1
|
Boda MR, Otieno LA, Smith AE, Goldsworthy MR, Sidhu SK. Metaplastic neuromodulation via transcranial direct current stimulation has no effect on corticospinal excitability and neuromuscular fatigue. Exp Brain Res 2024; 242:1999-2012. [PMID: 38940961 PMCID: PMC11252223 DOI: 10.1007/s00221-024-06874-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/13/2024] [Indexed: 06/29/2024]
Abstract
Transcranial direct current stimulation (tDCS) is a non-invasive brain stimulation tool with potential for managing neuromuscular fatigue, possibly due to alterations in corticospinal excitability. However, inconsistencies in intra- and inter- individual variability responsiveness to tDCS limit its clinical use. Emerging evidence suggests harnessing homeostatic metaplasticity induced via tDCS may reduce variability and boost its outcomes, yet little is known regarding its influence on neuromuscular fatigue in healthy adults. We explored whether cathodal tDCS (ctDCS) prior to exercise combined with anodal tDCS (atDCS) could augment corticospinal excitability and attenuate neuromuscular fatigue. 15 young healthy adults (6 males, 22 ± 4 years) participated in four pseudo-randomised neuromodulation sessions: sham stimulation prior and during exercise, sham stimulation prior and atDCS during exercise, ctDCS prior and atDCS during exercise, ctDCS prior and sham stimulation during exercise. The exercise constituted an intermittent maximal voluntary contraction (MVC) of the right first dorsal interosseous (FDI) for 10 min. Neuromuscular fatigue was quantified as an attenuation in MVC force, while motor evoked potential (MEP) amplitude provided an assessment of corticospinal excitability. MEP amplitude increased during the fatiguing exercise, whilst across time, force decreased. There were no differences in MEP amplitudes or force between neuromodulation sessions. These outcomes highlight the ambiguity of harnessing metaplasticity to ameliorate neuromuscular fatigue in young healthy individuals.
Collapse
Affiliation(s)
- Madison R Boda
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Lavender A Otieno
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
| | - Ashleigh E Smith
- Alliance for Research in Exercise, Nutrition and Activity (ARENA), Allied Health and Human Performance, University of South Australia, Adelaide, South Australia, Australia
| | - Mitchell R Goldsworthy
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia
- Behaviour-Brain-Body Research Centre, Justice and Society, University of South Australia, Adelaide, South Australia, Australia
- Hopwood Centre for Neurobiology, Lifelong Health Theme, South Australian Health and Medical Research Institute, Adelaide, South Australia, Australia
| | - Simranjit K Sidhu
- School of Biomedicine, The University of Adelaide, Adelaide, South Australia, 5005, Australia.
| |
Collapse
|
2
|
Qu C, Huang Y, Philippe R, Cai S, Derrington E, Moisan F, Shi M, Dreher JC. Transcranial direct current stimulation suggests a causal role of the medial prefrontal cortex in learning social hierarchy. Commun Biol 2024; 7:304. [PMID: 38461216 PMCID: PMC10924847 DOI: 10.1038/s42003-024-05976-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 02/27/2024] [Indexed: 03/11/2024] Open
Abstract
Social hierarchies can be inferred through observational learning of social relationships between individuals. Yet, little is known about the causal role of specific brain regions in learning hierarchies. Here, using transcranial direct current stimulation, we show a causal role of the medial prefrontal cortex (mPFC) in learning social versus non-social hierarchies. In a Training phase, participants acquired knowledge about social and non-social hierarchies by trial and error. During a Test phase, they were presented with two items from hierarchies that were never encountered together, requiring them to make transitive inferences. Anodal stimulation over mPFC impaired social compared with non-social hierarchy learning, and this modulation was influenced by the relative social rank of the members (higher or lower status). Anodal stimulation also impaired transitive inference making, but only during early blocks before learning was established. Together, these findings demonstrate a causal role of the mPFC in learning social ranks by observation.
Collapse
Affiliation(s)
- Chen Qu
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Yulong Huang
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
- Department of Experimental Psychology, Ghent University, Ghent, Belgium
| | - Rémi Philippe
- Laboratory of Neuroeconomics, Institut des Sciences Cognitives Marc Jeannerod, CNRS, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | - Shenggang Cai
- School of Economics and Management, South China Normal University, Guangzhou, China
- Key Lab for Behavioral Economic Science & Technology, South China Normal University, Guangzhou, China
| | - Edmund Derrington
- Laboratory of Neuroeconomics, Institut des Sciences Cognitives Marc Jeannerod, CNRS, Lyon, France
- Université Claude Bernard Lyon 1, Lyon, France
| | | | - Mengke Shi
- Center for Studies of Psychological Application, Guangdong Key Laboratory of Mental Health and Cognitive Science, South China Normal University, Guangzhou, China
| | - Jean-Claude Dreher
- Laboratory of Neuroeconomics, Institut des Sciences Cognitives Marc Jeannerod, CNRS, Lyon, France.
- Université Claude Bernard Lyon 1, Lyon, France.
| |
Collapse
|
3
|
Wang Y, Wang F, Kong Y, Gao T, Zhu Q, Han L, Sun B, Guan L, Zhang Z, Qian Y, Xu L, Li Y, Fang H, Jiao G, Ke X. High definition transcranial direct current stimulation of the Cz improves social dysfunction in children with autism spectrum disorder: A randomized, sham, controlled study. Autism Res 2023; 16:2035-2048. [PMID: 37695276 DOI: 10.1002/aur.3018] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/08/2023] [Indexed: 09/12/2023]
Abstract
The purpose of this study was to determine the effect of the Cz of high-definition 5-channel tDCS (HD-tDCS) on social function in 4-12 years-old children with autism spectrum disorder (ASD). This study was a randomized, double-blind, pseudo-controlled trial in which 45 ASD children were recruited and divided into three groups with sex, age, and rehabilitation treatment as control variables. Each group of 15 children with ASD was randomly administered active HD-tDCS with the Cz as the central anode, active HD-tDCS with the left dorsolateral prefrontal cortex (F3) as the central anode, and sham HD-tDCS with the Cz as the central anode with 14 daily sessions in 3 weeks. The Social Responsiveness Scale Chinese Version (SRS-Chinese Version) was compared 1 week after stimulation with values recorded 1 week prior to stimulation. At the end of treatment, both the anodal Cz and anodal left DLFPC tDCS decreased the measures of SRS-Chinese Version. The total score of SRS-Chinese Version decreased by 13.08%, social cognition decreased by 18.33%, and social communication decreased by 10.79%, which were significantly improved over the Cz central anode active stimulation group, especially in children with young age, and middle and low function. There was no significant change in the total score and subscale score of SRS-Chinese Version over the Cz central anode sham stimulation group. In the F3 central anode active stimulation group, the total score of SRS-Chinese Version decreased by 13%, autistic behavior decreased by 19.39%, and social communication decreased by 14.39%, which were all significantly improved. However, there was no significant difference in effect between the Cz and left DLPFC stimulation conditions. HD-tDCS of the Cz central anode may be an effective treatment for social dysfunction in children with ASD.
Collapse
Affiliation(s)
- Yonglu Wang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Fei Wang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Kong
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Tianshu Gao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Qingyao Zhu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lu Han
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Bei Sun
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Luyang Guan
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Ziyi Zhang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Qian
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Lingxi Xu
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Yun Li
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Hui Fang
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Gongkai Jiao
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoyan Ke
- Child Mental Health Research Center, The Affiliated Brain Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
4
|
Sun L, Lu X, Zheng H, Zeng L, Zheng W, Wang J. Does rDLPFC activity alter trust? Evidence from a tDCS study. Front Neurosci 2023; 17:1213580. [PMID: 37811320 PMCID: PMC10551172 DOI: 10.3389/fnins.2023.1213580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Trust plays an important role in the human economy and people's social lives. Trust is affected by various factors and is related to many brain regions, such as the dorsolateral prefrontal cortex (DLPFC). However, few studies have focused on the impact of the DLPFC on trust through transcranial direct current stimulation (tDCS), although abundant psychology and neuroscience studies have theoretically discussed the possible link between DLPFC activity and trust. In the present study, we aimed to provide evidence of a causal relationship between the rDLPFC and trust behavior by conducting multiple rounds of the classical trust game and applying tDCS over the rDLPFC. We found that overall, anodal stimulation increased trust compared with cathodal stimulation and sham stimulation, while the results in different stages were not completely the same. Our work indicates a causal relationship between rDLPFC excitability and trust behavior and provides a new direction for future research.
Collapse
Affiliation(s)
- Letian Sun
- Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Xinbo Lu
- Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China
- School of Economics, Jiaxing University, Jiaxing, China
| | - Haoli Zheng
- Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Lulu Zeng
- Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Wanjun Zheng
- Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Jinjin Wang
- Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| |
Collapse
|
5
|
Ellingsen DM, Isenburg K, Jung C, Lee J, Gerber J, Mawla I, Sclocco R, Grahl A, Anzolin A, Edwards RR, Kelley JM, Kirsch I, Kaptchuk TJ, Napadow V. Brain-to-brain mechanisms underlying pain empathy and social modulation of pain in the patient-clinician interaction. Proc Natl Acad Sci U S A 2023; 120:e2212910120. [PMID: 37339198 PMCID: PMC10293846 DOI: 10.1073/pnas.2212910120] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 04/25/2023] [Indexed: 06/22/2023] Open
Abstract
Social interactions such as the patient-clinician encounter can influence pain, but the underlying dynamic interbrain processes are unclear. Here, we investigated the dynamic brain processes supporting social modulation of pain by assessing simultaneous brain activity (fMRI hyperscanning) from chronic pain patients and clinicians during video-based live interaction. Patients received painful and nonpainful pressure stimuli either with a supportive clinician present (Dyadic) or in isolation (Solo). In half of the dyads, clinicians performed a clinical consultation and intake with the patient prior to hyperscanning (Clinical Interaction), which increased self-reported therapeutic alliance. For the other half, patient-clinician hyperscanning was completed without prior clinical interaction (No Interaction). Patients reported lower pain intensity in the Dyadic, relative to the Solo, condition. In Clinical Interaction dyads relative to No Interaction, patients evaluated their clinicians as better able to understand their pain, and clinicians were more accurate when estimating patients' pain levels. In Clinical Interaction dyads, compared to No Interaction, patients showed stronger activation of the dorsolateral and ventrolateral prefrontal cortex (dlPFC and vlPFC) and primary (S1) and secondary (S2) somatosensory areas (Dyadic-Solo contrast), and clinicians showed increased dynamic dlPFC concordance with patients' S2 activity during pain. Furthermore, the strength of S2-dlPFC concordance was positively correlated with self-reported therapeutic alliance. These findings support that empathy and supportive care can reduce pain intensity and shed light on the brain processes underpinning social modulation of pain in patient-clinician interactions. Our findings further suggest that clinicians' dlPFC concordance with patients' somatosensory processing during pain can be boosted by increasing therapeutic alliance.
Collapse
Affiliation(s)
- Dan-Mikael Ellingsen
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo0372, Norway
- Department of Psychology, Pedagogy and Law, School of Health Sciences, Kristiania University College, Oslo0107, Norway
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
| | - Kylie Isenburg
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
| | - Changjin Jung
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- KM Research Science Division, Korea Institute of Oriental Medicine, Daejeon461-24, Republic of Korea
| | - Jeungchan Lee
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA02129
| | - Jessica Gerber
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
| | - Ishtiaq Mawla
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
| | - Roberta Sclocco
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Radiology, Logan University, Chesterfield, MO63017
| | - Arvina Grahl
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA02129
| | - Alessandra Anzolin
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA02129
| | - Robert R. Edwards
- Department of Anesthesiology, Brigham and Women’s Hospital, Boston, MA02115
| | - John M. Kelley
- School of Social Sciences, Communication, and Humanities, Endicott College, Beverley, MA02115
- Program in Placebo Studies & Therapeutic Encounter, Harvard Medical School, Boston, MA02215
| | - Irving Kirsch
- Program in Placebo Studies & Therapeutic Encounter, Harvard Medical School, Boston, MA02215
| | - Ted J. Kaptchuk
- Program in Placebo Studies & Therapeutic Encounter, Harvard Medical School, Boston, MA02215
| | - Vitaly Napadow
- Athinoula A. Martinos Center for Biomedical Imaging, Massa, chusetts General Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Physical Medicine and Rehabilitation, Spaulding Rehabilitation Hospital, Harvard Medical School, Charlestown, MA02129
- Department of Radiology, Logan University, Chesterfield, MO63017
| |
Collapse
|
6
|
Casula A, Milazzo BM, Martino G, Sergi A, Lucifora C, Tomaiuolo F, Quartarone A, Nitsche MA, Vicario CM. Non-Invasive Brain Stimulation for the Modulation of Aggressive Behavior-A Systematic Review of Randomized Sham-Controlled Studies. Life (Basel) 2023; 13:life13051220. [PMID: 37240865 DOI: 10.3390/life13051220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 05/10/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
INTRO Aggressive behavior represents a significant public health issue, with relevant social, political, and security implications. Non-invasive brain stimulation (NIBS) techniques may modulate aggressive behavior through stimulation of the prefrontal cortex. AIMS To review research on the effectiveness of NIBS to alter aggression, discuss the main findings and potential limitations, consider the specifics of the techniques and protocols employed, and discuss clinical implications. METHODS A systematic review of the literature available in the PubMed database was carried out, and 17 randomized sham-controlled studies investigating the effectiveness of NIBS techniques on aggression were included. Exclusion criteria included reviews, meta-analyses, and articles not referring to the subject of interest or not addressing cognitive and emotional modulation aims. CONCLUSIONS The reviewed data provide promising evidence for the beneficial effects of tDCS, conventional rTMS, and cTBS on aggression in healthy adults, forensic, and clinical samples. The specific stimulation target is a key factor for the success of stimulation on aggression modulation. rTMS and cTBS showed opposite effects on aggression compared with tDCS. However, due to the heterogeneity of stimulation protocols, experimental designs, and samples, we cannot exclude other factors that may play a confounding role.
Collapse
Affiliation(s)
- Antony Casula
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| | - Bianca M Milazzo
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| | - Gabriella Martino
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| | - Alessandro Sergi
- Dipartimento di Scienze Matematiche e Informatiche, Scienze Fisiche e Scienze della Terra, Università degli Studi di Messina, Viale F. Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Chiara Lucifora
- Dipartimento di Filosofia e Comunicazione, Università di Bologna, 40131 Bologna, Italy
| | - Francesco Tomaiuolo
- Dipartimento di Medicina e Clinica Sperimentale, Università degli Studi di Messina, A.O.U. "G. Martino", Via Consolare Valeria, 98125 Messina, Italy
| | | | - Michael A Nitsche
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, 44139 Dortmund, Germany
- University Clinic of Psychiatry and Psychotherapy and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Protestant Hospital of Bethel Foundation, University Hospital OWL, Bielefeld University, 33615 Bielefeld, Germany
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e Degli Studi Culturali, Università di Messina, 98121 Messina, Italy
| |
Collapse
|
7
|
Wang Y, Xu L, Fang H, Wang F, Gao T, Zhu Q, Jiao G, Ke X. Social Brain Network of Children with Autism Spectrum Disorder: Characterization of Functional Connectivity and Potential Association with Stereotyped Behavior. Brain Sci 2023; 13:brainsci13020280. [PMID: 36831823 PMCID: PMC9953760 DOI: 10.3390/brainsci13020280] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/21/2023] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Objective: To identify patterns of social dysfunction in adolescents with autism spectrum disorder (ASD), study the potential linkage between social brain networks and stereotyped behavior, and further explore potential targets of non-invasive nerve stimulation to improve social disorders. Methods: Voxel-wise and ROI-wise analysis methods were adopted to explore abnormalities in the functional activity of social-related regions of the brain. Then, we analyzed the relationships between clinical variables and the statistical indicators of social-related brain regions. Results: Compared with the typically developing group, the functional connectivity strength of social-related brain regions with the precentral gyrus, postcentral gyrus, supplementary motor area, paracentral lobule, median cingulum, and paracingulum gyri was significantly weakened in the ASD group (all p < 0. 01). The functional connectivity was negatively correlated with communication, social interaction, communication + social interaction, and the total score of the ADOS scale (r = -0.38, -0.39, -0.40, and -0.3, respectively; all p < 0.01), with social awareness, social cognition, social communication, social motivation, autistic mannerisms, and the total score of the SRS scale (r = -0.32, -0.32, -0.40, -0.30, -0.28, and -0.27, respectively; all p < 0.01), and with the total score of SCQ (r = -0.27, p < 0.01). In addition, significant intergroup differences in clustering coefficients and betweenness centrality were seen across multiple brain regions in the ASD group. Conclusions: The functional connectivity between social-related brain regions and many other brain regions was significantly weakened compared to the typically developing group, and it was negatively correlated with social disorders. Social network dysfunction seems to be related to stereotyped behavior. Therefore, these social-related brain regions may be taken as potential stimulation targets of non-invasive nerve stimulation to improve social dysfunction in children with ASD in the future.
Collapse
|
8
|
Zhang J, Sun S, Zhou C, Cai Y, Liu H, Yang Z, Yu R. Breakdown of intention-based outcome evaluation after transient right temporoparietal junction deactivation. Sci Rep 2023; 13:1259. [PMID: 36690645 PMCID: PMC9870900 DOI: 10.1038/s41598-023-28293-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 01/16/2023] [Indexed: 01/24/2023] Open
Abstract
People judge the nature of human behaviors based on underlying intentions and possible outcomes. Recent studies have demonstrated a causal role of the right temporoparietal junction (rTPJ) in modulating both intention and intention-based outcome evaluations during social judgments. However, these studies mainly used hypothetical scenarios with socially undesirable contexts (bad/neutral intentions and bad/neutral outcomes), leaving the role of rTPJ in judging good intentions and good outcomes unclear. In the current study, participants were instructed to make goodness judgments as a third party toward the monetary allocations from one proposer to another responder. Critically, in some cases, the initial allocation by the proposer could be reversed by the computer, yielding combinations of good/bad intentions (of the proposer) with good/bad outcomes (for the responder). Anodal (n = 20), cathodal (n = 21), and sham (n = 21) transcranial direct current stimulation (tDCS) over the rTPJ were randomly assigned to 62 subjects to further examine the effects of stimulation over the rTPJ in modulating intention-based outcome evaluation. Compared to the anodal and sham stimulations, cathodal tDCS over the rTPJ reduced the goodness ratings of good/bad outcomes when the intentions were good, whereas it showed no significant effect on outcome ratings under unknown and bad intentions. Our results provide the first evidence that deactivating the rTPJ modulates outcome evaluation in an intention-dependent fashion, mainly by reducing the goodness rating towards both good/bad outcomes when the intentions are good. Our findings argue for a causal role of the rTPJ in modulating intention-based social judgments and point to nuanced effects of rTPJ modulation.
Collapse
Affiliation(s)
- Junfeng Zhang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China
| | - Sai Sun
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.
- Research Institute of Electrical Communication, Tohoku University, Sendai, Japan.
| | - Chengyan Zhou
- School of Psychology, South China Normal University, Guangzhou, China
| | - Yaochun Cai
- School of Psychology, South China Normal University, Guangzhou, China
| | - Hao Liu
- Department of Psychology, Guangzhou University, Guangzhou, China
| | - Zhaoyang Yang
- Research Base of Traditional Chinese Medicine Syndrome, Fujian University of Traditional Chinese Medicine, Fuzhou, China.
| | - Rongjun Yu
- Department of Management, Marketing, and Information Systems, School of Business, Hong Kong Baptist University, Kowloon Tong, HKSAR, Hong Kong, China.
| |
Collapse
|
9
|
Flechsenhar A, Kanske P, Krach S, Korn C, Bertsch K. The (un)learning of social functions and its significance for mental health. Clin Psychol Rev 2022; 98:102204. [PMID: 36216722 DOI: 10.1016/j.cpr.2022.102204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 08/11/2022] [Accepted: 09/23/2022] [Indexed: 01/27/2023]
Abstract
Social interactions are dynamic, context-dependent, and reciprocal events that influence prospective strategies and require constant practice and adaptation. This complexity of social interactions creates several research challenges. We propose a new framework encouraging future research to investigate not only individual differences in capacities relevant for social functioning and their underlying mechanisms, but also the flexibility to adapt or update one's social abilities. We suggest three key capacities relevant for social functioning: (1) social perception, (2) sharing emotions or empathizing, and (3) mentalizing. We elaborate on how adaptations in these capacities may be investigated on behavioral and neural levels. Research on these flexible adaptations of one's social behavior is needed to specify how humans actually "learn to be social". Learning to adapt implies plasticity of the relevant brain networks involved in the underlying social processes, indicating that social abilities are malleable for different contexts. To quantify such measures, researchers need to find ways to investigate learning through dynamic changes in adaptable social paradigms and examine several factors influencing social functioning within the three aformentioned social key capacities. This framework furthers insight concerning individual differences, provides a holistic approach to social functioning, and may improve interventions for ameliorating social abilities in patients.
Collapse
Affiliation(s)
- Aleya Flechsenhar
- Department Clinical Psychology and Psychotherapy, Ludwig-Maximilians-University Munich, Germany.
| | - Philipp Kanske
- Institute of Clinical Psychology and Psychotherapy, Technische Universität Dresden, Germany
| | - Sören Krach
- Department of Psychiatry and Psychotherapy, University of Lübeck, Germany
| | - Christoph Korn
- Section Social Neuroscience, Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| | - Katja Bertsch
- Department Clinical Psychology and Psychotherapy, Ludwig-Maximilians-University Munich, Germany; NeuroImaging Core Unit Munich (NICUM), University Hospital LMU, Munich, Germany; Department of General Psychiatry, Center for Psychosocial Medicine, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
10
|
Ljubisavljevic M, Basha J, Ismail FY. The effects of prefrontal vs. parietal cortex transcranial direct current stimulation on craving, inhibition, and measures of self-esteem. Front Neurosci 2022; 16:998875. [DOI: 10.3389/fnins.2022.998875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022] Open
Abstract
While prefrontal cortex dysfunction has been implicated in high food cravings, other cortical regions, like the parietal cortex, are potentially also involved in regulating craving. This study explored the effects of stimulating the inferior parietal lobule (IPL) and dorsolateral prefrontal cortex (DLPFC) on food craving state and trait. Transcranial direct current stimulation (tDCS) was administered at 1.5 mA for 5 consecutive days. Participants received 20 min of IPL, DLPFC, or sham stimulation (SHAM) each day which consisted of two rounds of 10-min stimulation, divided by a 10-min mindfulness task break. In addition, we studied inhibition and subjective psychological aspects like body image and self-esteem state and trait. To decompose immediate and cumulative effects, we measured the following on days 1 and 5: inhibition through the Go/No-go task; and food craving, self-esteem, and body appreciation through a battery of questionnaires. We found that false alarm errors decreased in the participants receiving active stimulation in the DLPFC (DLPFC-group). In contrast, false alarm errors increased in participants receiving active stimulation in the IPL (IPL-group). At the same time, no change was found in the participants receiving SHAM (SHAM-group). There was a trending reduction in craving trait in all groups. Momentary craving was decreased in the DLPFC-group and increased in IPL-group, yet a statistical difference was not reached. According to time and baseline, self-esteem and body perception improved in the IPL-group. Furthermore, self-esteem trait significantly improved over time in the DLPFC-group and IPL-group. These preliminary results indicate that tDCS modulates inhibition in frontoparietal areas with opposite effects, enhancing it in DLPFC and impairing it in IPL. Moreover, craving is moderately linked to inhibition, self-esteem, and body appreciation which seem not to be affected by neuromodulation but may rely instead on broader regions as more complex constructs. Finally, the fractionated protocol can effectively influence inhibition with milder effects on other constructs.
Collapse
|
11
|
Salehinejad MA, Ghanavati E, Glinski B, Hallajian AH, Azarkolah A. A systematic review of randomized controlled trials on efficacy and safety of transcranial direct current stimulation in major neurodevelopmental disorders: ADHD, autism, and dyslexia. Brain Behav 2022; 12:e2724. [PMID: 35938945 PMCID: PMC9480913 DOI: 10.1002/brb3.2724] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 06/09/2022] [Accepted: 07/12/2022] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE Among the target groups in child and adolescent psychiatry, transcranial direct current stimulation (tDCS) has been more applied in neurodevelopmental disorders specifically, attention-deficit hyperactivity disorder (ADHD), autism spectrum disorder (ASD), and dyslexia. This systematic review aims to provide the latest update on published randomized-controlled trials applying tDCS in these disorders for evaluating its efficacy and safety. METHODS Based on a pre-registered protocol (PROSPERO: CRD42022321430) and using the PRISMA approach, a literature search identified 35 randomized controlled trials investigating the effects of tDCS on children and adolescents with ADHD (n = 17), ASD (n = 11), and dyslexia (n = 7). RESULTS In ADHD, prefrontal anodal tDCS is reported more effective compared to stimulation of the right inferior frontal gyrus. Similarly in ASD, prefrontal anodal tDCS was found effective for improving behavioral problems. In dyslexia, stimulating temporoparietal regions was the most common and effective protocol. In ASD and dyslexia, all tDCS studies found an improvement in at least one of the outcome variables while 64.7% of studies (11 of 17) in ADHD found a similar effect. About 88% of all tDCS studies with a multi-session design in 3 disorders (16 of 18) reported a significant improvement in one or all outcome variables after the intervention. Randomized, double-blind, controlled trials consisted of around 70.5%, 36.3%, and 57.1% of tDCS studies in ADHD, ASD, and dyslexia, respectively. tDCS was found safe with no reported serious side effects in 6587 sessions conducted on 745 children and adolescents across 35 studies. CONCLUSION tDCS was found safe and partially effective. For evaluation of clinical utility, larger randomized controlled trials with a double-blind design and follow-up measurements are required. Titration studies that systematically evaluate different stimulation intensities, duration, and electrode placement are lacking.
Collapse
Affiliation(s)
- Mohammad Ali Salehinejad
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany
| | - Elham Ghanavati
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | - Benedikt Glinski
- Department of Psychology and Neurosciences, Leibniz Research Centre for Working Environment and Human Factors, Dortmund, Germany.,Department of Psychology, Ruhr-University Bochum, Bochum, Germany
| | | | - Anita Azarkolah
- Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran.,Atieh Clinical Neuroscience Center, Tehran, Iran
| |
Collapse
|
12
|
Wei D, Tsheringla S, McPartland JC, Allsop AZASA. Combinatorial approaches for treating neuropsychiatric social impairment. Philos Trans R Soc Lond B Biol Sci 2022; 377:20210051. [PMID: 35858103 PMCID: PMC9274330 DOI: 10.1098/rstb.2021.0051] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 05/13/2022] [Indexed: 01/30/2023] Open
Abstract
Social behaviour is an essential component of human life and deficits in social function are seen across multiple psychiatric conditions with high morbidity. However, there are currently no FDA-approved treatments for social dysfunction. Since social cognition and behaviour rely on multiple signalling processes acting in concert across various neural networks, treatments aimed at social function may inherently require a combinatorial approach. Here, we describe the social neurobiology of the oxytocin and endocannabinoid signalling systems as well as translational evidence for their use in treating symptoms in the social domain. We leverage this systems neurobiology to propose a network-based framework that involves pharmacology, psychotherapy, non-invasive brain stimulation and social skills training to combinatorially target trans-diagnostic social impairment. Lastly, we discuss the combined use of oxytocin and endocannabinoids within our proposed framework as an illustrative strategy to treat specific aspects of social function. Using this framework provides a roadmap for actionable treatment strategies for neuropsychiatric social impairment. This article is part of the theme issue 'Interplays between oxytocin and other neuromodulators in shaping complex social behaviours'.
Collapse
Affiliation(s)
- Don Wei
- Department of Psychiatry, UCLA, Los Angeles, CA, USA
| | | | | | | |
Collapse
|
13
|
Transcranial Direct Current Stimulation as an Approach to Mitigate Neurodevelopmental Disorders Affecting Excitation/Inhibition Balance: Focus on Autism Spectrum Disorder, Schizophrenia, and Attention Deficit/Hyperactivity Disorder. J Clin Med 2022; 11:jcm11102839. [PMID: 35628965 PMCID: PMC9143428 DOI: 10.3390/jcm11102839] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 05/12/2022] [Accepted: 05/14/2022] [Indexed: 02/04/2023] Open
Abstract
Transcranial direct current stimulation (tDCS) has been proposed as a promising therapy for rehabilitation of neurodevelopmental disorders. In this review, we discuss studies on the impact of tDCS as a therapy for autism, schizophrenia, and attention deficit/hyperactivity disorder, as well as the tDCS' mechanism of action, and propose future paths of research to optimize tDCS treatment protocols. The mechanism underlying tDCS effects is the modulation of excitatory and/or inhibitory activity, making it a valuable tool for restoring the excitation/inhibition (E/I) balance which is disrupted in many neurodevelopmental disorders. Clinical studies have shown that tDCS therapy is well-tolerated by patients and seems to ameliorate behavior and cognitive functions. Alterations in early development of neuronal circuits lead to disruptions in brain activity in neurodevelopmental disorders. An increasing amount of research into the effects of tDCS on neuronal activity has provided a foundation for its use as a therapy for behavior and cognitive characteristics of neurodevelopmental disorders. Clinical studies show that tDCS appears to ameliorate behavioral and cognitive outcomes of patients with autism, schizophrenia, and attention deficit/hyperactivity disorder. More research is needed to understand the mechanisms of action of tDCS and to optimize treatment protocols.
Collapse
|
14
|
Shany O, Greental A, Gilam G, Perry D, Bleich-Cohen M, Ovadia M, Cohen A, Raz G. Somatic engagement alters subsequent neurobehavioral correlates of affective mentalizing. Hum Brain Mapp 2021; 42:5846-5861. [PMID: 34651382 PMCID: PMC8596949 DOI: 10.1002/hbm.25640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/04/2021] [Accepted: 08/14/2021] [Indexed: 01/10/2023] Open
Abstract
Socio‐emotional encounters involve a resonance of others' affective states, known as affect sharing (AS); and attribution of mental states to others, known as theory‐of‐mind (ToM). Empathy necessitates the integration of both processes, yet their interaction during emotional episodes and subsequent generation of inferences on others' affective states has rarely been tested. To address this, we developed a novel experimental design, wherein we manipulated AS by presenting nonverbal emotionally negative movies twice—each time accompanied by one of two soundtracks that accentuated either somatic cues or externally generated sounds. Movies were followed by questions addressing affective‐ToM (emotional inferences), cognitive‐ToM (inferences on beliefs and knowledge), and non‐ToM aspects. Results revealed a neural differentiation between AS, affective‐ToM, and cognitive‐ToM. AS movies activated regions that have been implicated in emotional (e.g., amygdala) and somatosensory processing, and synchronized brain activity between participants in the latter. Affective‐ToM activated the middle insula, limbic regions, and both ventral and dorsal portions of the medial prefrontal cortex (ventral medial prefrontal cortex [VMPFC] and dorsal medial prefrontal cortex [DMPFC], respectively), whereas cognitive‐ToM activated posteromedial and lateral–prefrontal and temporal cortices. Critically, AS movies specifically altered neural activation in AS and ToM‐related regions during subsequent affective‐ToM inferences, most notably in the DMPFC. Moreover, DMPFC–VMPFC connectivity correlated with affective‐ToM accuracy, when such questions followed AS movies. Our results associate empathic processes with designated neural activations and shed light on how neuro‐behavioral indices of affective ToM are shaped by preceding somatic engagement.
Collapse
Affiliation(s)
- Ofir Shany
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ayam Greental
- School of Psychological Sciences, Tel-Aviv University, Tel-Aviv, Israel.,Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel
| | - Gadi Gilam
- Division of Pain Medicine, Department of Anesthesiology, Perioperative, and Pain Medicine, Stanford University, Stanford, California, USA
| | - Daniella Perry
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Maya Bleich-Cohen
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Moran Ovadia
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Steve Tisch School of Film and Television, Tel Aviv University, Tel-Aviv, Israel
| | - Avihay Cohen
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Gal Raz
- Sagol Brain Institute, Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel.,Sagol School of Neuroscience, Tel-Aviv University, Tel-Aviv, Israel.,Steve Tisch School of Film and Television, Tel Aviv University, Tel-Aviv, Israel
| |
Collapse
|
15
|
Langenbach BP, Savic B, Baumgartner T, Wyss AM, Knoch D. Mentalizing with the future: Electrical stimulation of the right TPJ increases sustainable decision-making. Cortex 2021; 146:227-237. [PMID: 34915393 DOI: 10.1016/j.cortex.2021.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/22/2021] [Accepted: 11/02/2021] [Indexed: 11/25/2022]
Abstract
While many people acknowledge the urgency to drastically change our consumption patterns to mitigate climate change, most people fail to live sustainably. We hypothesized that a lack of sustainability stems from insufficient intergenerational mentalizing (i.e., taking the perspective of people in the future). To causally test our hypothesis, we applied high-definition transcranial direct current stimulation (HD-tDCS) to the temporo-parietal junction (TPJ). We tested participants twice (receiving stimulation at the TPJ or the vertex as control), while they engaged in a behavioral economic paradigm measuring sustainable decision-making, even if sustainability was costly. Indeed, excitatory anodal HD-tDCS increased sustainable decision-making, while inhibitory cathodal HD-tDCS had no effect. These finding cannot be explained by changes in participants' fairness norms or their estimation of how other people would behave. Shedding light on the neural basis of sustainability, our results could inspire targeted interventions tackling the TPJ and give neuroscientific support to theories on how to construct public campaigns addressing sustainability issues.
Collapse
Affiliation(s)
- Benedikt P Langenbach
- University of Bern, Institute of Psychology, Department of Social Neuroscience and Social Psychology, Bern, Switzerland; University of Duisburg-Essen, LVR Clinic for Psychiatry and Psychotherapy, Essen, Germany.
| | - Branislav Savic
- University of Bern, Institute of Psychology, Department of Social Neuroscience and Social Psychology, Bern, Switzerland
| | - Thomas Baumgartner
- University of Bern, Institute of Psychology, Department of Social Neuroscience and Social Psychology, Bern, Switzerland
| | - Annika M Wyss
- University of Bern, Institute of Psychology, Department of Social Neuroscience and Social Psychology, Bern, Switzerland
| | - Daria Knoch
- University of Bern, Institute of Psychology, Department of Social Neuroscience and Social Psychology, Bern, Switzerland.
| |
Collapse
|
16
|
Brooks H, Oughli HA, Kamel L, Subramanian S, Morgan G, Blumberger DM, Kloeckner J, Kumar S, Mulsant BH, Lenze EJ, Rajji TK. Enhancing Cognition in Older Persons with Depression or Anxiety with a Combination of Mindfulness-Based Stress Reduction (MBSR) and Transcranial Direct Current Stimulation (tDCS): Results of a Pilot Randomized Clinical Trial. Mindfulness (N Y) 2021; 12:3047-3059. [PMID: 34630733 PMCID: PMC8491443 DOI: 10.1007/s12671-021-01764-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/18/2021] [Indexed: 11/30/2022]
Abstract
Objectives Individuals with subjective memory complaints and symptoms of depression and/or anxiety are at high risk for further cognitive decline, and possible progression to dementia. Low-burden interventions to help slow or prevent cognitive decline in this high-risk group are needed. The objective of this study is to assess the feasibility of combining Mindfulness-Based Stress Reduction (MBSR) with transcranial direct current stimulation (tDCS) to increase putative benefits of MBSR for cognitive function and everyday mindfulness in depressed or anxious older adults with subjective cognitive decline. Methods We conducted a two-site pilot double-blind randomized sham-controlled trial, combining active MBSR with either active or sham tDCS. The intervention included weekly in-class group sessions at the local university hospital and daily at-home practice. Anodal tDCS was applied for 30 min during MBSR meditative practice, both in-class and at-home. Results Twenty-six individuals with subjective cognitive complaints and symptoms of depression and/or anxiety were randomized to active (n = 12) or sham tDCS (n = 14). The combination of MBSR and tDCS was safe and well tolerated, though at-home adherence and in-class attendance were variable. While they were not statistically significant, the largest effect sizes for active vs. sham tDCS were for everyday mindfulness (d = 0.6) and social functioning (d = 0.9) (F(1,21) = 3.68, p = 0.07 and F(1,21) = 3.9, p = 0.06, respectively). Conclusions Our findings suggest that it is feasible and safe to combine tDCS with MBSR in older depressed and anxious adults, including during remote, at-home use. Furthermore, tDCS may enhance MBSR via transferring its meditative learning and practice into increases in everyday mindfulness. Future studies need to improve adherence to MBSR with tDCS. Trial Registration ClinicalTrials.gov (NCT03653351 and NCT03680664). Supplementary Information The online version contains supplementary material available at 10.1007/s12671-021-01764-9.
Collapse
Affiliation(s)
- Heather Brooks
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | | | - Lojine Kamel
- Washington University School of Medicine, St. Louis, MO USA
| | | | - Gwen Morgan
- Centre for Mindfulness Studies, Toronto, Canada
| | - Daniel M Blumberger
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | | | - Sanjeev Kumar
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Benoit H Mulsant
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada
| | - Eric J Lenze
- Washington University School of Medicine, St. Louis, MO USA
| | - Tarek K Rajji
- Centre for Addiction and Mental Health and Department of Psychiatry, University of Toronto, Toronto, ON Canada.,Toronto Dementia Research Alliance, University of Toronto, Toronto, Canada
| |
Collapse
|
17
|
Stimulation of the Social Brain Improves Perspective Selection in Older Adults: A HD-tDCS Study. COGNITIVE AFFECTIVE & BEHAVIORAL NEUROSCIENCE 2021; 21:1233-1245. [PMID: 34287817 PMCID: PMC8563543 DOI: 10.3758/s13415-021-00929-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 06/14/2021] [Indexed: 11/17/2022]
Abstract
There is evidence for dissociable, causal roles for two key social brain regions in young adults. Specifically, the right temporoparietal junction (rTPJ) is associated with embodied perspective taking, whereas the dorsomedial prefrontal cortex (dmPFC) is associated with the integration of social information. However, it is unknown whether these causal brain-behaviour associations are evident in older adults. Fifty-two healthy older adults were stratified to receive either rTPJ or dmPFC anodal high-definition transcranial direct current stimulation in a sham-controlled, double-blinded, repeated-measures design. Self-other processing was assessed across implicit and explicit level one (line-of-sight) and level two (embodied rotation) visual perspective taking (VPT) tasks, and self-other encoding effects on episodic memory. Both rTPJ and dmPFC stimulation reduced the influence of the alternate perspective during level one VPT, indexed by a reduced congruency effect (difference between congruent and incongruent perspectives). There were no stimulation effects on level two perspective taking nor self-other encoding effects on episodic memory. Stimulation to the rTPJ and dmPFC improved perspective selection during level one perspective taking. However, dissociable effects on self-other processing, previously observed in young adults, were not identified in older adults. The results provide causal evidence for age-related changes in social brain function that requires further scrutinization.
Collapse
|
18
|
Yuan B, Tolomeo S, Yang C, Wang Y, Yu R. The tDCS effect on Prosocial Behavior: A Meta-Analytic Review. Soc Cogn Affect Neurosci 2021; 17:26-42. [PMID: 34027543 PMCID: PMC8824678 DOI: 10.1093/scan/nsab067] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 03/29/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
Previous studies have shown that transcranial direct current stimulation (tDCS) could potentially promote prosocial behaviors. However, results from randomized controlled trials are inconsistent. The current meta-analysis aimed to assess the effects of anodal and cathodal tDCS using single-session protocols on prosocial behaviors in healthy young adults and explore potential moderators of these effects. The results showed that compared with sham stimulation, anodal (excitatory) stimulation significantly increased (g = 0.27, 95% CI [0.11, 0.43], Z = 3.30, P = 0.001) and cathodal (inhibitory) stimulation significantly decreased prosocial behaviors (g = −0.19, 95% CI [−0.39, −0.01], Z = −1.95, P = 0.051) using a multilevel meta-analytic model. These effects were not significantly modulated by stimulation parameters (e.g. duration, intensity and site) and types of prosocial behavior. The risk of publication bias for the included effects was minimal, and no selective reporting (e.g. P-hacking) was found in the P-curve analysis. This meta-analysis showed that both anodal and cathodal tDCS have small but significant effects on prosocial behaviors. The current study provides evidence that prosocial behaviors are linked to the activity of the ‘social brain’. Future studies are encouraged to further explore whether tDCS could effectively treat social dysfunctions in psychiatry disorders.
Collapse
Affiliation(s)
- Bo Yuan
- Department of Psychology, Ningbo University, Beijing, China
| | - Serenella Tolomeo
- Department of Psychology, National University of Singapore, Singapore
| | - Chunliang Yang
- Institute of Developmental Psychology, Beijing Normal University, Beijing, China
| | - Ying Wang
- Department of Psychology, Ningbo University, Beijing, China
| | - Rongjun Yu
- Department of Management, Hong Kong Baptist University, Hong Kong, China.,Department of Sport, Physical Education and Health, Hong Kong Baptist University, Hong Kong, China.,Department of Physics, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
19
|
Salehinejad MA, Paknia N, Hosseinpour AH, Yavari F, Vicario CM, Nitsche MA, Nejati V. Contribution of the right temporoparietal junction and ventromedial prefrontal cortex to theory of mind in autism: A randomized, sham-controlled tDCS study. Autism Res 2021; 14:1572-1584. [PMID: 34018333 DOI: 10.1002/aur.2538] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/28/2021] [Accepted: 04/20/2021] [Indexed: 12/29/2022]
Abstract
Theory of mind (ToM) is the ability to attribute subjective mental states to oneself and others and is significantly impaired in autism spectrum disorder (ASD). A frontal-posterior network of regions including the ventromedial prefrontal cortex (vmPFC) and temporoparietal junction (TPJ) is involved in ToM. Previous studies show an underactivation of these regions in ASD. Transcranial direct current stimulation (tDCS) is a noninvasive brain stimulation method for causally investigating brain-behavior relationships via induction of cortical excitability alterations. tDCS, mostly over the dorsolateral prefrontal cortex, has been increasingly applied for improving behavioral problems in ASD leaving other potentially interesting regions untouched. Here we investigated contribution of the vmPFC and right TPJ in ToM abilities of ASD children via tDCS in a pilot study. Sixteen children with ASD (mean age = 10.7 ± 1.9) underwent three tDCS sessions (1 mA, 20 min) in a randomized, sham-controlled design. Stimulation protocols included: (a) anodal vmPFC tDCS, (b) anodal r-TPJ tDCS, and (c) sham tDCS. ToM abilities were explored during tDCS using the theory of mind test (TOMT). Our results show that activation of the vmPFC with anodal tDCS significantly improved ToM in children with ASD compared with both, r-TPJ tDCS, and sham stimulation. Specifically, precursors of ToM (e.g., emotion recognition, perception, and imitation) and elementary ToM skills (e.g., first-order mental state reasoning) were significantly improved by anodal vmPFC tDCS. Based on these results, the vmPFC could be a potential target region for the reduction of ASD symptoms via noninvasive brain stimulation, which should be examined in larger detail in future studies. LAY SUMMARY: Theory of mind (ToM) is the ability to infer mental states of oneself and others, which is impaired in autism. Brain imaging studies have shown involvement of two brain regions in ToM (ventromedial prefrontal cortex, temporoparietal junction) which are underactivated in autism. We increased activation of these regions via noninvasive brain stimulation in this experiment to see how it would affect ToM abilities in autism. We found that increased activation of the ventromedial prefrontal cortex improved ToM abilities in children with autism.
Collapse
Affiliation(s)
- Mohammad Ali Salehinejad
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
| | - Nasim Paknia
- Department of Rehabilitation Counseling, University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | - Amir Hossein Hosseinpour
- Department of Rehabilitation Counseling, University of Social Welfare and Rehabilitation Science, Tehran, Iran
| | - Fatemeh Yavari
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany
| | - Carmelo M Vicario
- Dipartimento di Scienze Cognitive, Psicologiche, Pedagogiche e degli studi culturali, Universita' di Messina, Messina, Italy
| | - Michael A Nitsche
- Leibniz Research Centre for Working Environment and Human Factors, Department of Psychology and Neurosciences, Dortmund, Germany.,University Medical Hospital Bergmannsheil, Department of Neurology, Bochum, Germany
| | - Vahid Nejati
- Department of Psychology, Shahid Beheshti University, Tehran, Iran
| |
Collapse
|
20
|
Klein HS, Vanneste S, Pinkham AE. The limited effect of neural stimulation on visual attention and social cognition in individuals with schizophrenia. Neuropsychologia 2021; 157:107880. [PMID: 33961863 DOI: 10.1016/j.neuropsychologia.2021.107880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 04/15/2021] [Accepted: 04/29/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND Research demonstrates a relationship between faulty visual attention and poorer social cognition in schizophrenia. One potential explanatory model suggests abnormal neuromodulation in specific neural networks may result in reduced attention to socially important cues, leading to poorer understanding of another's emotional state or intentions. OBJECTIVE The current study experimentally manipulated neural networks using tDCS to examine this potential causal mechanism. The primary aim was to determine whether stimulation to the right temporoparietal junction (rTPJ) improves visual attention, and secondary aims were to determine whether 1) stimulation improves social cognitive performance and 2) visual attention moderates this improved performance. METHOD Using a double-blind crossover design, 69 individuals with schizophrenia underwent both active and sham stimulation to either the rTPJ of the ventral attention network (n = 36) or the dorsomedial prefrontal cortex of the social brain network (dmPFC; n = 33). Following stimulation, participants completed tasks assessing emotion recognition and mentalizing. Concurrent eye tracking assessed visual attention, measuring proportion of time spent attending to areas of interest. RESULTS For emotion recognition, stimulation failed to impact either visual attention or social cognitive task accuracy. Similarly, neurostimulation failed to affect visual attention on the mentalizing task. However, exploratory analyses demonstrated that mentalizing accuracy significantly improved after stimulation to the active comparator, dmPFC, with no improvement after stimulation to rTPJ. CONCLUSION Results demonstrate limited effect of a single stimulation session on visual attention and emotion recognition accuracy but provide initial support for an alternate neural mechanism for mentalizing, highlighting the importance of executive functions over visual attention.
Collapse
Affiliation(s)
- Hans S Klein
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA.
| | - Sven Vanneste
- Trinity College Institute for Neuroscience, Trinity College Dublin, Ireland
| | - Amy E Pinkham
- School of Behavioral and Brain Sciences, The University of Texas at Dallas, Richardson, TX, USA; Department of Psychiatry, University of Texas Southwestern Medical School, Dallas, TX,, USA
| |
Collapse
|
21
|
Zheng W, Tao Y, Li Y, Ye H, Luo J. Effect of Modulating Activity in the Right DLPFC on Revenge Behavior: Evidence From a Noninvasive Brain Stimulation Investigation. Front Psychol 2021; 11:608205. [PMID: 33633628 PMCID: PMC7901952 DOI: 10.3389/fpsyg.2020.608205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Accepted: 12/28/2020] [Indexed: 11/13/2022] Open
Abstract
Revenge is common in our daily lives, and people feel good when engaging in revenge behavior. However, revenge behavior is a complex process and remains somewhat of a puzzle of human behavior. Neuroimaging studies have revealed that revenge behaviors are associated with activation of a neural network containing the anterior cingulate cortex, ventral striatum, inferior frontal gyrus, and dorsolateral prefrontal cortex (DLPFC). Recent brain stimulation research using transcranial direct current stimulation (tDCS) and transcranial magnetic stimulation has shown a causal relationship between brain regions and revenge behaviors, but the findings have been mixed. In the present study, we aimed to study whether stimulation in the DLPFC can change participants' revenge behavior in conditions where participants' wealth was taken away in different ways. We adapted the moonlighting game and designed a new paradigm. Our study revealed that revenge behavior increased following activation in the right DLPFC, suggesting that the right DLPFC plays an important role in overriding self-interest and retaliation. In addition, our results revealed that the right DLPFC is crucial in revenge behavior related to the motivation of invasion.
Collapse
Affiliation(s)
- Wanjun Zheng
- Center for Economic Behavior and Decision-Making, Zhejiang University of Finance and Economics, Hangzhou, China.,School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Yuanping Tao
- Department of Radiology, The Guangxing Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Yuzhen Li
- Center for Economic Behavior and Decision-Making, Zhejiang University of Finance and Economics, Hangzhou, China.,School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Hang Ye
- Center for Economic Behavior and Decision-Making, Zhejiang University of Finance and Economics, Hangzhou, China.,School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Jun Luo
- Center for Economic Behavior and Decision-Making, Zhejiang University of Finance and Economics, Hangzhou, China.,School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| |
Collapse
|
22
|
Gupta T, Mittal VA. Transcranial direct current stimulation and emotion processing deficits in psychosis and depression. Eur Arch Psychiatry Clin Neurosci 2021; 271:69-84. [PMID: 32488523 PMCID: PMC7704557 DOI: 10.1007/s00406-020-01146-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Accepted: 05/23/2020] [Indexed: 01/11/2023]
Abstract
Emotional processing deficits (EPDs) are commonly observed among individuals diagnosed with (1) psychotic disorders (2) and depression. Given that EPDs can impact overall functioning and quality of life, the need to identify effective interventions is critical. To date, our current understanding of treatments for these impairments is limited. However, there is increasing interest in investigating the efficacy of transcranial direct current stimulation (tDCS). This neuromodulation technique releases a weak electrical current through the brain. Given research suggesting promise for using tDCS to improve symptoms and cognition across psychopathology, this approach may be useful for improving EPDs and related symptoms in psychosis and depression. In the current review, we provide an overview of the literature determining the effects of tDCS for EPDs and related symptoms in these groups. Furthermore, we highlight methodological advances and pinpoint potential future directions.
Collapse
Affiliation(s)
- Tina Gupta
- Department of Psychology, Northwestern University, 2029 Sheridan Road, Evanston, IL, 60208, USA.
| | - Vijay A Mittal
- Department of Psychology, Northwestern University, 2029 Sheridan Road, Evanston, IL, 60208, USA
- Department of Psychiatry, Northwestern University, Chicago, IL, USA
- Institute for Policy Research, Northwestern University, Evanston, IL, USA
- Department of Medical Social Sciences, Northwestern University, Chicago, IL, USA
- Institute for Innovations in Developmental Sciences, Northwestern University, Chicago, IL, USA
| |
Collapse
|
23
|
Grigorescu C, Chalah MA, Lefaucheur JP, Kümpfel T, Padberg F, Ayache SS, Palm U. Effects of Transcranial Direct Current Stimulation on Information Processing Speed, Working Memory, Attention, and Social Cognition in Multiple Sclerosis. Front Neurol 2020; 11:545377. [PMID: 33178103 PMCID: PMC7593675 DOI: 10.3389/fneur.2020.545377] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/26/2020] [Indexed: 01/17/2023] Open
Abstract
Multiple Sclerosis (MS) is a chronic inflammatory disease of the central nervous system. Cognitive impairment occurs in 40-65% of patients and could drastically affect their quality of life. Deficits could involve general cognition (e.g., attention and working memory) as well as social cognition. Transcranial direct current stimulation (tDCS), is a novel brain stimulation technique that has been assessed in the context of several neuropsychiatric symptoms, including those described in the context of MS. However, very rare trials have assessed tDCS effects on general cognition in MS, and none has tackled social cognition. The aim of this work was to assess tDCS effects on general and social cognition in MS. Eleven right-handed patients with MS received two blocks (bifrontal tDCS and sham, 2 mA, 20 min, anode/cathode over left/right prefrontal cortex) of 5 daily stimulations separated by a 3-week washout interval. Working memory and attention were, respectively, measured using N-Back Test (0-Back, 1-Back, and 2-Back) and Symbol Digit Modalities Test (SDMT) at the first and fifth day of each block and 1 week later. Social cognition was evaluated using Faux Pas Test and Eyes Test at baseline and 1 week after each block. Interestingly, accuracy of 1-Back test improved following sham but not active bifrontal tDCS. Therefore, active bifrontal tDCS could have impaired working memory via cathodal stimulation of the right prefrontal cortex. No significant tDCS effects were observed on social cognitive measures and SDMT. Admitting the small sample size and the learning (practice) effect that might arise from the repetitive administration of each task, the current results should be considered as preliminary and further investigations in larger patient samples are needed to gain a closer understanding of tDCS effects on cognition in MS.
Collapse
Affiliation(s)
- Christina Grigorescu
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Munich, Germany
| | - Moussa A Chalah
- EA 4391, Excitabilité nerveuse et thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Jean-Pascal Lefaucheur
- EA 4391, Excitabilité nerveuse et thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Tania Kümpfel
- Institute for Clinical Neuroimmunology, Klinikum der Universität München, Munich, Germany
| | - Frank Padberg
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Munich, Germany
| | - Samar S Ayache
- EA 4391, Excitabilité nerveuse et thérapeutique, Université Paris-Est-Créteil, Créteil, France.,Service de Physiologie-Explorations Fonctionnelles, Hôpital Henri-Mondor, Assistance Publique-Hôpitaux de Paris, Créteil, France
| | - Ulrich Palm
- Department of Psychiatry and Psychotherapy, Klinikum der Universität München, Munich, Germany.,Medical Park Chiemseeblick, Bernau, Germany
| |
Collapse
|
24
|
Li X, Xiong G, Dong Z, Cai S, Zhao J, She Z, Guo Y. Causal Role of the Right Dorsolateral Prefrontal Cortex in Organizational Fairness Perception: Evidence From a Transcranial Direct Current Stimulation Study. Front Behav Neurosci 2020; 14:134. [PMID: 33005132 PMCID: PMC7485143 DOI: 10.3389/fnbeh.2020.00134] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 07/10/2020] [Indexed: 11/13/2022] Open
Abstract
The right dorsolateral prefrontal cortex (rDLPFC) plays an essential role in social decision-making. Although several neural imaging studies have provided evidence that the rDLPFC is correlated with fairness perception, little research has investigated the causal effect of this encephalic region on individuals’ consciousness, particularly perceptions of organizational fairness. The present study explores the causal relationship between the rDLPFC and organizational fairness perception by using brain modulation techniques. Healthy participants received transcranial direct current stimulation (tDCS) and fulfilled the modified ultimatum game (UG) in the sham-controlled experiment. Our results showed that only cathodal stimulation of the rDLPFC resulted in increasing rejection offers compared with the sham stimulation in conditions of disadvantageous inequity. No differences were found between the anodal and sham stimulation in any inequity condition. This study strengthens the main functional effects of the rDLPFC in negative emotional control in relation to organizational fairness perceptions.
Collapse
Affiliation(s)
- Xi Li
- Key Lab for Behavioral Economic Science and Technology, South China Normal University, Guangzhou, China.,School of Economics and Management, South China Normal University, Guangzhou, China
| | - Guanxing Xiong
- Key Lab for Behavioral Economic Science and Technology, South China Normal University, Guangzhou, China.,School of Economics and Management, South China Normal University, Guangzhou, China
| | - Zhiqiang Dong
- Key Lab for Behavioral Economic Science and Technology, South China Normal University, Guangzhou, China.,School of Economics and Management, South China Normal University, Guangzhou, China
| | - Shenggang Cai
- Key Lab for Behavioral Economic Science and Technology, South China Normal University, Guangzhou, China.,School of Economics and Management, South China Normal University, Guangzhou, China
| | - Jun Zhao
- Key Lab for Behavioral Economic Science and Technology, South China Normal University, Guangzhou, China.,School of Economics and Management, South China Normal University, Guangzhou, China
| | - Zhe She
- School of Economics and Management, South China Normal University, Guangzhou, China
| | - Yuchen Guo
- School of Economics and Management, South China Normal University, Guangzhou, China
| |
Collapse
|
25
|
Li Y, Wang J, Ye H, Luo J. Modulating the Activity of vmPFC Regulates Informational Social Conformity: A tDCS Study. Front Psychol 2020; 11:566977. [PMID: 33041931 PMCID: PMC7527649 DOI: 10.3389/fpsyg.2020.566977] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 08/28/2020] [Indexed: 01/10/2023] Open
Abstract
Social conformity has been evaluated in many different contexts, ranging from an emotional contagion in psychology, to speculative episodes in economics, to mass protests concerning politics. Previous neuroscience studies suggest that the ventromedial prefrontal cortex (vmPFC) participates in social conformity, especially when it comes to the value integration process, but the specific mechanism of vmPFC is still unclear. In this study, we aimed to identify a direct link between the vmPFC and conformity tendencies by means of transcranial direct current stimulation (tDCS). Conformity tendencies are measured by the probability that participants change their decisions when they observe the majority responses. In our experiment, subjects could make two decisions in each trial, once without social information and once with social information, which allowed us to directly observe the conformity tendency of subjects in different conditions. We found that cathodal stimulation of the vmPFC significantly increased conformity tendency and decreased response time when the initial decision of participants differs from the majority opinion. Based on the experimental results, our study suggests that the vmPFC mainly inhibits and regulates the informational conformity behavior. These findings complement investigations of the neural mechanism of conformity and the role of the vmPFC in the neural circuit behind conformity behavior.
Collapse
Affiliation(s)
- Yuzhen Li
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China.,Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China
| | - Jinjin Wang
- School of Economics, Zhejiang University, Hangzhou, China.,Interdisciplinary Center for Social Sciences (ICSS), Zhejiang University, Hangzhou, China
| | - Hang Ye
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China.,Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China.,Interdisciplinary Center for Social Sciences (ICSS), Zhejiang University, Hangzhou, China
| | - Jun Luo
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China.,Center for Economic Behavior and Decision-Making (CEBD), Zhejiang University of Finance and Economics, Hangzhou, China
| |
Collapse
|
26
|
Martínez-Pérez V, Campoy G, Palmero LB, Fuentes LJ. Examining the Dorsolateral and Ventromedial Prefrontal Cortex Involvement in the Self-Attention Network: A Randomized, Sham-Controlled, Parallel Group, Double-Blind, and Multichannel HD-tDCS Study. Front Neurosci 2020; 14:683. [PMID: 32760241 PMCID: PMC7371986 DOI: 10.3389/fnins.2020.00683] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/04/2020] [Indexed: 12/28/2022] Open
Abstract
Background Attention and perception are strongly biased toward information about oneself compared to information about others. The self-attention network, an integrative theoretical framework for understanding the self-prioritization effects (SPE), proposes that the ventromedial prefrontal cortex (VMPFC), and the posterior superior temporal sulcus (pSTS) are the two nodes responsible for the preferential processing of self-related stimuli, which interact with the attentional control network (associated with the dorsolateral prefrontal cortex, DLPFC), responsible for processing other-related stimuli. So far, neuroimaging studies have provided considerable correlational evidence supporting the self-attention network. Objective Here we went beyond correlational evidence by manipulating cortical activity using high-definition transcranial direct current stimulation (HD-tDCS), a non-invasive brain stimulation method. We assessed whether anodal and cathodal stimulation of the VMPFC or the DLPFC modulates the processing of self- and other-related stimuli. Methods We used an associative unbiased learning procedure, the so-called shape-label matching task, to assess the SPE in a sample of N = 90. We accomplished to overcome different methodological weaknesses of previous studies using different multichannel montages for excitatory and inhibitory effects over both the VMPFC and the DLPFC. Results We found no effect of shape association for non-matching pairs, whereas there was an effect of shape association in the matching condition. Performance (reaction times and accuracy) was better for the self association than for the other two associations, and performance for the friend association was better than for the stranger association. Thus, we replicated the SPE with behavioral data. At the neural level, none of the stimulation succeeded to modulate the magnitude of the SPE effect. Conclusion We discuss the implications of these findings, in particular why cognitive modeling theories about SPEs should favor an epiphenomenal rather than a causal link between VMPFC/DLPFC and the impact of personal significance stimuli on perception.
Collapse
Affiliation(s)
| | - Guillermo Campoy
- Department of Basic Psychology and Methodology, University of Murcia, Murcia, Spain
| | - Lucía B Palmero
- Department of Basic Psychology and Methodology, University of Murcia, Murcia, Spain
| | - Luis J Fuentes
- Department of Basic Psychology and Methodology, University of Murcia, Murcia, Spain
| |
Collapse
|
27
|
Galli G, Miniussi C, Pellicciari MC. Transcranial electric stimulation as a neural interface to gain insight on human brain functions: current knowledge and future perspective. Soc Cogn Affect Neurosci 2020; 17:4-14. [PMID: 32756871 DOI: 10.1093/scan/nsaa099] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 05/12/2020] [Accepted: 07/11/2020] [Indexed: 11/12/2022] Open
Abstract
The use of brain-stimulation approaches in social and affective science has greatly increased over the last two decades. The interest in social factors has grown along with technological advances in brain research. Transcranial electric stimulation (tES) is a research tool that allows scientists to establish contributory causality between brain functioning and social behaviour, therefore deepening our understanding of the social mind. Preliminary evidence is also starting to demonstrate that tES, either alone or in combination with pharmacological or behavioural interventions, can alleviate the symptomatology of individuals with affective or social cognition disorders. This review offers an overview of the application of tES in the field of social and affective neuroscience. We discuss issues and challenges related to this application and suggest avenue for future basic and translational research.
Collapse
Affiliation(s)
- Giulia Galli
- Department of Psychology, Kingston University, Penrhyn Road, Kingston Upon Thames, KT1 2EE, United Kingdom
| | - Carlo Miniussi
- Center for Mind/Brain Sciences - CIMeC, University of Trento, Corso Bettini, 31, 38068 Rovereto, TN Italy
| | - Maria Concetta Pellicciari
- UniCamillus - Saint Camillus International University of Health Sciences, via di Sant'Alessandro 8, 00131, Rome, Italy
| |
Collapse
|
28
|
Penton T, Catmur C, Banissy MJ, Bird G, Walsh V. Non-invasive stimulation in the social brain: the methodological challenges. Soc Cogn Affect Neurosci 2020; 17:15-25. [PMID: 32734295 PMCID: PMC9083106 DOI: 10.1093/scan/nsaa102] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 06/09/2020] [Accepted: 07/15/2020] [Indexed: 11/15/2022] Open
Abstract
Use of non-invasive brain stimulation methods (NIBS) has become a common approach to study social processing in addition to behavioural, imaging and lesion studies. However, research using NIBS to investigate social processing faces challenges. Overcoming these is important to allow valid and reliable interpretation of findings in neurotypical cohorts, but also to allow us to tailor NIBS protocols to atypical groups with social difficulties. In this review, we consider the utility of brain stimulation as a technique to study and modulate social processing. We also discuss challenges that face researchers using NIBS to study social processing in neurotypical adults with a view to highlighting potential solutions. Finally, we discuss additional challenges that face researchers using NIBS to study and modulate social processing in atypical groups. These are important to consider given that NIBS protocols are rarely tailored to atypical groups before use. Instead, many rely on protocols designed for neurotypical adults despite differences in brain function that are likely to impact response to NIBS.
Collapse
Affiliation(s)
- Tegan Penton
- Department of Psychology, Goldsmiths, University of London, London, SE14 6NW, UK.,MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Caroline Catmur
- Department of Psychology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK
| | - Michael J Banissy
- Department of Psychology, Goldsmiths, University of London, London, SE14 6NW, UK
| | - Geoffrey Bird
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Denmark Hill, London, SE5 8AF, UK.,Department of Experimental Psychology, University of Oxford, Oxford, OX1 3PH
| | - Vincent Walsh
- Institute of Cognitive Neuroscience, University College London, London WC1N 3AR, UK
| |
Collapse
|
29
|
Non-invasive Brain Stimulation Effects on the Perceptual and Cognitive Processes Underlying Decision-making: a Mini Review. JOURNAL OF COGNITIVE ENHANCEMENT 2020. [DOI: 10.1007/s41465-020-00186-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
30
|
Gainsford K, Fitzgibbon B, Fitzgerald PB, Hoy KE. Transforming treatments for schizophrenia: Virtual reality, brain stimulation and social cognition. Psychiatry Res 2020; 288:112974. [PMID: 32353694 DOI: 10.1016/j.psychres.2020.112974] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 03/16/2020] [Accepted: 03/29/2020] [Indexed: 12/13/2022]
Abstract
Schizophrenia is characterised by delusions, hallucinations, anhedonia and apathy; while impairments in social cognition are often less recognised. Poor social cognition can lead to difficulties in obtaining and maintaining employment, academic progression, interpersonal relationships, and community functioning. Current interventions are highly intensive, require significant resources and have only modest effects on functional outcomes. Virtual reality (VR) and non-invasive brain stimulation (NIBS) may have a role in addressing these limitations. VR allows treatments that are potentially more accessible, less delivery intensive, and have higher ecological validity. While NIBS is able to directly modulate activity in social brain areas in order to promote neuroplasticity, strengthen neural connections and enhance brain function related to social cognitive behaviours. Therefore, the combination of VR and NIBS may allow for more efficient and transferrable interventions than those currently available. This review will explore the potential role of these technologies in the treatment of social cognitive impairment.
Collapse
Affiliation(s)
- Kirsten Gainsford
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Melbourne, Victoria, Australia..
| | - Bernadette Fitzgibbon
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Melbourne, Victoria, Australia..
| | - Paul B Fitzgerald
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Melbourne, Victoria, Australia..
| | - Kate E Hoy
- Epworth Centre for Innovation in Mental Health, Epworth HealthCare and Department of Psychiatry, Monash University, Melbourne, Victoria, Australia..
| |
Collapse
|
31
|
Cotelli M, Manenti R, Gobbi E, Enrici I, Rusich D, Ferrari C, Adenzato M. Theory of Mind Performance Predicts tDCS-Mediated Effects on the Medial Prefrontal Cortex: A Pilot Study to Investigate the Role of Sex and Age. Brain Sci 2020; 10:brainsci10050257. [PMID: 32353992 PMCID: PMC7288024 DOI: 10.3390/brainsci10050257] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 04/23/2020] [Accepted: 04/27/2020] [Indexed: 11/16/2022] Open
Abstract
Transcranial Direct Current Stimulation (tDCS) has become an increasingly promising tool for understanding the relationship between brain and behavior. The purpose of this study was to investigate whether the magnitude of sex- and age-related tDCS effects previously found in the medial prefrontal cortex (mPFC) during a Theory of Mind (ToM) task correlates with social cognition performance; in particular, we explored whether different patterns of activity would be detected in high- and low-performing participants. For this, young and elderly, male and female participants were categorized as a low- or high-performer according to their score on the Reading the Mind in the Eyes task. Furthermore, we explored whether sex- and age-related effects associated with active tDCS on the mPFC were related to cognitive functioning. We observed the following results: (i) elderly participants experience a significant decline in ToM performance compared to young participants; (ii) low-performing elderly females report slowing of reaction time when anodal tDCS is applied over the mPFC during a ToM task; and (iii) low-performing elderly females are characterized by lower scores in executive control functions, verbal fluency and verbal short-term memory. The relationship between tDCS results and cognitive functioning is discussed in light of the neuroscientific literature on sex- and age-related differences.
Collapse
Affiliation(s)
- Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, BS, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, BS, Italy
- Correspondence: ; Tel.: +39-030-3501457; Fax: +39-030-3533513
| | - Elena Gobbi
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Via Pilastroni, 4, 25125 Brescia, BS, Italy
| | - Ivan Enrici
- Department of Philosophy and Educational Sciences, University of Turin, 10124 Turin, TO, Italy
| | - Danila Rusich
- Department of Human Science, LUMSA University (Libera Università Maria Santissima Assunta), 00193 Rome, RM, Italy
| | - Clarissa Ferrari
- Statistics Service, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, 25125 Brescia, BS, Italy
| | - Mauro Adenzato
- Department of Psychology, University of Turin, 10124 Turin, TO, Italy
| |
Collapse
|
32
|
Martin AK, Kessler K, Cooke S, Huang J, Meinzer M. The Right Temporoparietal Junction Is Causally Associated with Embodied Perspective-taking. J Neurosci 2020; 40:3089-3095. [PMID: 32132264 PMCID: PMC7141886 DOI: 10.1523/jneurosci.2637-19.2020] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/25/2020] [Accepted: 02/09/2020] [Indexed: 12/20/2022] Open
Abstract
A prominent theory claims that the right temporoparietal junction (rTPJ) is especially associated with embodied processes relevant to perspective-taking. In the present study, we use high-definition transcranial direct current stimulation to provide evidence that the rTPJ is causally associated with the embodied processes underpinning perspective-taking. Eighty-eight young human adults were stratified to receive either rTPJ or dorsomedial PFC anodal high-definition transcranial direct current stimulation in a sham-controlled, double-blind, repeated-measures design. Perspective-tracking (line-of-sight) and perspective-taking (embodied rotation) were assessed using a visuo-spatial perspective-taking task that required understanding what another person could see or how they see it, respectively. Embodied processing was manipulated by positioning the participant in a manner congruent or incongruent with the orientation of an avatar on the screen. As perspective-taking, but not perspective-tracking, is influenced by bodily position, this allows the investigation of the specific causal role for the rTPJ in embodied processing. Crucially, anodal stimulation to the rTPJ increased the effect of bodily position during perspective-taking, whereas no such effects were identified during perspective-tracking, thereby providing evidence for a causal role for the rTPJ in the embodied component of perspective-taking. Stimulation to the dorsomedial PFC had no effect on perspective-tracking or taking. Therefore, the present study provides support for theories postulating that the rTPJ is causally involved in embodied cognitive processing relevant to social functioning.SIGNIFICANCE STATEMENT The ability to understand another's perspective is a fundamental component of social functioning. Adopting another perspective is thought to involve both embodied and nonembodied processes. The present study used high-definition transcranial direct current stimulation (HD-tDCS) and provided causal evidence that the right temporoparietal junction is involved specifically in the embodied component of perspective-taking. Specifically, HD-tDCS to the right temporoparietal junction, but not another hub of the social brain (dorsomedial PFC), increased the effect of body position during perspective-taking, but not tracking. This is the first causal evidence that HD-tDCS can modulate social embodied processing in a site-specific and task-specific manner.
Collapse
Affiliation(s)
- Andrew K Martin
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia 4029,
- Department of Psychology, University of Kent, Canterbury, United Kingdom CT2 7NP
| | - Klaus Kessler
- Aston Neuroscience Institute, School of Life and Health Sciences, Aston University, Birmingham, United Kingdom B4 7ET, and
| | - Shena Cooke
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia 4029
| | - Jasmine Huang
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia 4029
| | - Marcus Meinzer
- UQ Centre for Clinical Research, University of Queensland, Brisbane, Australia 4029
- Department of Neurology, University Medicine Greifswald, Greifswald, Germany 17489
| |
Collapse
|
33
|
Huang L, Wang Y, Li J, Lin G, Du F, Chen L. Gender affects understanding kind and hostile intentions based on dyadic body movements. CURRENT PSYCHOLOGY 2020. [DOI: 10.1007/s12144-020-00630-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
34
|
Sergiou CS, Woods AJ, Franken IHA, van Dongen JDM. Transcranial direct current stimulation (tDCS) as an intervention to improve empathic abilities and reduce violent behavior in forensic offenders: study protocol for a randomized controlled trial. Trials 2020; 21:263. [PMID: 32169111 PMCID: PMC7069186 DOI: 10.1186/s13063-020-4074-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 01/13/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Recent studies show that changes in one of the brain areas related to empathic abilities (i.e. the ventromedial prefrontal cortex (vmPFC)) plays an important role in violent behavior in abusers of alcohol and cocaine. According to the models of James Blair, empathy is a potential inhibitor of violent behavior. Individuals with less empathic abilities may be less susceptible and motivated to inhibit violent behavior, which causes a higher risk of violence. Recent neuroscientific research shows that modulating (stimulation or inhibition) certain brain areas could be a promising new intervention for substance abuse and to reduce violent behavior, such as the neurostimulation technique transcranial direct current stimulation (tDCS). This study aims to investigate tDCS as an intervention to increase empathic abilities and reduce violent behavior in forensic substance use offenders. METHODS/DESIGN A total sample of 50 male forensic substance abuse patients (25 active and 25 sham stimulation) will be tested in a double-blind placebo-controlled study, from which half of the patients will receive an active stimulation plus treatment as usual (TAU) and the other half will receive sham stimulation (placebo) plus TAU. The patients in the active condition will receive multichannel tDCS targeting the bilateral vmPFC two times a day for 20 min for five consecutive days. Before and after the stimulation period, the patients will complete self-report measurements, perform the Point Subtraction Aggression Paradigm (PSAP) and a passive viewing empathy task. Resting state electroencephalography (rsEEG) will be performed before and after the treatment period. A follow up will be conducted after 6 months. The primary outcome is to investigate multichannel tDCS as a new intervention to increase empathic abilities and reduce violent behavior in offenders with substance abuse problems. In addition, we will determine whether electrophysiological responses in the brain are affected by the tDCS intervention. Finally, the effects of tDCS on reducing craving will be investigated. DISCUSSION This study is one of the first studies using multichannel tDCS targeting the vmPFC in a forensic sample. This study will explore the opportunities to introduce a new intervention to improve empathic abilities and reduce violence in forensic substance use offenders. Specifically, this study may give insight into how to implement the tDCS intervention in the setting of daily clinical practice in this complex, multiple-problem target group and with that contribute to reduction of recidivism. TRIAL REGISTRATION Dutch Trial Register, NTR7701. Registered on 12 January 2019. Prospectively registered before the recruitment phase. https://www.trialregister.nl/trial/7459. Recruitment started on the 1st of February 2019 and will be finished approximately in the winter of 2019. Protocol version 1. 22 May 2019.
Collapse
Affiliation(s)
- Carmen S Sergiou
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Adam J Woods
- Center for Cognitive Aging and Memory, McKnight Brain Institute, Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Ingmar H A Franken
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands
| | - Josanne D M van Dongen
- Department of Psychology, Education and Child Studies, Erasmus University Rotterdam, P.O. Box 1738, 3000 DR, Rotterdam, the Netherlands.
| |
Collapse
|
35
|
Sharma G, Chowdhury SR. Statistical Analysis to Find out the Optimal Locations for Non Invasive Brain Stimulation. J Med Syst 2020; 44:85. [PMID: 32166505 DOI: 10.1007/s10916-020-1535-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 01/29/2020] [Indexed: 10/24/2022]
Abstract
Non-invasive brain electrical stimulation (NIBES) techniques are progressively used for modulation of neuronal membrane potentials, which alters cortical excitability. The neuronal activity depends on position of channel locations for electrodes and the amount and direction of injected weak current through the target neurons area. In the present paper hybrid near infrared spectroscopy and electroencephalogram (NIRS-EEG) open access dataset for brain computer interface (BCI) has been used to find the best locations for NIBES. The percentage oxygen saturation has been calculated with the help of provided NIRS experimental dataset of changes in concentration of oxy-hemoglobin (HbO2) and deoxy-hemoglobin (Hb) in thirty-six scalp site locations of twenty-eight healthy subjects. The variation in standard deviation have been calculated for given pre-processed EEG signals of thirty locations for same twenty-eight healthy subjects. The statistical one-way ANOVA method has been used to find out the best channels and locations which are having less variation in all motion artifacts. In this method, F value is calculated for these locations and those locations are selected which are significant at 99% confidence interval (P < 0.01). In this study, out of sixty-six locations sixteen best locations have been selected for non-invasive brain electrical stimulation. This pilot study has been used to find out the appropriate locations on the scalp sites to place the electrodes to provide weak direct current stimulation which are less affected by motion artifacts.
Collapse
Affiliation(s)
- Gaurav Sharma
- Biomedical Systems Laboratory, Multimedia, Analytics, Networks and Systems Group, School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Mandi, India.
| | - Shubhajit Roy Chowdhury
- Biomedical Systems Laboratory, Multimedia, Analytics, Networks and Systems Group, School of Computing and Electrical Engineering, Indian Institute of Technology Mandi, Mandi, India
| |
Collapse
|
36
|
Wang M, Li J, Li D, Zhu C, Wang Y. Modulation of income redistribution decisions by anodal tDCS over the medial prefrontal cortex. Neurosci Lett 2020; 718:134701. [PMID: 31862226 DOI: 10.1016/j.neulet.2019.134701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 12/04/2019] [Accepted: 12/16/2019] [Indexed: 10/25/2022]
Abstract
One cause of the persistence of income inequality may be rooted in people's resistance to change the existing income distribution. Prior studies have shown that the medial prefrontal cortex (mPFC) may be associated with the decision making that influences income distribution. However, it is unclear whether the mPFC is involved in income redistribution tasks when third-party decision makers are unaffected by the outcome of the decision. In this study, we elucidate the neural mechanism underlying the tolerance of income inequality and the decision making that is related to income redistribution. By applying the transcranial direct current stimulation (tDCS) over the mPFC, we investigate whether the change in the activation of the mPFC can influence a subject's inclination to expropriate a rich person's endowment and transfer it to a poor person. The main finding is that the anodal stimulation significantly reduced the subject's inclination to redistribute wealth from the rich to the poor, and lowered the rate of accepting options for redistribution. However, the willingness of income redistribution did not change following the cathodal stimulation compared with the sham condition. The effect of the anodal stimulation was constant across three types of initial inequality. The stimulation effect is likely caused by the subject's enhanced loss aversion or desire to reinforce social hierarchies.
Collapse
Affiliation(s)
- Minda Wang
- School of Economics and Management, Southeast University, 211189, Nanjing, China; Institute for Study of Brain-Like Economics, School of Economics, Shandong University, 250199, Jinan, China
| | - Jianbiao Li
- Institute for Study of Brain-Like Economics, School of Economics, Shandong University, 250199, Jinan, China; Department of Economics and Management, Nankai University Binhai College, 300071, Tianjin, China.
| | - Dahui Li
- Labovitz School of Business & Economics, University of Minnesota Duluth, 55812, Duluth, USA
| | - Chengkang Zhu
- Institute for Study of Brain-Like Economics, School of Economics, Shandong University, 250199, Jinan, China
| | - Yuanyuan Wang
- Institute for Study of Brain-Like Economics, School of Economics, Shandong University, 250199, Jinan, China
| |
Collapse
|
37
|
Kong F, Yang K, Sajjad S, Yan W, Li X, Zhao J. Neural correlates of social well-being: gray matter density in the orbitofrontal cortex predicts social well-being in emerging adulthood. Soc Cogn Affect Neurosci 2020; 14:319-327. [PMID: 30715518 PMCID: PMC6399614 DOI: 10.1093/scan/nsz008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 01/06/2019] [Accepted: 01/21/2019] [Indexed: 12/23/2022] Open
Abstract
Social well-being reflects the perception of one’s social functioning, which plays an important role in physical and psychological health. However, the exact neuroanatomical substrate for social well-being remains unclear. To address the issue, we employed the voxel-based morphometry method to probe the neuroanatomical basis of individual variation in social well-being in young healthy adults (n = 136). The results revealed a significant negative association between social well-being and regional gray matter density (rGMD) in an anatomical cluster that mainly includes the left orbitofrontal cortex (OFC) that has been involved in emotion regulation and social cognition. Furthermore, a balanced 4-fold cross-validation using the machine learning approach revealed that rGMD in the left OFC could be reliably related to social well-being. More importantly, the multiple mediation analysis revealed that neuroticism and dispositional forgiveness independently mediated the association between rGMD in the left OFC and social well-being. In addition, all these results remained stable when subjective socioeconomic status was controlled. Together, our results provide the initial evidence that the OFC is a neuroanatomical substrate for social well-being and demonstrate that the OFC is a crucial neural site linking neuroticism and dispositional forgiveness to social well-being.
Collapse
Affiliation(s)
- Feng Kong
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Kairong Yang
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Sonia Sajjad
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Wenjing Yan
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Xuewen Li
- School of Psychology, Shaanxi Normal University, Xi'an, China
| | - Jingjing Zhao
- School of Psychology, Shaanxi Normal University, Xi'an, China
| |
Collapse
|
38
|
Speitel C, Traut-Mattausch E, Jonas E. Functions of the right DLPFC and right TPJ in proposers and responders in the ultimatum game. Soc Cogn Affect Neurosci 2020; 14:263-270. [PMID: 30690558 PMCID: PMC6399615 DOI: 10.1093/scan/nsz005] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 11/25/2018] [Accepted: 01/13/2019] [Indexed: 12/17/2022] Open
Abstract
Recent studies explored a network of brain regions involved in economic decision making. The present study focuses on two of those regions, each relevant for specific and distinct functions in economic decision making: the right temporoparietal junction (rTPJ) and the right dorsolateral prefrontal cortex (rDLPFC). In two experiments using transcranial direct current stimulation, we explored two proposed functions of these areas in bargaining situations using the ultimatum game (UG): understanding the others perspective and integration of fairness norms. Participants first took the role of the proposer and then the role of the responder. We showed that stimulation of the rTPJ only affected the proposer condition. Interestingly, inhibition of the rTPJ led to fairer offers, which strengthens the view that the role of the rTPJ in bargaining situations is to differentiate one’s own from the other’s perspective. Furthermore, we argue that the rDLPFC is most likely involved in suppressing self-interest when a person is confronted with a direct reward but does not play a role in long-term reward anticipation or integrating social fairness norms. We conclude that self-interest inhibition is shown only in responders, and that perspective taking seems to be a necessary specifically for proposers in the UG.
Collapse
Affiliation(s)
- Constantin Speitel
- Department of Psychology, University of Salzburg, Hellbrunner Strasse, Salzburg, Austria
| | - Eva Traut-Mattausch
- Department of Psychology, University of Salzburg, Hellbrunner Strasse, Salzburg, Austria
| | - Eva Jonas
- Department of Psychology, University of Salzburg, Hellbrunner Strasse, Salzburg, Austria
| |
Collapse
|
39
|
Wertheim J, Colzato LS, Nitsche MA, Ragni M. Enhancing spatial reasoning by anodal transcranial direct current stimulation over the right posterior parietal cortex. Exp Brain Res 2019; 238:181-192. [DOI: 10.1007/s00221-019-05699-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 11/22/2019] [Indexed: 01/18/2023]
|
40
|
Adenzato M, Manenti R, Gobbi E, Enrici I, Rusich D, Cotelli M. Aging, sex and cognitive Theory of Mind: a transcranial direct current stimulation study. Sci Rep 2019; 9:18064. [PMID: 31792263 PMCID: PMC6889494 DOI: 10.1038/s41598-019-54469-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Accepted: 11/12/2019] [Indexed: 12/14/2022] Open
Abstract
Aging is accompanied by changes in cognitive abilities and a great interest is spreading among researchers about aging impact on social cognition skills, such as the Theory of Mind (ToM). Transcranial direct current stimulation (tDCS) has been used in social cognition studies founding evidence of sex-related different effects on cognitive ToM task in a young people sample. In this randomized, double-blind, sham-controlled study, we applied one active and one sham tDCS session on the medial prefrontal cortex (mPFC) during a cognitive ToM task, including both social (i.e., communicative) and nonsocial (i.e., private) intention attribution conditions, in sixty healthy aging individuals (30 males and 30 females). In half of the participants the anode was positioned over the mPFC, whereas in the other half the cathode was positioned over the mPFC. The results showed that: (i) anodal tDCS over the mPFC led to significant slower reaction times (vs. sham) for social intention attribution task only in female participants; (ii) No effects were found in both females and males during cathodal stimulation. We show for the first time sex-related differences in cognitive ToM abilities in healthy aging, extending previous findings concerning young participants.
Collapse
Affiliation(s)
- Mauro Adenzato
- Department of Psychology, University of Turin, Turin, Italy.,Neuroscience Institute of Turin, Turin, Italy
| | - Rosa Manenti
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Elena Gobbi
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Ivan Enrici
- Department of Philosophy and Educational Sciences, University of Turin, Turin, Italy
| | - Danila Rusich
- Department of Human Science, LUMSA University, Roma, Italy
| | - Maria Cotelli
- Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy.
| |
Collapse
|
41
|
Wang S, Wang J, Guo W, Ye H, Lu X, Luo J, Zheng H. Gender Difference in Gender Bias: Transcranial Direct Current Stimulation Reduces Male's Gender Stereotypes. Front Hum Neurosci 2019; 13:403. [PMID: 31849626 PMCID: PMC6889476 DOI: 10.3389/fnhum.2019.00403] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Accepted: 10/29/2019] [Indexed: 11/23/2022] Open
Abstract
Stereotypes exist in the interactions between different social groups, and gender stereotypes are particularly prevalent. Previous studies have suggested that the medial prefrontal cortex (mPFC) is involved in the social cognition that plays an important role in gender stereotypes, but the specific causal effect of the mPFC remains controversial. In this study, we aimed to use transcranial direct current stimulation (tDCS) to identify a direct link between the mPFC and gender bias. Implicit stereotypes were measured by the gender implicit association test (IAT), and explicit prejudice was measured by the Ambivalent Sexism Inventory (ASI). We found that male and female participants had different behavioral and neural correlates of gender stereotypes. Anodal tDCS significantly reduced male participants’ gender D-IAT scores compared with cathodal and sham stimulation, while the stimulation had an insignificant effect in female participants. The reduction in male participants’ gender bias mainly resulted from a decrease in the difference in reaction time (RT) between congruent and incongruent blocks. Regarding the explicit bias measurement, male and female participants had distinct attitudes, but tDCS had no effect on ASI. Our results revealed that the mPFC played a causal role in controlling implicit gender stereotypes, which is consistent with previous observations and complements past lesion, neuroimaging, and transcranial magnetic stimulation (TMS) studies and suggests that males and females have different neural bases for gender stereotypes.
Collapse
Affiliation(s)
- Siqi Wang
- School of Economics, Zhejiang University, Hangzhou, China.,Interdisciplinary Center for Social Sciences (ICSS), Zhejiang University, Hangzhou, China
| | - Jinjin Wang
- School of Economics, Zhejiang University, Hangzhou, China.,Interdisciplinary Center for Social Sciences (ICSS), Zhejiang University, Hangzhou, China
| | - Wenmin Guo
- School of Economics, Zhejiang University, Hangzhou, China.,Interdisciplinary Center for Social Sciences (ICSS), Zhejiang University, Hangzhou, China
| | - Hang Ye
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China.,Center for Economic Behavior and Decision-making (CEBD), Neuro & Behavior EconLab (NBEL), Zhejiang University of Finance and Economics, Hangzhou, China.,Interdisciplinary Center for Social Sciences (ICSS), Zhejiang University, Hangzhou, China
| | - Xinbo Lu
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China.,Center for Economic Behavior and Decision-making (CEBD), Neuro & Behavior EconLab (NBEL), Zhejiang University of Finance and Economics, Hangzhou, China
| | - Jun Luo
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China.,Center for Economic Behavior and Decision-making (CEBD), Neuro & Behavior EconLab (NBEL), Zhejiang University of Finance and Economics, Hangzhou, China.,Interdisciplinary Center for Social Sciences (ICSS), Zhejiang University, Hangzhou, China
| | - Haoli Zheng
- School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China.,Center for Economic Behavior and Decision-making (CEBD), Neuro & Behavior EconLab (NBEL), Zhejiang University of Finance and Economics, Hangzhou, China.,Interdisciplinary Center for Social Sciences (ICSS), Zhejiang University, Hangzhou, China
| |
Collapse
|
42
|
Chen S, Shi J, Yang X, Ye H, Luo J. Modulating Activity in the Dorsolateral Prefrontal Cortex Changes Punishment in the 3-Player Prisoner's Dilemma: A Transcranial Direct Current Stimulation Study. Front Neurosci 2019; 13:1160. [PMID: 31708738 PMCID: PMC6823908 DOI: 10.3389/fnins.2019.01160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Accepted: 10/14/2019] [Indexed: 11/26/2022] Open
Abstract
Altruistic punishment of social norm violations plays a crucial role in maintaining widespread cooperation in human societies, and punitive behavior has been suggested to be related to the activity level of the dorsolateral prefrontal cortex (DLPFC). This study used unilateral and bilateral transcranial direct current stimulation (tDCS) to investigate how modulating the activity of the DLPFC affects cooperation and punishment in a 3-player prisoner's dilemma. We found that none of the unilateral stimulations changed the participants' cooperation behaviors, while left anodal/right cathodal stimulation increased the participants' cooperation. For punitive behavior, we found that all unilateral stimulations (i.e., right anodal, right cathodal, left anodal, left cathodal) and bilateral stimulations (i.e., right anodal/left cathodal, left anodal/right cathodal) significantly decreased the punishment imposed by the cooperators toward the defectors. In addition, right anodal stimulation significantly decreased the participant's third-party punishment (TPP) imposed by the cooperators toward the defectors. The other three unilateral stimulations also significantly decreased the participant's TPP imposed by the cooperators toward the defectors, but only when the punishment was revealed to the punished person. Our findings indicate that the mechanisms of selfishness and negative emotions suggested by previous studies probably interact with different stimulations: for anodal stimulations, the mechanism of negative emotions may overwhelm the mechanism of selfishness, while for cathodal stimulations, the mechanism of selfishness may be more dominant than the mechanism of negative emotions.
Collapse
Affiliation(s)
- Shu Chen
- College of Economics, Interdisciplinary Center for Social Sciences, Zhejiang University, Hangzhou, China
- Institute for Applied Microeconomics, University of Bonn, Bonn, Germany
- Academy of Financial Research, Zhejiang University, Hangzhou, China
| | - Jinchuan Shi
- Academy of Financial Research, Zhejiang University, Hangzhou, China
| | - Xiaolan Yang
- Academy of Financial Research, Zhejiang University, Hangzhou, China
- School of Business and Management, Shanghai International Studies University, Shanghai, China
| | - Hang Ye
- Center for Economic Behavior and Decision-Making, School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| | - Jun Luo
- Center for Economic Behavior and Decision-Making, School of Economics, Zhejiang University of Finance and Economics, Hangzhou, China
| |
Collapse
|
43
|
Effects of High-Definition Transcranial Direct Current Stimulation and Theta Burst Stimulation for Modulating the Posterior Parietal Cortex. J Int Neuropsychol Soc 2019; 25:972-984. [PMID: 31397255 DOI: 10.1017/s1355617719000766] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
OBJECTIVES Noninvasive brain stimulation methods, including high-definition transcranial direct current stimulation (HD-tDCS) and theta burst stimulation (TBS) have emerged as novel tools to modulate and explore brain function. However, the relative efficacy of these newer stimulation approaches for modulating cognitive functioning remains unclear. This study investigated the cognitive effects of HD-tDCS, intermittent TBS (iTBS) and prolonged continuous TBS (ProcTBS) and explored the potential of these approaches for modulating hypothesized functions of the left posterior parietal cortex (PPC). METHODS Twenty-two healthy volunteers attended four experimental sessions in a cross-over experimental design. In each session, participants either received HD-tDCS, iTBS, ProcTBS or sham, and completed cognitive tasks, including a divided attention task, a working memory maintenance task and an attention task (emotional Stroop test). RESULTS The results showed that compared to sham, HD-tDCS, iTBS and ProcTBS caused significantly faster response times on the emotional Stroop task. The effect size (Cohen's d) was d = .32 for iTBS (p < .001), .21 for ProcTBS (p = .01) and .15 for HD-tDCS (p = .044). However, for the performance on the divided attention and working memory maintenance tasks, no significant effect of stimulation was found. CONCLUSIONS The results suggest that repetitive transcranial magnetic stimulation techniques, including TBS, may have greater efficacy for modulating cognition compared with HD-tDCS, and extend existing knowledge about specific functions of the left PPC.
Collapse
|
44
|
Donaldson PH, Kirkovski M, Yang JS, Bekkali S, Enticott PG. High-definition tDCS to the right temporoparietal junction modulates slow-wave resting state power and coherence in healthy adults. J Neurophysiol 2019; 122:1735-1744. [DOI: 10.1152/jn.00338.2019] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The right temporoparietal junction (rTPJ) is a multisensory integration hub that is increasingly utilized as a target of stimulation studies exploring its rich functional network roles and potential clinical applications. While transcranial direct current stimulation (tDCS) is frequently employed in such studies, there is still relatively little known regarding its local and network neurophysiological effects, particularly at important nonmotor sites such as the rTPJ. The current study applied either anodal, cathodal, or sham high-definition tDCS to the rTPJ of 53 healthy participants and used offline EEG to assess the impacts of stimulation on resting state (eyes open and eyes closed) band power and coherence. Temporoparietal and central region delta power was increased after anodal stimulation (the latter trend only), whereas cathodal stimulation increased frontal region delta and theta power. Increased coherence between right and left temporoparietal regions was also observed after anodal stimulation. All significant effects occurred in the eyes open condition. These findings are discussed with reference to domain general and mechanistic theories of rTPJ function. Low-frequency oscillatory activity may exert long-range inhibitory network influences that enable switching between and integration of endogenous/exogenous processing streams.NEW & NOTEWORTHY Through the novel use of high-definition transcranial direct current stimulation (tDCS) and EEG, we provide evidence that both anodal and cathodal stimulation of the right temporoparietal junction selectively modulate slow-wave power and coherence in distributed network regions of known relevance to proposed temporoparietal junction functionality. These results also provide direct evidence of the ability of tDCS to modulate oscillatory activity at a long-range network level, which may have explanatory power in terms of both neurophysiological and behavioral effects.
Collapse
Affiliation(s)
| | - Melissa Kirkovski
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Joel S. Yang
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Soukayna Bekkali
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| | - Peter G. Enticott
- School of Psychology, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
45
|
Shaw E. Counterproductive criminal rehabilitation: Dealing with the double-edged sword of moral bioenhancement via cognitive enhancement. INTERNATIONAL JOURNAL OF LAW AND PSYCHIATRY 2019; 65:101378. [PMID: 30206004 DOI: 10.1016/j.ijlp.2018.07.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Revised: 05/23/2018] [Accepted: 07/13/2018] [Indexed: 06/08/2023]
|
46
|
Wang M, Li J, Li D, Zhu C. Anodal tDCS Over the Right Temporoparietal Junction Lowers Overbidding in Contests. Front Neurosci 2019; 13:528. [PMID: 31244591 PMCID: PMC6580155 DOI: 10.3389/fnins.2019.00528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2019] [Accepted: 05/07/2019] [Indexed: 11/30/2022] Open
Abstract
Overbidding, which means bidding over the Nash equilibrium, is commonly observed in competitive social interactions, such as a contest or auction. Recent neuroscience studies show that the right temporoparietal junction (rTPJ) is related to overbidding and associated with inferring the intentions of others during competitive interactions. The present study investigates the neural underpinnings of overbidding and how the rTPJ impacts bidding behavior by using tDCS to modulate the activation of the rTPJ. Participants completed a two-person proportional prize contest, in which overbidding was frequently observed and each participant's share of the prize was equal to the individual's expenditure divided by the aggregated expenditure. We observed a significant tDCS effect, i.e., participants' average expenditure and overbidding rate were significantly reduced in the anodal stimulation compared with the cathodal and sham stimulation. Possible explanations include that enhanced activity in the rTPJ via the anodal stimulation increased the accuracy of a participant's inference of the strategies of others, or a participant's concern for others, and thus helped the participant bid optimally. Our findings provide evidence supporting that the activation of the rTPJ in contests affects overbidding and bidding strategy, and further confirm that the rTPJ is involved in the inference of mental states in a competition context.
Collapse
Affiliation(s)
- Minda Wang
- School of Economics and Management, Southeast University, Nanjing, China.,Reinhard Selten Laboratory, China Academy of Corporate Governance, Nankai University, Tianjin, China
| | - Jianbiao Li
- Reinhard Selten Laboratory, China Academy of Corporate Governance, Nankai University, Tianjin, China.,School of Economics, Shandong University, Jinan, China.,Department of Economics and Management, Binhai College, Nankai University, Tianjin, China
| | - Dahui Li
- Labovitz School of Business & Economics, University of Minnesota Duluth, Duluth, MN, United States
| | - Chengkang Zhu
- Reinhard Selten Laboratory, China Academy of Corporate Governance, Nankai University, Tianjin, China
| |
Collapse
|
47
|
第三方惩罚的神经机制:来自经颅直流电刺激的证据. ACTA PSYCHOLOGICA SINICA 2019. [DOI: 10.3724/sp.j.1041.2019.00571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Donaldson PH, Kirkovski M, Rinehart NJ, Enticott PG. A double-blind HD-tDCS/EEG study examining right temporoparietal junction involvement in facial emotion processing. Soc Neurosci 2019; 14:681-696. [PMID: 30668274 DOI: 10.1080/17470919.2019.1572648] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Prior studies have demonstrated that aspects of social cognition can be modulated via temporoparietal junction (TPJ) transcranial direct current stimulation (tDCS). However, this technique lacks focality and electrophysiological effects or correlates are rarely examined. The present study investigated whether anodal and/or cathodal high-definition tDCS (HD-tDCS) would influence facial emotion processing performance relative to sham stimulation, and whether task performance changes were related to neurophysiological changes. Participants completed a facial emotion attribution tasks before and after rTPJ HD-tDCS, with event-related potentials (ERP) recorded during task performance. Anodal rTPJ HD-tDCS improved facial emotion processing performance for static depictions of fear (but not surprise). Stimulation condition influenced P300 latency, and also influenced the relationship between behavioural and electrophysiological (ERP) outcomes in several circumstances, findings which both support and challenge anodal-excitation/cathodal-inhibition accounts of tDCS effects. Results suggest that rTPJ anodal HD-tDCS can influence facial emotion recognition (i.e., affective mentalizing), and elucidate the nature and distribution of underlying neurophysiological processes. Stimulation effects, however, might depend on the intensity and salience/valence (negativity/threat) of the emotion, and these behavioural effects may not relate directly or simply to the ERPs assessed here.
Collapse
Affiliation(s)
- Peter H Donaldson
- Deakin Child Study Centre, School of Psychology, Deakin University , Geelong , Australia.,Cognitive Neuroscience Unit, School of Psychology, Deakin University , Geelong , Australia
| | - Melissa Kirkovski
- Deakin Child Study Centre, School of Psychology, Deakin University , Geelong , Australia.,Cognitive Neuroscience Unit, School of Psychology, Deakin University , Geelong , Australia
| | - Nicole J Rinehart
- Deakin Child Study Centre, School of Psychology, Deakin University , Geelong , Australia
| | - Peter G Enticott
- Deakin Child Study Centre, School of Psychology, Deakin University , Geelong , Australia.,Cognitive Neuroscience Unit, School of Psychology, Deakin University , Geelong , Australia
| |
Collapse
|
49
|
Adenzato M, Manenti R, Enrici I, Gobbi E, Brambilla M, Alberici A, Cotelli MS, Padovani A, Borroni B, Cotelli M. Transcranial direct current stimulation enhances theory of mind in Parkinson's disease patients with mild cognitive impairment: a randomized, double-blind, sham-controlled study. Transl Neurodegener 2019; 8:1. [PMID: 30627430 PMCID: PMC6322239 DOI: 10.1186/s40035-018-0141-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 12/18/2018] [Indexed: 12/30/2022] Open
Abstract
Background Parkinson’s Disease (PD) with mild cognitive impairment (MCI) (PD-MCI) represents one of the most dreaded complications for patients with PD and is associated with a higher risk of developing dementia. Although transcranial direct current stimulation (tDCS) has been demonstrated to improve motor and non-motor symptoms in PD, to date, no study has investigated the effects of tDCS on Theory of Mind (ToM), i.e., the ability to understand and predict other people’s behaviours, in PD-MCI. Methods In this randomized, double-blind, sham-controlled study, we applied active tDCS over the medial frontal cortex (MFC) to modulate ToM performance in twenty patients with PD-MCI. Twenty matched healthy controls (HC) were also enrolled and were asked to perform the ToM task without receiving tDCS. Results In the patients with PD-MCI, i) ToM performance was worse than that in the HC, ii) ToM abilities were poorer in those with fronto-executive difficulties, and iii) tDCS over the MFC led to significant shortening of latency for ToM tasks. Conclusions We show for the first time that active tDCS over the MFC enhances ToM in patients with PD-MCI, and suggest that non-invasive brain stimulation could be used to ameliorate ToM deficits observed in these patients.
Collapse
Affiliation(s)
- Mauro Adenzato
- 1Department of Psychology, University of Turin, Turin, Italy.,Neuroscience Institute of Turin, Turin, Italy
| | - Rosa Manenti
- 3Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Ivan Enrici
- 4Department of Philosophy and Educational Sciences, University of Turin, via Gaudenzio Ferrari 9, 10124 Turin, Italy
| | - Elena Gobbi
- 3Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Michela Brambilla
- 3Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| | - Antonella Alberici
- 5Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maria Sofia Cotelli
- 5Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Alessandro Padovani
- 5Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Barbara Borroni
- 5Centre for Neurodegenerative Disorders, Neurology Unit, Department of Clinical and Experimental Sciences, University of Brescia, Brescia, Italy
| | - Maria Cotelli
- 3Neuropsychology Unit, IRCCS Istituto Centro San Giovanni di Dio - Fatebenefratelli, Brescia, Italy
| |
Collapse
|
50
|
The role of right ventrolateral prefrontal cortex on social emotional regulation in subclinical depression: An tDCS study. ACTA PSYCHOLOGICA SINICA 2019. [DOI: 10.3724/sp.j.1041.2019.00207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|