1
|
Uslu-Biçak İ, Nalçaci M, Sözer S. Targeting PAR1 activation in JAK2V617F-driven philadelphia-negative myeloproliferative neoplasms: Unraveling its role in thrombosis and disease progression. Neoplasia 2025; 63:101153. [PMID: 40088673 PMCID: PMC11951995 DOI: 10.1016/j.neo.2025.101153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 03/07/2025] [Accepted: 03/07/2025] [Indexed: 03/17/2025]
Abstract
Philadelphia chromosome-negative myeloproliferative neoplasms (Ph-MPNs) are clonal disorders marked by high morbidity and mortality, driven by uncontrolled myeloid proliferation from hematopoietic stem/progenitor cells (HSCs) and associated with a significant risk of thrombosis. This study explored the relationship between JAK2V617F and protease-activated receptor 1 (PAR1) by examining PAR1 expression and activation across various hematopoietic stem/progenitor cell (HSPC) subgroups, assessing their contribution to the hypercoagulable state in Ph-MPNs. We investigated the effects of thrombin, a PAR1 antagonist (vorapaxar), and a JAK2 inhibitor (ruxolitinib) on Ph-MPN cells. Mononuclear cells (MNCs) were isolated from Ph-MPN patients (n = 18), cord blood (CB) samples (n = 5) and healthy volunteers (n = 11). Specific subpopulations were sorted and analyzed for PAR1 expression and JAK2V617F status using qRT-PCR. PAR1 expression changes, along with other PAR pathway-related genes, were assessed post-treatment. Our results revealed that most PAR1+ cells (∼95 %) co-expressed CD34+, with a smaller JAK2V617F+ PAR1+ population lacking CD34. PAR1 expression was significantly higher in Ph-MPN MNCs compared to CB (p = 0.0005), particularly in EMP, HSC/EPC, and EPC subsets. Thrombin treatment reduced surface PAR1 expression, while PAR1 antagonist treatment further decrease the expression level. Combined PAR1 antagonist and ruxolitinib treatment significantly downregulated PAR1 expression (p < 0.0001), and several PAR-pathway-related genes were notably downregulated after treatment. This study highlights that elevated PAR1 expression in primitive hematopoietic subpopulations is linked to disease progression and thrombosis in Ph-MPNs, suggesting PAR1 as a potential therapeutic target. Combining PAR1 antagonists with JAK2 inhibitors shows promise in reducing PAR1 expression and mitigating thrombotic events in Ph-MPN patients.
Collapse
Affiliation(s)
- İldeniz Uslu-Biçak
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye; Institute of Health Sciences, Istanbul University, Istanbul, Türkiye
| | - Meliha Nalçaci
- Department of Internal Medicine, Division of Hematology, Faculty of Medicine, Istanbul University, Istanbul, Türkiye
| | - Selçuk Sözer
- Department of Genetics, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul, Türkiye.
| |
Collapse
|
2
|
Xue M, March L. Endothelial Protein C Receptor: A Multifunctional Mediator in the Pathophysiology of Rheumatoid Arthritis. Cells 2025; 14:485. [PMID: 40214439 PMCID: PMC11987911 DOI: 10.3390/cells14070485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/11/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025] Open
Abstract
The endothelial protein C receptor (EPCR) is gaining recognition for its diverse functions that extend beyond its traditional role in the protein C anticoagulant pathway. This comprehensive review examines how EPCR contributes to the pathophysiology of rheumatoid arthritis (RA), an autoimmune disorder characterized by persistent inflammation and joint destruction. We explore how EPCR influences inflammatory responses and the coagulation cascade, affects endothelial function and vascular integrity, and regulates the characteristics of synovial fibroblasts in the context of RA. Furthermore, the review highlights the mechanisms by which EPCR affects disease progression, its potential use as a biomarker for disease activity, and the therapeutic implications of targeting EPCR in the treatment of RA. By synthesizing current research findings, this review aims to provide a detailed understanding of EPCR's role in RA, offering insights into innovative diagnostic and therapeutic strategies that could improve patient outcomes.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia;
| | - Lyn March
- The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2065, Australia;
- Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia
| |
Collapse
|
3
|
Crosse EI, Binagui-Casas A, Gordon-Keylock S, Rybtsov S, Tamagno S, Olofsson D, Anderson RA, Medvinsky A. An interactive resource of molecular signalling in the developing human haematopoietic stem cell niche. Development 2023; 150:dev201972. [PMID: 37840454 PMCID: PMC10730088 DOI: 10.1242/dev.201972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/03/2023] [Indexed: 10/17/2023]
Abstract
The emergence of definitive human haematopoietic stem cells (HSCs) from Carnegie Stage (CS) 14 to CS17 in the aorta-gonad-mesonephros (AGM) region is a tightly regulated process. Previously, we conducted spatial transcriptomic analysis of the human AGM region at the end of this period (CS16/CS17) and identified secreted factors involved in HSC development. Here, we extend our analysis to investigate the progression of dorso-ventral polarised signalling around the dorsal aorta over the entire period of HSC emergence. Our results reveal a dramatic increase in ventral signalling complexity from the CS13-CS14 transition, coinciding with the first appearance of definitive HSCs. We further observe stage-specific changes in signalling up to CS17, which may underpin the step-wise maturation of HSCs described in the mouse model. The data-rich resource is also presented in an online interface enabling in silico analysis of molecular interactions between spatially defined domains of the AGM region. This resource will be of particular interest for researchers studying mechanisms underlying human HSC development as well as those developing in vitro methods for the generation of clinically relevant HSCs from pluripotent stem cells.
Collapse
Affiliation(s)
- Edie I. Crosse
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Anahi Binagui-Casas
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | | | - Stanislav Rybtsov
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Sara Tamagno
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| | - Didrik Olofsson
- Omiqa Bioinformatics GmbH, Altensteinstraße 40, 14195 Berlin, Germany
| | - Richard A. Anderson
- MRC Centre for Reproductive Health, University of Edinburgh, Edinburgh EH16 4TJ, UK
| | - Alexander Medvinsky
- Centre for Regenerative Medicine, University of Edinburgh, Edinburgh EH16 4UU, UK
| |
Collapse
|
4
|
Dai K, Zhang W, Deng S, Wang J, Liu C. Sulfated Polysaccharide Regulates the Homing of HSPCs in a BMP-2-Triggered In Vivo Osteo-Organoid. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301592. [PMID: 37357138 PMCID: PMC10460842 DOI: 10.1002/advs.202301592] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/31/2023] [Indexed: 06/27/2023]
Abstract
Hematopoietic stem cell transplantation (HSCT) is a well-established method for a variety of acquired and congenital diseases. However, the limited number and sources of therapeutic hematopoietic stem/progenitor cells (HSPCs) hinder the further application of HSCT. A BMP-2 triggered in vivo osteo-organoid that is previously reported, serves as a kind of stem cell biogenerator, for obtaining therapeutic HSPCs via activating the residual regenerative capacity of mammals using bioactive biomaterials. Here, it is demonstrated that targeting the homing signaling of HSPCs elevates the proportions and biological functions of HSPCs in the in vivo osteo-organoid. Notably, it is identified that sulfonated chito-oligosaccharide, a degradation product of sulfonated chitosan, specifically elevates the expression of endothelial protein C receptor on HSPCs and vascular cell adhesion molecule-1 on macrophages in the in vivo osteo-organoid, ultimately leading to the production of adequate therapeutic HSPCs. This in vivo osteo-organoid approach has the potential to provide an alternative HSPCs source for HSCT and benefits more patients.
Collapse
Affiliation(s)
- Kai Dai
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Wenchao Zhang
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Shunshu Deng
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Jing Wang
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Changsheng Liu
- Key Laboratory for Ultrafine Materials of the Ministry of Education and Engineering Research Center for Biomedical Materials of the Ministry of Education, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
5
|
Rommel MG, Walz L, Fotopoulou F, Kohlscheen S, Schenk F, Miskey C, Botezatu L, Krebs Y, Voelker IM, Wittwer K, Holland-Letz T, Ivics Z, von Messling V, Essers MA, Milsom MD, Pfaller CK, Modlich U. Influenza A virus infection instructs hematopoiesis to megakaryocyte-lineage output. Cell Rep 2022; 41:111447. [DOI: 10.1016/j.celrep.2022.111447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 07/29/2022] [Accepted: 09/12/2022] [Indexed: 11/03/2022] Open
|
6
|
Emerging Evidence of the Significance of Thioredoxin-1 in Hematopoietic Stem Cell Aging. Antioxidants (Basel) 2022; 11:antiox11071291. [PMID: 35883782 PMCID: PMC9312246 DOI: 10.3390/antiox11071291] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/28/2022] [Indexed: 02/04/2023] Open
Abstract
The United States is undergoing a demographic shift towards an older population with profound economic, social, and healthcare implications. The number of Americans aged 65 and older will reach 80 million by 2040. The shift will be even more dramatic in the extremes of age, with a projected 400% increase in the population over 85 years old in the next two decades. Understanding the molecular and cellular mechanisms of ageing is crucial to reduce ageing-associated disease and to improve the quality of life for the elderly. In this review, we summarized the changes associated with the ageing of hematopoietic stem cells (HSCs) and what is known about some of the key underlying cellular and molecular pathways. We focus here on the effects of reactive oxygen species and the thioredoxin redox homeostasis system on ageing biology in HSCs and the HSC microenvironment. We present additional data from our lab demonstrating the key role of thioredoxin-1 in regulating HSC ageing.
Collapse
|
7
|
Hümmer J, Kraus S, Brändle K, Lee-Thedieck C. Nitric Oxide in the Control of the in vitro Proliferation and Differentiation of Human Hematopoietic Stem and Progenitor Cells. Front Cell Dev Biol 2021; 8:610369. [PMID: 33634102 PMCID: PMC7900502 DOI: 10.3389/fcell.2020.610369] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cell (HSPC) transplantation is the best-studied cellular therapy and successful in vitro control of HSPCs has wide clinical implications. Nitric oxide (NO) is a central signaling molecule in vivo and has been implicated in HSPC mobilization to the blood stream in mice. The influence of NO on HSPC behavior in vitro is, however, largely obscure due to the variety of employed cell types, NO administration systems, and used concentration ranges in the literature. Additionally, most studies are based on murine cells, which do not necessarily mimic human HSPC behavior. Thus, the aim of the present study was the systematic, concentration-dependent evaluation of NO-mediated effects on human HSPC behavior in vitro. By culture in the presence of the long-term NO donor diethylenetriamine/nitric oxide adduct (DETA/NO) in a nontoxic concentration window, a biphasic role of NO in the regulation of HSPC behavior was identified: Low DETA/NO concentrations activated classical NO signaling, identified via increased intracellular cyclic guanosine monophosphate (cGMP) levels and proteinkinases G (PKG)-dependent vasodilator-stimulated phosphoprotein (VASP) phosphorylation and mediated a pro-proliferative response of HSPCs. In contrast, elevated NO concentrations slowed cell proliferation and induced HSPC differentiation. At high concentrations, s-nitrosylation levels were elevated, and myeloid differentiation was increased at the expense of lymphoid progenitors. Together, these findings hint at a central role of NO in regulating human HSPC behavior and stress the importance and the potential of the use of adequate NO concentrations for in vitro cultures of HSPCs, with possible implications for clinical application of in vitro expanded or differentiated HSPCs for cellular therapies.
Collapse
Affiliation(s)
- Julia Hümmer
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Saskia Kraus
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Katharina Brändle
- Institute of Functional Interfaces, Karlsruhe Institute of Technology, Eggenstein-Leopoldshafen, Germany.,Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| | - Cornelia Lee-Thedieck
- Institute of Cell Biology and Biophysics, Leibniz University Hannover, Hannover, Germany
| |
Collapse
|
8
|
Papa L, Djedaini M, Martin TC, Zangui M, Beaumont KG, Sebra R, Parsons R, Schaniel C, Hoffman R. Limited Mitochondrial Activity Coupled With Strong Expression of CD34, CD90 and EPCR Determines the Functional Fitness of ex vivo Expanded Human Hematopoietic Stem Cells. Front Cell Dev Biol 2020; 8:592348. [PMID: 33384995 PMCID: PMC7769876 DOI: 10.3389/fcell.2020.592348] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 11/10/2020] [Indexed: 01/04/2023] Open
Abstract
Ex vivo expansion strategies of human hematopoietic stem cell (HSC) grafts with suboptimal stem cell dose have emerged as promising strategies for improving outcomes of HSC transplantation in patients with hematological malignancies. While exposure of HSCs to ex vivo cultures expands the number of phenotypically identifiable HSCs, it frequently alters the transcriptomic and metabolic profiles, therefore, compromising their long-term (LT) hematopoietic reconstitution capacity. Within the heterogeneous pool of expanded HSCs, the precise phenotypic, transcriptomic and metabolic profile and thus, the identity of HSCs that confer LT repopulation potential remains poorly described. Utilizing valproic acid (VPA) in ex vivo cultures of umbilical cord blood (UCB)-CD34+ cells, we demonstrate that expanded HSCs phenotypically marked by expression of the stem cell markers CD34, CD90 and EPCR (CD201) are highly enriched for LT-HSCs. Furthermore, we report that low mitochondrial membrane potential, and, hence, mitochondrial activity distinguishes LT-HSCs within the expanded pool of phenotypically defined HSCs. Remarkably, such reduced mitochondrial activity is restricted to cells with the highest expression levels of CD34, CD90 and EPCR phenotypic markers. Together, our findings reveal that high expression of CD34, CD90 and EPCR in conjunction with low mitochondrial activity is critical for identification of functional LT-HSCs generated within ex vivo expansion cultures.
Collapse
Affiliation(s)
- Luena Papa
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mansour Djedaini
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Tiphaine C Martin
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Mahtab Zangui
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kristin G Beaumont
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Robert Sebra
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ramon Parsons
- Department of Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Christoph Schaniel
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Mount Sinai Institute for Systems Biomedicine, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Ronald Hoffman
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
9
|
Castillo MM, Yang Q, Sigala AS, McKinney DT, Zhan M, Chen KL, Jarzembowski JA, Sood R. The endothelial protein C receptor plays an essential role in the maintenance of pregnancy. SCIENCE ADVANCES 2020; 6:6/45/eabb6196. [PMID: 33158859 PMCID: PMC7673707 DOI: 10.1126/sciadv.abb6196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
Placenta-mediated pregnancy complications are a major challenge in the management of maternal-fetal health. Maternal thrombophilia is a suspected risk factor, but the role of thrombotic processes in these complications has remained unclear. Endothelial protein C receptor (EPCR) is an anticoagulant protein highly expressed in the placenta. EPCR autoantibodies and gene variants are associated with poor pregnancy outcomes. In mice, fetal EPCR deficiency results in placental failure and in utero death. We show that inhibition of molecules involved in thrombin generation or in the activation of maternal platelets allows placental development and embryonic survival. Nonetheless, placentae exhibit venous thrombosis in uteroplacental circulation associated with neonatal death. In contrast, maternal EPCR deficiency results in clinical and histological features of placental abruption and is ameliorated with concomitant Par4 deficiency. Our findings unveil a causal link between maternal thrombophilia, uterine hemorrhage, and placental abruption and identify Par4 as a potential target of therapeutic intervention.
Collapse
Affiliation(s)
- Michelle M Castillo
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Qiuhui Yang
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Abril Solis Sigala
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Dosia T McKinney
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Min Zhan
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Kristen L Chen
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Jason A Jarzembowski
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Rashmi Sood
- Division of Pediatric Pathology, Department of Pathology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
10
|
Li X, Zeng X, Xu Y, Wang B, Zhao Y, Lai X, Qian P, Huang H. Mechanisms and rejuvenation strategies for aged hematopoietic stem cells. J Hematol Oncol 2020; 13:31. [PMID: 32252797 PMCID: PMC7137344 DOI: 10.1186/s13045-020-00864-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 03/27/2020] [Indexed: 12/18/2022] Open
Abstract
Hematopoietic stem cell (HSC) aging, which is accompanied by reduced self-renewal ability, impaired homing, myeloid-biased differentiation, and other defects in hematopoietic reconstitution function, is a hot topic in stem cell research. Although the number of HSCs increases with age in both mice and humans, the increase cannot compensate for the defects of aged HSCs. Many studies have been performed from various perspectives to illustrate the potential mechanisms of HSC aging; however, the detailed molecular mechanisms remain unclear, blocking further exploration of aged HSC rejuvenation. To determine how aged HSC defects occur, we provide an overview of differences in the hallmarks, signaling pathways, and epigenetics of young and aged HSCs as well as of the bone marrow niche wherein HSCs reside. Notably, we summarize the very recent studies which dissect HSC aging at the single-cell level. Furthermore, we review the promising strategies for rejuvenating aged HSC functions. Considering that the incidence of many hematological malignancies is strongly associated with age, our HSC aging review delineates the association between functional changes and molecular mechanisms and may have significant clinical relevance.
Collapse
Affiliation(s)
- Xia Li
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiangjun Zeng
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yulin Xu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Binsheng Wang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Yanmin Zhao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Xiaoyu Lai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - Pengxu Qian
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China.,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China.,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China
| | - He Huang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China. .,Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, People's Republic of China. .,Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Hangzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
11
|
Rabe JL, Hernandez G, Chavez JS, Mills TS, Nerlov C, Pietras EM. CD34 and EPCR coordinately enrich functional murine hematopoietic stem cells under normal and inflammatory conditions. Exp Hematol 2019; 81:1-15.e6. [PMID: 31863798 DOI: 10.1016/j.exphem.2019.12.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/03/2019] [Accepted: 12/15/2019] [Indexed: 02/06/2023]
Abstract
Hematopoiesis is dynamically regulated to maintain blood system function under nonhomeostatic conditions such as inflammation and injury. However, common surface marker and hematopoietic stem cell (HSC) reporter systems used for prospective enrichment of HSCs have been less rigorously tested in these contexts. Here, we use two surface markers, EPCR/CD201 and CD34, to re-analyze dynamic changes in the HSC-enriched phenotypic SLAM compartment in a mouse model of chronic interleukin (IL)-1 exposure. EPCR and CD34 coordinately identify four functionally and molecularly distinct compartments within the SLAM fraction, including an EPCR+/CD34- fraction whose long-term serial repopulating activity is only modestly impacted by chronic IL-1 exposure, relative to unfractionated SLAM cells. Notably, the other three fractions expand in frequency following IL-1 treatment and represent actively proliferating, lineage-primed cell states with limited long-term repopulating potential. Importantly, we find that the Fgd5-ZSGreen HSC reporter mouse enriches for molecularly and functionally intact HSCs regardless of IL-1 exposure. Together, our findings provide further evidence of dynamic heterogeneity within a commonly used HSC-enriched phenotypic compartment under stress conditions. Importantly, they also indicate that stringency of prospective isolation approaches can enhance interpretation of findings related to HSC function when studying models of hematopoietic stress.
Collapse
Affiliation(s)
- Jennifer L Rabe
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Giovanny Hernandez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - James S Chavez
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Taylor S Mills
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA
| | - Claus Nerlov
- MRC Molecular Hematology Unit, MRC Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, United Kingdom
| | - Eric M Pietras
- Division of Hematology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA; Department of Immunology & Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, USA.
| |
Collapse
|
12
|
UM171 induces a homeostatic inflammatory-detoxification response supporting human HSC self-renewal. PLoS One 2019; 14:e0224900. [PMID: 31703090 PMCID: PMC6839847 DOI: 10.1371/journal.pone.0224900] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Accepted: 10/23/2019] [Indexed: 12/18/2022] Open
Abstract
Elucidation of the molecular cues required to balance adult stem cell self-renewal and differentiation is critical for advancing cellular therapies. Herein, we report that the hematopoietic stem cell (HSC) self-renewal agonist UM171 triggers a balanced pro- and anti-inflammatory/detoxification network that relies on NFKB activation and protein C receptor-dependent ROS detoxification, respectively. We demonstrate that within this network, EPCR serves as a critical protective component as its deletion hypersensitizes primitive hematopoietic cells to pro-inflammatory signals and ROS accumulation resulting in compromised stem cell function. Conversely, abrogation of the pro-inflammatory activity of UM171 through treatment with dexamethasone, cAMP elevating agents or NFkB inhibitors abolishes EPCR upregulation and HSC expansion. Together, these results show that UM171 stimulates ex vivo HSC expansion by establishing a critical balance between key pro- and anti-inflammatory mediators of self-renewal.
Collapse
|
13
|
Golan K, Kollet O, Markus RP, Lapidot T. Daily light and darkness onset and circadian rhythms metabolically synchronize hematopoietic stem cell differentiation and maintenance: The role of bone marrow norepinephrine, tumor necrosis factor, and melatonin cycles. Exp Hematol 2019; 78:1-10. [PMID: 31494174 DOI: 10.1016/j.exphem.2019.08.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 08/29/2019] [Accepted: 08/31/2019] [Indexed: 12/16/2022]
Abstract
Hematopoietic stem and progenitor cells (HSPCs) are essential for daily mature blood cell production, host immunity, and osteoclast-mediated bone turnover. The timing at which stem cells give rise to mature blood and immune cells while maintaining the bone marrow (BM) reservoir of undifferentiated HSPCs and how these opposite tasks are synchronized are poorly understood. Previous studies revealed that daily light onset activates norepinephrine (NE)-induced BM CXCL12 downregulation, followed by CXCR4+ HSPC release to the circulation. Recently, we reported that daily light onset induces transient elevations of BM NE and tumor necrosis factor (TNF), which metabolically program BM HSPC differentiation and recruitment to replenish the blood. In contrast, darkness onset induces lower elevations of BM NE and TNF, activating melatonin production, which metabolically reprograms HSPCs, increasing their short- and long-term repopulation potential, and BM maintenance. How the functions of BM-retained HSPCs are influenced by daily light and darkness cycles and their clinical potential are further discussed.
Collapse
Affiliation(s)
- Karin Golan
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Kollet
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Regina P Markus
- Laboratory of Chronopharmacology, Department of Physiology, Institute of Bioscience, University of São Paulo, São Paulo, Brazil
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
14
|
Papa L, Djedaini M, Hoffman R. Ex vivo HSC expansion challenges the paradigm of unidirectional human hematopoiesis. Ann N Y Acad Sci 2019; 1466:39-50. [PMID: 31199002 PMCID: PMC7216880 DOI: 10.1111/nyas.14133] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 04/30/2019] [Accepted: 05/10/2019] [Indexed: 12/21/2022]
Abstract
Understanding mechanisms that determine the behavior of human hematopoietic stem cells (HSCs) is essential for developing novel strategies to expand ex vivo the number of fully functional HSCs. In this review, we focus on the complex interplay between intrinsic mechanisms regulated by transcriptional and mitochondrial networks and extrinsic signals imposed by the bone marrow microenvironment, which in concert regulate the balance between HSC self‐renewal and differentiation. Such integrated signaling mechanisms that dictate the fate of HSCs in vivo must be recapitulated ex vivo to achieve successful expansion of clinically relevant HSCs. We also highlight some of the most recent ex vivo HSC expansion strategies that have currently entered clinical development. Finally, based on the evidence reviewed here and lessons learned from ex vivo HSC expansion, we raise some critical questions regarding HSC fate and the cellular plasticity of hematopoietic cells that challenge the unidirectional model of human hematopoiesis.
Collapse
Affiliation(s)
- Luena Papa
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Mansour Djedaini
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ronald Hoffman
- Division of Hematology/Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York
| |
Collapse
|
15
|
Endothelial Protein C Receptor (EPCR), Protease Activated Receptor-1 (PAR-1) and Their Interplay in Cancer Growth and Metastatic Dissemination. Cancers (Basel) 2019; 11:cancers11010051. [PMID: 30626007 PMCID: PMC6356956 DOI: 10.3390/cancers11010051] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 12/28/2018] [Accepted: 12/28/2018] [Indexed: 12/20/2022] Open
Abstract
Endothelial protein C receptor (EPCR) and protease activated receptor 1 (PAR-1) by themselves play important role in cancer growth and dissemination. Moreover, interactions between the two receptors are essential for tumor progression. EPCR is a cell surface transmembrane glycoprotein localized predominantly on endothelial cells (ECs). It is a vital component of the activated protein C (APC)—mediated anticoagulant and cytoprotective signaling cascade. PAR-1, which belongs to a family of G protein–coupled cell surface receptors, is also widely distributed on endothelial and blood cells, where it plays a critical role in hemostasis. Both EPCR and PAR-1, generally considered coagulation-related receptors, are implicated in carcinogenesis and dissemination of diverse tumor types, and their expression correlates with clinical outcome of cancer patients. Existing data explain some mechanisms by which EPCR/PAR-1 affects cancer growth and metastasis; however, the exact molecular basis of cancer invasion associated with the signaling is still obscure. Here, we discuss the role of EPCR and PAR-1 reciprocal interactions in cancer progression as well as potential therapeutic options targeted specifically to interact with EPCR/PAR-1-induced signaling in cancer patients.
Collapse
|
16
|
Hamidi S, Sheng G. Epithelial-mesenchymal transition in haematopoietic stem cell development and homeostasis. J Biochem 2018; 164:265-275. [PMID: 30020470 DOI: 10.1093/jb/mvy063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 07/14/2018] [Indexed: 01/03/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a morphogenetic process of cells that adopt an epithelial organization in their developmental ontogeny or homeostatic maintenance. Abnormalities in EMT regulation result in many malignant tumours in the human body. Tumours associated with the haematopoietic system, however, are traditionally not considered to involve EMT and haematopoietic stem cells (HSCs) are generally not associated with epithelial characteristics. In this review, we discuss the ontogeny and homeostasis of adult HSCs in the context of EMT intermediate states. We provide evidence that cell polarity regulation is critical for both HSC formation from embryonic dorsal aorta and HSC self-renewal and differentiation in adult bone marrow. HSC polarity is controlled by the same set of surface and transcriptional regulators as those described in canonical EMT processes. With an emphasis on partial EMT, we propose that the concept of EMT can be similarly applied in the study of HSC generation, maintenance and pathogenesis.
Collapse
Affiliation(s)
- Sofiane Hamidi
- Laboratory of Developmental Morphogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Guojun Sheng
- Laboratory of Developmental Morphogenesis, International Research Center for Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
17
|
Sumide K, Matsuoka Y, Kawamura H, Nakatsuka R, Fujioka T, Asano H, Takihara Y, Sonoda Y. A revised road map for the commitment of human cord blood CD34-negative hematopoietic stem cells. Nat Commun 2018; 9:2202. [PMID: 29875383 PMCID: PMC5989201 DOI: 10.1038/s41467-018-04441-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Accepted: 04/29/2018] [Indexed: 12/29/2022] Open
Abstract
We previously identified CD34-negative (CD34-) severe combined immunodeficiency (SCID)-repopulating cells as primitive hematopoietic stem cells (HSCs) in human cord blood. In this study, we develop a prospective ultra-high-resolution purification method by applying two positive markers, CD133 and GPI-80. Using this method, we succeed in purifying single long-term repopulating CD34- HSCs with self-renewing capability residing at the apex of the human HSC hierarchy from cord blood, as evidenced by a single-cell-initiated serial transplantation analysis. The gene expression profiles of individual CD34+ and CD34- HSCs and a global gene expression analysis demonstrate the unique molecular signature of CD34- HSCs. We find that the purified CD34- HSCs show a potent megakaryocyte/erythrocyte differentiation potential in vitro and in vivo. Megakaryocyte/erythrocyte progenitors may thus be generated directly via a bypass route from the CD34- HSCs. Based on these data, we propose a revised road map for the commitment of human CD34- HSCs in cord blood.
Collapse
Affiliation(s)
- Keisuke Sumide
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Yoshikazu Matsuoka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroshi Kawamura
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
- Department of Orthopedic Surgery, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Ryusuke Nakatsuka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Tatsuya Fujioka
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan
| | - Hiroaki Asano
- School of Nursing, Kyoto Prefectural University of Medicine, Kyoto, 602-8566, Kyoto, Japan
| | - Yoshihiro Takihara
- Department of Stem Cell Biology, Research Institute for Radiation Biology and Medicine, Hiroshima University, Hiroshima, 734-8553, Hiroshima, Japan
- Japanese Red Cross Osaka Blood Center, Osaka, 536-0025, Osaka, Japan
| | - Yoshiaki Sonoda
- Department of Stem Cell Biology and Regenerative Medicine, Graduate School of Medical Science, Kansai Medical University, Hirakata, 573-1010, Osaka, Japan.
| |
Collapse
|
18
|
Effects of cognate, non-cognate and synthetic CXCR4 and ACKR3 ligands on human lung endothelial cell barrier function. PLoS One 2017; 12:e0187949. [PMID: 29125867 PMCID: PMC5681266 DOI: 10.1371/journal.pone.0187949] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/28/2017] [Indexed: 12/13/2022] Open
Abstract
Recent evidence suggests that chemokine CXCL12, the cognate agonist of chemokine receptors CXCR4 and ACKR3, reduces thrombin-mediated impairment of endothelial barrier function. A detailed characterization of the effects of CXCL12 on thrombin-mediated human lung endothelial hyperpermeability is lacking and structure-function correlations are not available. Furthermore, effects of other CXCR4/ACKR3 ligands on lung endothelial barrier function are unknown. Thus, we tested the effects of a panel of CXCR4/ACKR3 ligands (CXCL12, CXCL11, ubiquitin, AMD3100, TC14012) and compared the CXCR4/ACKR3 activities of CXCL12 variants (CXCL12α/β, CXCL12(3–68), CXCL121, CXCL122, CXCL12-S-S4V, CXCL12-R47E, CXCL12-K27A/R41A/R47A) with their effects on human lung endothelial barrier function in permeability assays. CXCL12α enhanced human primary pulmonary artery endothelial cell (hPPAEC) barrier function, whereas CXCL11, ubiquitin, AMD3100 and TC14012 were ineffective. Pre-treatment of hPPAEC with CXCL12α and ubiquitin reduced thrombin-mediated hyperpermeability. CXCL12α-treatment of hPPAEC after thrombin exposure reduced barrier function impairment by 70% (EC50 0.05–0.5nM), which could be antagonized with AMD3100; ubiquitin (0.03–3μM) was ineffective. In a human lung microvascular endothelial cell line (HULEC5a), CXCL12α and ubiquitin post-treatment attenuated thrombin-induced hyperpermeability to a similar degree. CXCL12(3–68) was inefficient to activate CXCR4 in Presto-Tango β-arrestin2 recruitment assays; CXCL12-S-S4V, CXCL12-R47E and CXCL12-K27A/R41A/R47A showed significantly reduced potencies to activate CXCR4. While the potencies of all proteins in ACKR3 Presto-Tango assays were comparable, the efficacy of CXCL12(3–68) to activate ACKR3 was significantly reduced. The potencies to attenuate thrombin-mediated hPPAEC barrier function impairment were: CXCL12α/β, CXCL121, CXCL12-K27A/R41A/R47A > CXCL12-S-S4V, CXCL12-R47E > CXCL122 > CXCL12(3–68). Our findings indicate that CXCR4 activation attenuates thrombin-induced lung endothelial barrier function impairment and suggest that protective effects of CXCL12 are dictated by its CXCR4 agonist activity and interactions of distinct protein moieties with heparan sulfate on the endothelial surface. These data may facilitate development of compounds with improved pharmacological properties to attenuate thrombin-induced vascular leakage in the pulmonary circulation.
Collapse
|
19
|
Goichberg P. Current Understanding of the Pathways Involved in Adult Stem and Progenitor Cell Migration for Tissue Homeostasis and Repair. Stem Cell Rev Rep 2017; 12:421-37. [PMID: 27209167 DOI: 10.1007/s12015-016-9663-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
With the advancements in the field of adult stem and progenitor cells grows the recognition that the motility of primitive cells is a pivotal aspect of their functionality. There is accumulating evidence that the recruitment of tissue-resident and circulating cells is critical for organ homeostasis and effective injury responses, whereas the pathobiology of degenerative diseases, neoplasm and aging, might be rooted in the altered ability of immature cells to migrate. Furthermore, understanding the biological machinery determining the translocation patterns of tissue progenitors is of great relevance for the emerging methodologies for cell-based therapies and regenerative medicine. The present article provides an overview of studies addressing the physiological significance and diverse modes of stem and progenitor cell trafficking in adult mammalian organs, discusses the major microenvironmental cues regulating cell migration, and describes the implementation of live imaging approaches for the exploration of stem cell movement in tissues and the factors dictating the motility of endogenous and transplanted cells with regenerative potential.
Collapse
Affiliation(s)
- Polina Goichberg
- Department Anesthesiology, Perioperative and Pain Medicine, Harvard Medical School, Brigham and Women's Hospital, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
20
|
Xue M, Dervish S, Chan B, Jackson CJ. The Endothelial Protein C Receptor Is a Potential Stem Cell Marker for Epidermal Keratinocytes. Stem Cells 2017; 35:1786-1798. [PMID: 28480559 DOI: 10.1002/stem.2630] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 03/16/2017] [Accepted: 04/06/2017] [Indexed: 11/10/2022]
Abstract
Endothelial protein C receptor (EPCR) is a specific receptor for anticoagulant protein C and expressed by human epidermis and cultured keratinocytes. Here we investigated whether: (a) the level of EPCR in keratinocytes is associated with their growth potential; and (b) EPCR is a potential marker for human epidermal stem cells. Human keratinocytes isolated from foreskins or adult skin tissues were transfected with EPCR siRNA or EPCR overexpressing plasmids. Cell proliferation, long term proliferation potential, colony forming efficiency (CFE), and in vitro epidermal regeneration ability of EPCRhigh and EPCRl °w cells were assessed. The expression and colocalization of EPCR with stem cell markers p63, integrin β1, and activation of MAP kinases were detected by flow cytometry, immunofluorescence staining, or Western blot. Results showed that EPCR was highly expressed by the basal layer of skin epidermis. EPCRhigh cells were associated with the highest levels of p63 and integrin β1. Most EPCRhigh cells were smaller in size, formed larger colonies and had a greater long term growth potential, CFE, holoclone formation, and in vitro epidermal regeneration ability when compared to EPCRl °w cells. Blocking EPCR resulted in keratinocyte apoptosis, particularly in nondifferentiated conditions. Cell proliferation and p63 expression were reduced by blocking EPCR and enhanced by overexpressing this receptor. These data indicate that EPCR can regulate p63, is associated with highly proliferative keratinocytes, and is a potential human epidermal stem cell marker. Stem Cells 2017;35:1786-1798.
Collapse
Affiliation(s)
- Meilang Xue
- Sutton Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, Camperdown, New South Wales, Australia
| | - Suat Dervish
- Sutton Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, Camperdown, New South Wales, Australia.,Westmead Institute, University of Sydney, Sydney, New South Wales, Australia
| | - Benjamin Chan
- Raymond Purves Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, Camperdown, New South Wales, Australia
| | - Christopher J Jackson
- Sutton Research Laboratory, Institute of Bone and Joint Research, Kolling Institute of Medical Research, University of Sydney at Royal North Shore Hospital, Camperdown, New South Wales, Australia
| |
Collapse
|
21
|
Domingues MJ, Cao H, Heazlewood SY, Cao B, Nilsson SK. Niche Extracellular Matrix Components and Their Influence on HSC. J Cell Biochem 2017; 118:1984-1993. [PMID: 28112429 DOI: 10.1002/jcb.25905] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 01/20/2017] [Indexed: 12/16/2022]
Abstract
Maintenance of hematopoietic stem cells (HSC) takes place in a highly specialized microenvironment within the bone marrow. Technological improvements, especially in the field of in vivo imaging, have helped unravel the complexity of the niche microenvironment and have completely changed the classical concept from what was previously believed to be a static supportive platform, to a dynamic microenvironment tightly regulating HSC homeostasis through the complex interplay between diverse cell types, secreted factors, extracellular matrix molecules, and the expression of different transmembrane receptors. To add to the complexity, non-protein based metabolites have also been recognized as a component of the bone marrow niche. The objective of this review is to discuss the current understanding on how the different extracellular matrix components of the niche regulate HSC fate, both during embryonic development and in adulthood. Special attention will be provided to the description of non-protein metabolites, such as lipids and metal ions, which contribute to the regulation of HSC behavior. J. Cell. Biochem. 118: 1984-1993, 2017. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mélanie J Domingues
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Huimin Cao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Shen Y Heazlewood
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Benjamin Cao
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| | - Susan K Nilsson
- Manufacturing, Commonwealth Scientific and Industrial Research Organization, Bag 10, Clayton South, VIC 3169, Australia.,Australian Regenerative Medicine Institute, Monash University, Clayton, VIC 3800, Australia
| |
Collapse
|
22
|
Avci S, Gur-Cohen S, Avemaria F, Lapidot T. Adhesion Assay for Murine Bone Marrow Hematopoietic Stem Cells. Bio Protoc 2017; 7:e2135. [PMID: 34458456 DOI: 10.21769/bioprotoc.2135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/22/2016] [Accepted: 01/21/2017] [Indexed: 11/02/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are defined by their functional abilities to self-renew and to give rise to all mature blood and immune cell types throughout life. Most HSCs are retained in a non-motile quiescent state within a specialized protective microenvironment in the bone marrow (BM) termed the niche. HSCs are typically distinguished from other adult stem cells by their motility capacity. Movement of HSCs across the physical barrier of the marrow extracellular matrix and blood vessel endothelial cells is facilitated by suppression of adhesion interactions, which are essential to preserve the stem cells retained within their BM niches. Importantly, homing of HSCs to the BM following clinical transplantation is a crucial first step for the repopulation of ablated BM as in the case of curative treatment strategies for hematologic malignancies. The homing process ends with selective access and anchorage of HSCs to their specialized niches within the BM. Adhesion molecules are targets to either enhance homing in cases of stem cell transplantation or reduce BM retention to harvest mobilized HSCs from the blood of matched donors. A major adhesion protein which is functionally expressed on HSCs and is involved in their homing and retention is the integrin alpha4beta1 (Very late antigen-4; VLA4). In this protocol we introduce an adhesion assay optimized for VLA4 expressing murine bone marrow stem cells. This assay quantifies adherent HSCs by flow cytometry with HSC enriching cell surface markers subsequent to the isolation of VLA4 expressing adherent cells.
Collapse
Affiliation(s)
- Seymen Avci
- Weizmann Institute of Science, Immunology department, Rehovot, Israel
| | - Shiri Gur-Cohen
- Weizmann Institute of Science, Immunology department, Rehovot, Israel
| | | | - Tsvee Lapidot
- Weizmann Institute of Science, Immunology department, Rehovot, Israel
| |
Collapse
|
23
|
Avemaria F, Gur-Cohen S, Avci S, Lapidot T. VLA-4 Affinity Assay for Murine Bone Marrow-derived Hematopoietic Stem Cells. Bio Protoc 2017; 7:e2134. [PMID: 34458455 DOI: 10.21769/bioprotoc.2134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 11/22/2016] [Accepted: 01/21/2017] [Indexed: 11/02/2022] Open
Abstract
Hematopoietic stem cells (HSCs) are defined by their functional ability to self-renew and to differentiate into all blood cell lineages. The majority of HSC reside in specific anatomical locations in the bone marrow (BM) microenvironment, in a quiescent non motile mode. Adhesion interactions between HSCs and their supporting BM microenvironment cells are critical for maintaining stem cell quiescence and protection from DNA damaging agents to prevent hematology failure and death. Multiple signaling proteins play a role in controlling retention and migration of bone marrow HSCs. Adhesion molecules are involved in both processes regulating hematopoiesis and stem- and progenitor-cell BM retention, migration and development. The mechanisms underlying the movement of stem cells from and to the marrow have not been completely elucidated and are still an object of intense study. One important aspect is the modification of expression and affinity of adhesion molecules by stem and progenitor cells which are required both for stem cell retention, migration and development. Adhesion is regulated by expression of the adhesion molecules, their affinity and avidity. Affinity regulation is related to the molecular binding recognition and bond strength. Here, we describe the in vitro FACS assay used in our research to explore the expression, affinity and function of the integrin α4β1 (also termed VLA-4) for murine bone marrow retained EPCR+ long term repopulation HSC (LT-HSC) (Gur- Cohen et al., 2015 ).
Collapse
Affiliation(s)
- Francesca Avemaria
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Shiri Gur-Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Seymen Avci
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
24
|
Neoplasms in the bone marrow niches: disturbance of the microecosystem. Int J Hematol 2017; 105:558-565. [PMID: 28176227 DOI: 10.1007/s12185-017-2193-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 01/22/2017] [Accepted: 02/01/2017] [Indexed: 01/17/2023]
Abstract
Increasing studies have revealed that the interaction between malignant cells and the microenvironment (so called niche) in the bone marrow can influence the development and progression of the hematopoietic malignancies. Here, we reviewed the current findings in the field, focusing the niche alterations in promoting the emergency of malignancies, in interfering with the blood reconstitution of normal hematopoietic stem and progenitor cells, and in protecting leukemic stem cells from therapy which causes disease relapse. We made efforts to discuss these aspects in view of a kind of disturbance of the microecosystem within BM and thus proposed some new concepts in therapeutics of blood malignancies.
Collapse
|