intriguingly, genetic approaches revealed that an as-yet unidentified trans-acting factor reprogrammed the transcriptional mode of the PGK1 promoter from the Taf1/TFIID-independent state to the Taf1/TFIID-dependent state. This factor was generated in the haploid SPT3 taf1 strain in an Hsp104-dependent manner and inherited meiotically in a non-Mendelian fashion. Furthermore, RNA-seq analyses demonstrated that this factor likely affects the transcription mode of not only the PGK1 promoter, but also of many other class II gene promoters. Collectively, these findings suggest that a prion or biomolecular condensate is generated in a Hsp104-dependent manner upon simultaneous functional loss of TFIID and SAGA, and could alter the roles of these transcription complexes on a wide variety of class II gene promoters without altering their primary sequences. Therefore, these findings could provide the first evidence that TFIID dependence of class II gene transcription can be altered epigenetically, at least in Saccharomyces cerevisiae.
Collapse
|
3
|
Mechanisms of Interaction between Enhancers and Promoters in Three Drosophila Model Systems. Int J Mol Sci 2023; 24:ijms24032855. [PMID: 36769179 PMCID: PMC9917889 DOI: 10.3390/ijms24032855] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/26/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
In higher eukaryotes, the regulation of developmental gene expression is determined by enhancers, which are often located at a large distance from the promoters they regulate. Therefore, the architecture of chromosomes and the mechanisms that determine the functional interaction between enhancers and promoters are of decisive importance in the development of organisms. Mammals and the model animal Drosophila have homologous key architectural proteins and similar mechanisms in the organization of chromosome architecture. This review describes the current progress in understanding the mechanisms of the formation and regulation of long-range interactions between enhancers and promoters at three well-studied key regulatory loci in Drosophila.
Collapse
|
4
|
Kyrchanova OV, Bylino OV, Georgiev PG. Mechanisms of enhancer-promoter communication and chromosomal architecture in mammals and Drosophila. Front Genet 2022; 13:1081088. [PMID: 36531247 PMCID: PMC9751008 DOI: 10.3389/fgene.2022.1081088] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 11/18/2022] [Indexed: 12/03/2022] Open
Abstract
The spatial organization of chromosomes is involved in regulating the majority of intranuclear processes in higher eukaryotes, including gene expression. Drosophila was used as a model to discover many transcription factors whose homologs play a key role in regulation of gene expression in mammals. According to modern views, a cohesin complex mostly determines the architecture of mammalian chromosomes by forming chromatin loops on anchors created by the CTCF DNA-binding architectural protein. The role of the cohesin complex in chromosome architecture is poorly understood in Drosophila, and CTCF is merely one of many Drosophila architectural proteins with a proven potential to organize specific long-range interactions between regulatory elements in the genome. The review compares the mechanisms responsible for long-range interactions and chromosome architecture between mammals and Drosophila.
Collapse
|
5
|
Ito S, Das ND, Umehara T, Koseki H. Factors and Mechanisms That Influence Chromatin-Mediated Enhancer-Promoter Interactions and Transcriptional Regulation. Cancers (Basel) 2022; 14:5404. [PMID: 36358822 PMCID: PMC9659172 DOI: 10.3390/cancers14215404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic gene expression is regulated through chromatin conformation, in which enhancers and promoters physically interact (E-P interactions). How such chromatin-mediated E-P interactions affect gene expression is not yet fully understood, but the roles of histone acetylation and methylation, pioneer transcription factors, and architectural proteins such as CCCTC binding factor (CTCF) and cohesin have recently attracted attention. Moreover, accumulated data suggest that E-P interactions are mechanistically involved in biophysical events, including liquid-liquid phase separation, and in biological events, including cancers. In this review, we discuss various mechanisms that regulate eukaryotic gene expression, focusing on emerging views regarding chromatin conformations that are involved in E-P interactions and factors that establish and maintain them.
Collapse
Affiliation(s)
- Shinsuke Ito
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Nando Dulal Das
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Takashi Umehara
- Laboratory for Epigenetics Drug Discovery, RIKEN Center for Biosystems Dynamics Research, Yokohama 230-0045, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
- Immune Regulation, Advanced Research Departments, Graduate School of Medicine, Chiba University, Chiba 260-8677, Japan
| |
Collapse
|
6
|
Qin K, Huang P, Feng R, Keller CA, Peslak SA, Khandros E, Saari MS, Lan X, Mayuranathan T, Doerfler PA, Abdulmalik O, Giardine B, Chou ST, Shi J, Hardison RC, Weiss MJ, Blobel GA. Dual function NFI factors control fetal hemoglobin silencing in adult erythroid cells. Nat Genet 2022; 54:874-884. [PMID: 35618846 PMCID: PMC9203980 DOI: 10.1038/s41588-022-01076-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 04/08/2022] [Indexed: 12/13/2022]
Abstract
The mechanisms by which the fetal-type β-globin-like genes HBG1 and HBG2 are silenced in adult erythroid precursor cells remain a fundamental question in human biology and have therapeutic relevance to sickle cell disease (SCD) and β-thalassemia. Here, we identify via a CRISPR-Cas9 genetic screen two members of the NFI transcription factor family – NFIA and NFIX – as HBG1/2 repressors. NFIA and NFIX are expressed at elevated levels in adult erythroid cells compared to fetal cells, and function cooperatively to repress HBG1/2 in cultured cells and in human-to-mouse xenotransplants. Genomic profiling, genome editing, and DNA binding assays demonstrate that the potent concerted activity of NFIA and NFIX is explained in part by their ability to stimulate the expression of BCL11A, a known silencer of the HBG1/2 genes, and in part by directly repressing the HBG1/2 genes. Thus, NFI factors emerge as versatile regulators of the fetal-to-adult switch in β-globin production.
Collapse
Affiliation(s)
- Kunhua Qin
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Peng Huang
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Ruopeng Feng
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Cheryl A Keller
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Scott A Peslak
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Division of Hematology/Oncology, Department of Medicine, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Eugene Khandros
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Megan S Saari
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Xianjiang Lan
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA.,Department of Systems Biology for Medicine, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | | | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Osheiza Abdulmalik
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Belinda Giardine
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Stella T Chou
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Junwei Shi
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ross C Hardison
- Department of Biochemistry and Molecular Biology, Pennsylvania State University, University Park, PA, USA
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Gerd A Blobel
- Division of Hematology, The Children's Hospital of Philadelphia, Philadelphia, PA, USA. .,Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Kim J, Kang J, Kim YW, Kim A. The human β-globin enhancer LCR HS2 plays a role in forming a TAD by activating chromatin structure at neighboring CTCF sites. FASEB J 2021; 35:e21669. [PMID: 34033138 DOI: 10.1096/fj.202002337r] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 04/14/2021] [Accepted: 04/30/2021] [Indexed: 12/31/2022]
Abstract
The human β-globin locus control region (LCR) hypersensitive site 2 (HS2) is one of enhancers for transcription of the β-like globin genes in erythroid cells. Our previous study showed that the LCR HS2 has active chromatin structure before transcriptional induction of the β-globin gene, while another enhancer LCR HS3 is activated by the induction. To compare functional difference between them, we deleted each HS (ΔHS2 and ΔHS3) from the human β-globin locus in hybrid MEL/ch11 cells. Deletion of either HS2 or HS3 dramatically diminished the β-globin transcription and disrupted locus-wide histone H3K27ac and chromatin interaction between LCR HSs and gene. Surprisingly, ΔHS2 weakened interactions between CTCF sites forming the β-globin topologically associating domain (TAD), while ΔHS3 did not. CTCF occupancy and chromatin accessibility were reduced at the CTCF sites in the ΔHS2 locus. To further characterize the HS2, we deleted the maf-recognition elements for erythroid activator NF-E2 at HS2. This deletion decreased the β-globin transcription and enhancer-promoter interaction, but did not affect interactions between CTCF sites for the TAD. In light of these results, we propose that the HS2 has a role in forming a β-globin TAD by activating neighboring CTCF sites and this role is beyond typical enhancer activity.
Collapse
Affiliation(s)
- Jiwook Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Jin Kang
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - Yea Woon Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| | - AeRi Kim
- Department of Molecular Biology, College of Natural Sciences, Pusan National University, Busan, Korea
| |
Collapse
|
8
|
Zittersteijn HA, Harteveld CL, Klaver-Flores S, Lankester AC, Hoeben RC, Staal FJT, Gonçalves MAFV. A Small Key for a Heavy Door: Genetic Therapies for the Treatment of Hemoglobinopathies. Front Genome Ed 2021; 2:617780. [PMID: 34713239 PMCID: PMC8525365 DOI: 10.3389/fgeed.2020.617780] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 12/14/2020] [Indexed: 12/26/2022] Open
Abstract
Throughout the past decades, the search for a treatment for severe hemoglobinopathies has gained increased interest within the scientific community. The discovery that ɤ-globin expression from intact HBG alleles complements defective HBB alleles underlying β-thalassemia and sickle cell disease, has provided a promising opening for research directed at relieving ɤ-globin repression mechanisms and, thereby, improve clinical outcomes for patients. Various gene editing strategies aim to reverse the fetal-to-adult hemoglobin switch to up-regulate ɤ-globin expression through disabling either HBG repressor genes or repressor binding sites in the HBG promoter regions. In addition to these HBB mutation-independent strategies involving fetal hemoglobin (HbF) synthesis de-repression, the expanding genome editing toolkit is providing increased accuracy to HBB mutation-specific strategies encompassing adult hemoglobin (HbA) restoration for a personalized treatment of hemoglobinopathies. Moreover, besides genome editing, more conventional gene addition strategies continue under investigation to restore HbA expression. Together, this research makes hemoglobinopathies a fertile ground for testing various innovative genetic therapies with high translational potential. Indeed, the progressive understanding of the molecular clockwork underlying the hemoglobin switch together with the ongoing optimization of genome editing tools heightens the prospect for the development of effective and safe treatments for hemoglobinopathies. In this context, clinical genetics plays an equally crucial role by shedding light on the complexity of the disease and the role of ameliorating genetic modifiers. Here, we cover the most recent insights on the molecular mechanisms underlying hemoglobin biology and hemoglobinopathies while providing an overview of state-of-the-art gene editing platforms. Additionally, current genetic therapies under development, are equally discussed.
Collapse
Affiliation(s)
- Hidde A. Zittersteijn
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Cornelis L. Harteveld
- Department of Human and Clinical Genetics, The Hemoglobinopathies Laboratory, Leiden University Medical Center, Leiden, Netherlands
| | | | - Arjan C. Lankester
- Department of Pediatrics, Stem Cell Transplantation Program, Willem-Alexander Children's Hospital, Leiden University Medical Center, Leiden, Netherlands
| | - Rob C. Hoeben
- Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, Netherlands
| | - Frank J. T. Staal
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | | |
Collapse
|
9
|
Kyrchanova O, Georgiev P. Mechanisms of Enhancer-Promoter Interactions in Higher Eukaryotes. Int J Mol Sci 2021; 22:ijms22020671. [PMID: 33445415 PMCID: PMC7828040 DOI: 10.3390/ijms22020671] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/28/2020] [Accepted: 01/09/2021] [Indexed: 12/13/2022] Open
Abstract
In higher eukaryotes, enhancers determine the activation of developmental gene transcription in specific cell types and stages of embryogenesis. Enhancers transform the signals produced by various transcription factors within a given cell, activating the transcription of the targeted genes. Often, developmental genes can be associated with dozens of enhancers, some of which are located at large distances from the promoters that they regulate. Currently, the mechanisms underlying specific distance interactions between enhancers and promoters remain poorly understood. This review briefly describes the properties of enhancers and discusses the mechanisms of distance interactions and potential proteins involved in this process.
Collapse
|
10
|
Métais JY, Doerfler PA, Mayuranathan T, Bauer DE, Fowler SC, Hsieh MM, Katta V, Keriwala S, Lazzarotto CR, Luk K, Neel MD, Perry SS, Peters ST, Porter SN, Ryu BY, Sharma A, Shea D, Tisdale JF, Uchida N, Wolfe SA, Woodard KJ, Wu Y, Yao Y, Zeng J, Pruett-Miller S, Tsai SQ, Weiss MJ. Genome editing of HBG1 and HBG2 to induce fetal hemoglobin. Blood Adv 2019; 3:3379-3392. [PMID: 31698466 PMCID: PMC6855127 DOI: 10.1182/bloodadvances.2019000820] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 08/19/2019] [Indexed: 12/20/2022] Open
Abstract
Induction of fetal hemoglobin (HbF) via clustered regularly interspaced short palindromic repeats/Cas9-mediated disruption of DNA regulatory elements that repress γ-globin gene (HBG1 and HBG2) expression is a promising therapeutic strategy for sickle cell disease (SCD) and β-thalassemia, although the optimal technical approaches and limiting toxicities are not yet fully defined. We disrupted an HBG1/HBG2 gene promoter motif that is bound by the transcriptional repressor BCL11A. Electroporation of Cas9 single guide RNA ribonucleoprotein complex into normal and SCD donor CD34+ hematopoietic stem and progenitor cells resulted in high frequencies of on-target mutations and the induction of HbF to potentially therapeutic levels in erythroid progeny generated in vitro and in vivo after transplantation of hematopoietic stem and progenitor cells into nonobese diabetic/severe combined immunodeficiency/Il2rγ-/-/KitW41/W41 immunodeficient mice. On-target editing did not impair CD34+ cell regeneration or differentiation into erythroid, T, B, or myeloid cell lineages at 16 to 17 weeks after xenotransplantation. No off-target mutations were detected by targeted sequencing of candidate sites identified by circularization for in vitro reporting of cleavage effects by sequencing (CIRCLE-seq), an in vitro genome-scale method for detecting Cas9 activity. Engineered Cas9 containing 3 nuclear localization sequences edited human hematopoietic stem and progenitor cells more efficiently and consistently than conventional Cas9 with 2 nuclear localization sequences. Our studies provide novel and essential preclinical evidence supporting the safety, feasibility, and efficacy of a mechanism-based approach to induce HbF for treating hemoglobinopathies.
Collapse
Affiliation(s)
- Jean-Yves Métais
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Phillip A Doerfler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Daniel E Bauer
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Department of Pediatrics, Harvard Medical School, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - Stephanie C Fowler
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Matthew M Hsieh
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Varun Katta
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Sagar Keriwala
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Cicera R Lazzarotto
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Kevin Luk
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | | | | | | | | | - Byoung Y Ryu
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Akshay Sharma
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children's Research Hospital, Memphis, TN
| | - Devlin Shea
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - John F Tisdale
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Naoya Uchida
- Molecular and Clinical Hematology Branch, National Heart, Lung, and Blood Institute, Bethesda, MD
| | - Scot A Wolfe
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA; and
| | - Kaitly J Woodard
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Yuxuan Wu
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | - Yu Yao
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Jing Zeng
- Division of Hematology/Oncology, Boston Children's Hospital, Boston, MA
| | | | - Shengdar Q Tsai
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| | - Mitchell J Weiss
- Department of Hematology, St. Jude Children's Research Hospital, Memphis, TN
| |
Collapse
|
11
|
GATA2 and PU.1 Collaborate To Activate the Expression of the Mouse Ms4a2 Gene, Encoding FcεRIβ, through Distinct Mechanisms. Mol Cell Biol 2019; 39:MCB.00314-19. [PMID: 31501274 DOI: 10.1128/mcb.00314-19] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 09/02/2019] [Indexed: 12/20/2022] Open
Abstract
GATA factors GATA1 and GATA2 and ETS factor PU.1 are known to function antagonistically during hematopoietic development. In mouse mast cells, however, these factors are coexpressed and activate the expression of the Ms4a2 gene encoding the β chain of the high-affinity IgE receptor (FcεRI). The present study showed that these factors cooperatively regulate Ms4a2 gene expression through distinct mechanisms. Although GATA2 and PU.1 contributed almost equally to Ms4a2 gene expression, gene ablation experiments revealed that simultaneous knockdown of both factors showed neither a synergistic nor an additive effect. A chromatin immunoprecipitation analysis showed that they shared DNA binding to the +10.4-kbp region downstream of the Ms4a2 gene with chromatin looping factor LDB1, whereas the proximal -60-bp region was exclusively bound by GATA2 in a mast cell-specific manner. Ablation of PU.1 significantly reduced the level of GATA2 binding to both the +10.4-kbp and -60-bp regions. Surprisingly, the deletion of the +10.4-kbp region by genome editing completely abolished the Ms4a2 gene expression as well as the cell surface expression of FcεRI. These results suggest that PU.1 and LDB1 play central roles in the formation of active chromatin structure whereas GATA2 directly activates the Ms4a2 promoter.
Collapse
|
12
|
Surface plasmon resonance based analysis of the binding of LYAR protein to the rs368698783 (G>A) polymorphic Aγ-globin gene sequences mutated in β-thalassemia. Anal Bioanal Chem 2019; 411:7699-7707. [PMID: 31300855 DOI: 10.1007/s00216-019-01987-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 06/12/2019] [Accepted: 06/17/2019] [Indexed: 10/26/2022]
Abstract
Recent studies have identified and characterized a novel putative transcriptional repressor site in a 5' untranslated region of the Aγ-globin gene that interacts with the Ly-1 antibody reactive clone (LYAR) protein. LYAR binds the 5'-GGTTAT-3' site of the Aγ-globin gene, and this molecular interaction causes repression of gene transcription. In β-thalassemia patients, a polymorphism has been demonstrated (the rs368698783 G>A polymorphism) within the 5'-GGTTAT-3' LYAR-binding site of the Aγ-globin gene. The major results gathered from surface plasmon resonance based biospecific interaction analysis (SPR-BIA) studies (using crude nuclear extracts, LYAR-enriched lysates, and recombinant LYAR) support the concept that the rs368698783 G>A polymorphism of the Aγ-globin gene attenuates the efficiency of LYAR binding to the LYAR-binding site. This conclusion was fully confirmed by a molecular docking analysis. This might lead to a very important difference in erythroid cells from β-thalassemia patients in respect to basal and induced levels of production of fetal hemoglobin. The novelty of the reported SPR-BIA method is that it allows the characterization and validation of the altered binding of a key nuclear factor (LYAR) to mutated LYAR-binding sites. These results, in addition to theoretical implications, should be considered of interest in applied pharmacology studies as a basis for the screening of drugs able to inhibit LYAR-DNA interactions. This might lead to the identification of molecules facilitating induced increase of γ-globin gene expression and fetal hemoglobin production in erythroid cells, which is associated with possible reduction of the clinical severity of the β-thalassemia phenotype. Graphical abstract.
Collapse
|
13
|
Enhancer long-range contacts: The multi-adaptor protein LDB1 is the tie that binds. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2019; 1862:625-633. [DOI: 10.1016/j.bbagrm.2019.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 04/03/2019] [Accepted: 04/05/2019] [Indexed: 11/20/2022]
|
14
|
Morgan SL, Chang EY, Mariano NC, Bermudez A, Arruda NL, Wu F, Luo Y, Shankar G, Huynh SK, Huang CC, Pitteri SJ, Wang KC. CRISPR-Mediated Reorganization of Chromatin Loop Structure. J Vis Exp 2018:57457. [PMID: 30272647 PMCID: PMC6235177 DOI: 10.3791/57457] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Recent studies have clearly shown that long-range, three-dimensional chromatin looping interactions play a significant role in the regulation of gene expression, but whether looping is responsible for or a result of alterations in gene expression is still unknown. Until recently, how chromatin looping affects the regulation of gene activity and cellular function has been relatively ambiguous, and limitations in existing methods to manipulate these structures prevented in-depth exploration of these interactions. To resolve this uncertainty, we engineered a method for selective and reversible chromatin loop re-organization using CRISPR-dCas9 (CLOuD9). The dynamism of the CLOuD9 system has been demonstrated by successful localization of CLOuD9 constructs to target genomic loci to modulate local chromatin conformation. Importantly, the ability to reverse the induced contact and restore the endogenous chromatin conformation has also been confirmed. Modulation of gene expression with this method establishes the capacity to regulate cellular gene expression and underscores the great potential for applications of this technology in creating stable de novo chromatin loops that markedly affect gene expression in the contexts of cancer and development.
Collapse
Affiliation(s)
- Stefanie L Morgan
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine; Program in Cancer Biology, Stanford University School of Medicine
| | - Erin Y Chang
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine
| | - Natasha C Mariano
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine
| | - Abel Bermudez
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine
| | | | | | - Yunhai Luo
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine
| | - Gautam Shankar
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine
| | - Star K Huynh
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine
| | | | - Sharon J Pitteri
- Canary Center for Cancer Early Detection, Department of Radiology, Stanford University School of Medicine
| | - Kevin C Wang
- Department of Dermatology, Program in Epithelial Biology, Stanford University School of Medicine; Program in Cancer Biology, Stanford University School of Medicine; Veterans Affairs Healthcare System;
| |
Collapse
|
15
|
Abstract
During erythropoiesis, hematopoietic stem and progenitor cells transition to erythroblasts en route to terminal differentiation into enucleated red blood cells. Transcriptome-wide changes underlie distinct morphological and functional characteristics at each cell division during this process. Many studies of gene expression have historically been carried out in erythroblasts, and the biogenesis of β-globin mRNA—the most highly expressed transcript in erythroblasts—was the focus of many seminal studies on the mechanisms of pre-mRNA splicing. We now understand that pre-mRNA splicing plays an important role in shaping the transcriptome of developing erythroblasts. Recent advances have provided insight into the role of alternative splicing and intron retention as important regulatory mechanisms of erythropoiesis. However, dysregulation of splicing during erythropoiesis is also a cause of several hematological diseases, including β-thalassemia and myelodysplastic syndromes. With a growing understanding of the role that splicing plays in these diseases, we are well poised to develop gene-editing treatments. In this review, we focus on changes in the developing erythroblast transcriptome caused by alternative splicing, the molecular basis of splicing-related blood diseases, and therapeutic advances in disease treatment using CRISPR/Cas9 gene editing.
Collapse
Affiliation(s)
- Kirsten A Reimer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA
| | - Karla M Neugebauer
- Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520, USA
| |
Collapse
|
16
|
Abstract
Fetal haemoglobin (HbF, α2γ2) induction has long been an area of investigation, as it is known to ameliorate the clinical complications of sickle cell disease (SCD). Progress in identifying novel HbF-inducing strategies has been stymied by limited understanding of gamma (γ)-globin regulation. Genome-wide association studies (GWAS) have identified variants in BCL11A and HBS1L-MYB that are associated with HbF levels. Functional studies have established the roles of BCL11A, MYB, and KLF1 in γ-globin regulation, but this information has not yielded new pharmacological agents. Several drugs are under investigation in clinical trials as HbF-inducing agents, but hydroxycarbamide remains the only widely used pharmacologic therapy for SCD. Autologous transplant of edited haematopoietic stem cells holds promise as a cure for SCD, either through HbF induction or correction of the causative mutation, but several technical and safety hurdles must be overcome before this therapy can be offered widely, and pharmacological therapies are still needed.
Collapse
Affiliation(s)
- Alireza Paikari
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| | - Vivien A Sheehan
- Department of Pediatrics, Division of Hematology/Oncology, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
17
|
Static and Dynamic DNA Loops form AP-1-Bound Activation Hubs during Macrophage Development. Mol Cell 2017; 67:1037-1048.e6. [PMID: 28890333 DOI: 10.1016/j.molcel.2017.08.006] [Citation(s) in RCA: 216] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 07/21/2017] [Accepted: 08/11/2017] [Indexed: 01/25/2023]
Abstract
The three-dimensional arrangement of the human genome comprises a complex network of structural and regulatory chromatin loops important for coordinating changes in transcription during human development. To better understand the mechanisms underlying context-specific 3D chromatin structure and transcription during cellular differentiation, we generated comprehensive in situ Hi-C maps of DNA loops in human monocytes and differentiated macrophages. We demonstrate that dynamic looping events are regulatory rather than structural in nature and uncover widespread coordination of dynamic enhancer activity at preformed and acquired DNA loops. Enhancer-bound loop formation and enhancer activation of preformed loops together form multi-loop activation hubs at key macrophage genes. Activation hubs connect 3.4 enhancers per promoter and exhibit a strong enrichment for activator protein 1 (AP-1)-binding events, suggesting that multi-loop activation hubs involving cell-type-specific transcription factors represent an important class of regulatory chromatin structures for the spatiotemporal control of transcription.
Collapse
|
18
|
Manipulation of nuclear architecture through CRISPR-mediated chromosomal looping. Nat Commun 2017; 8:15993. [PMID: 28703221 PMCID: PMC5511349 DOI: 10.1038/ncomms15993] [Citation(s) in RCA: 185] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 05/16/2017] [Indexed: 01/01/2023] Open
Abstract
Chromatin looping is key to gene regulation, yet no broadly applicable methods to selectively modify chromatin loops have been described. We have engineered a method for chromatin loop reorganization using CRISPR-dCas9 (CLOuD9) to selectively and reversibly establish chromatin loops. We demonstrate the power of this technology to selectively modulate gene expression at targeted loci.
Collapse
|