1
|
Xv D, Cao Y, Hou Y, Hu Y, Li M, Xie C, Lu X. Polyphenols and Functionalized Hydrogels for Osteoporotic Bone Regeneration. Macromol Rapid Commun 2025; 46:e2400653. [PMID: 39588839 DOI: 10.1002/marc.202400653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/02/2024] [Indexed: 11/27/2024]
Abstract
Osteoporosis induces severe oxidative stress and disrupts bone metabolism, complicating the treatment of bone defects. Current therapies often have side effects and require lengthy bone regeneration periods. Hydrogels, known for their flexible mechanical properties and degradability, are promising carriers for drugs and bioactive factors in bone tissue engineering. However, they lack the ability to regulate the local pathological environment of osteoporosis and expedite bone repair. Polyphenols, with antioxidative, anti-inflammatory, and bone metabolism-regulating properties, have emerged as a solution. Combining hydrogels and polyphenols, polyphenol-based hydrogels can regulate local bone metabolism and oxidative stress while providing mechanical support and tissue adhesion, promoting osteoporotic bone regeneration. This review first provides a brief overview of the types of polyphenols and the mechanisms of polyphenols in facilitating adhesion, antioxidant, anti-inflammatory, and bone metabolism modulation in modulating the pathological environment of osteoporosis. Next, this review examines recent advances in hydrogels for the treatment of osteoporotic bone defects, including their use in angiogenesis, oxidative stress modulation, drug delivery, and stem cell therapy. Finally, it highlights the latest research on polyphenol hydrogels in osteoporotic bone defect regeneration. Overall, this review aims to facilitate the clinical application of polyphenol hydrogels for the treatment of osteoporotic bone defects.
Collapse
Affiliation(s)
- Dejia Xv
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
- School of Materials Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yuming Cao
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yue Hou
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Yuelin Hu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Minqi Li
- Department of Bone Metabolism, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, Jinan, 250000, China
- Center of Osteoporosis and Bone Mineral Research, Shandong University, Jinan, 250000, China
| | - Chaoming Xie
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| | - Xiong Lu
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, 610031, China
| |
Collapse
|
2
|
Elahmer NR, Wong SK, Mohamed N, Alias E, Chin KY, Muhammad N. Mechanistic Insights and Therapeutic Strategies in Osteoporosis: A Comprehensive Review. Biomedicines 2024; 12:1635. [PMID: 39200100 PMCID: PMC11351389 DOI: 10.3390/biomedicines12081635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/10/2024] [Accepted: 07/16/2024] [Indexed: 09/01/2024] Open
Abstract
Osteoporosis, a metabolic bone disorder characterized by decreased bone mass per unit volume, poses a significant global health burden due to its association with heightened fracture risk and adverse impacts on patients' quality of life. This review synthesizes the current understanding of the pathophysiological mechanisms underlying osteoporosis, with a focus on key regulatory pathways governing osteoblast and osteoclast activities. These pathways include RANK/RANKL/OPG, Wingless-int (Wnt)/β-catenin, and Jagged1/Notch1 signaling, alongside the involvement of parathyroid hormone (PTH) signaling, cytokine networks, and kynurenine in bone remodeling. Pharmacotherapeutic interventions targeting these pathways play a pivotal role in osteoporosis management. Anti-resorptive agents, such as bisphosphonates, estrogen replacement therapy/hormone replacement therapy (ERT/HRT), selective estrogen receptor modulators (SERMs), calcitonin, anti-RANKL antibodies, and cathepsin K inhibitors, aim to mitigate bone resorption. Conversely, anabolic agents, including PTH and anti-sclerostin drugs, stimulate bone formation. In addition to pharmacotherapy, nutritional supplementation with calcium, vitamin D, and vitamin K2 holds promise for osteoporosis prevention. However, despite the availability of therapeutic options, a substantial proportion of osteoporotic patients remain untreated, highlighting the need for improved clinical management strategies. This comprehensive review aims to provide clinicians and researchers with a mechanistic understanding of osteoporosis pathogenesis and the therapeutic mechanisms of existing medications. By elucidating these insights, this review seeks to inform evidence-based decision-making and optimize therapeutic outcomes for patients with osteoporosis.
Collapse
Affiliation(s)
- Nyruz Ramadan Elahmer
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
- Department of Pharmacology, Pharmacy Faculty, Elmergib University, Al Khums 40414, Libya
| | - Sok Kuan Wong
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Norazlina Mohamed
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Ekram Alias
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia;
| | - Kok-Yong Chin
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| | - Norliza Muhammad
- Department of Pharmacology, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia; (N.R.E.); (S.K.W.); (N.M.); (K.-Y.C.)
| |
Collapse
|
3
|
Da Silva D, Crous A, Abrahamse H. Enhancing Osteoblast Differentiation from Adipose-Derived Stem Cells Using Hydrogels and Photobiomodulation: Overcoming In Vitro Limitations for Osteoporosis Treatment. Curr Issues Mol Biol 2024; 46:6346-6365. [PMID: 39057021 PMCID: PMC11276038 DOI: 10.3390/cimb46070379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/18/2024] [Accepted: 06/20/2024] [Indexed: 07/28/2024] Open
Abstract
Osteoporosis represents a widespread and debilitating chronic bone condition that is increasingly prevalent globally. Its hallmark features include reduced bone density and heightened fragility, which significantly elevate the risk of fractures due to the decreased presence of mature osteoblasts. The limitations of current pharmaceutical therapies, often accompanied by severe side effects, have spurred researchers to seek alternative strategies. Adipose-derived stem cells (ADSCs) hold considerable promise for tissue repair, albeit they encounter obstacles such as replicative senescence in laboratory conditions. In comparison, employing ADSCs within three-dimensional (3D) environments provides an innovative solution, replicating the natural extracellular matrix environment while offering a controlled and cost-effective in vitro platform. Moreover, the utilization of photobiomodulation (PBM) has emerged as a method to enhance ADSC differentiation and proliferation potential by instigating cellular stimulation and facilitating beneficial performance modifications. This literature review critically examines the shortcomings of current osteoporosis treatments and investigates the potential synergies between 3D cell culture and PBM in augmenting ADSC differentiation towards osteogenic lineages. The primary objective of this study is to assess the efficacy of combined 3D environments and PBM in enhancing ADSC performance for osteoporosis management. This research is notably distinguished by its thorough scrutiny of the existing literature, synthesis of recent advancements, identification of future research trajectories, and utilization of databases such as PubMed, Scopus, Web of Science, and Google Scholar for this literature review. Furthermore, the exploration of biomechanical and biophysical stimuli holds promise for refining treatment strategies. The future outlook suggests that integrating PBM with ADSCs housed within 3D environments holds considerable potential for advancing bone regeneration efforts. Importantly, this review aspires to catalyse further advancements in combined therapeutic strategies for osteoporosis regeneration.
Collapse
Affiliation(s)
| | | | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Johannesburg 2028, South Africa; (D.D.S.); (A.C.)
| |
Collapse
|
4
|
Bioactivity, Molecular Mechanism, and Targeted Delivery of Flavonoids for Bone Loss. Nutrients 2023; 15:nu15040919. [PMID: 36839278 PMCID: PMC9960663 DOI: 10.3390/nu15040919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Skeletal disabilities are a prominent burden on the present population with an increasing life span. Advances in osteopathy have provided various medical support for bone-related diseases, including pharmacological and prosthesis interventions. However, therapeutics and post-surgery complications are often reported due to side effects associated with modern-day therapies. Thus, therapies utilizing natural means with fewer toxic or other side effects are the key to acceptable interventions. Flavonoids constitute a class of bioactive compounds found in dietary supplements, and their pharmacological attributes have been well appreciated. Recently, flavonoids' role is gaining renowned interest for its effect on bone remodeling. A wide range of flavonoids has been found to play a pivotal role in the major bone signaling pathways, such as wingless-related integration site (Wnt)/β-catenin, bone morphogenetic protein (BMP)/transforming growth factor (TGF)-β, mitogen-activated protein kinase (MAPK), etc. However, the reduced bioavailability and the absorption of flavonoids are the major limitations inhibiting their use against bone-related complications. Recent utilization of nanotechnological approaches and other delivery methods (biomaterial scaffolds, micelles) to target and control release can enhance the absorption and bioavailability of flavonoids. Thus, we have tried to recapitulate the understanding of the role of flavonoids in regulating signaling mechanisms affecting bone remodeling and various delivery methods utilized to enhance their therapeutical potential in treating bone loss.
Collapse
|
5
|
Bone regeneration in osteoporosis: opportunities and challenges. Drug Deliv Transl Res 2023; 13:419-432. [PMID: 35994158 DOI: 10.1007/s13346-022-01222-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/03/2022] [Indexed: 12/30/2022]
Abstract
Osteoporosis is a bone disorder characterised by low bone mineral density, reduced bone strength, increased bone fragility, and impaired mineralisation of bones causing an increased risk of bone fracture. Several therapies are available for treating osteoporosis which include bisphosphonates, anti-resorptive agents, oestrogen modulators, etc. These therapies primarily focus on decreasing bone resorption and do not assist in bone regeneration or offering permanent curative solutions. Additionally, these therapies are associated with severe adverse events like thromboembolism, increased risk of stroke, and hypocalcaemia. To overcome these limitations, bone regenerative pathways and approaches are now considered to manage osteoporosis. The bone regenerative pathways involved in bone regeneration include wingless-related integration site/β-catenin signalling pathway, notch signalling pathway, calcium signalling, etc. The various regenerative approaches which possess potential to heal and replace the bone defect site include scaffolds, cements, cell therapy, and other alternative medicines. The review focuses on describing the challenges and opportunities in bone regeneration for osteoporosis.
Collapse
|
6
|
Le Henaff C, Finnie B, Pacheco M, He Z, Johnson J, Partridge NC. Abaloparatide Has the Same Catabolic Effects on Bones of Mice When Infused as PTH (1-34). JBMR Plus 2023; 7:e10710. [PMID: 36751417 PMCID: PMC9893269 DOI: 10.1002/jbm4.10710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/12/2022] [Accepted: 11/28/2022] [Indexed: 12/05/2022] Open
Abstract
Abaloparatide is a peptide analog of parathyroid hormone-related protein (PTHrP 1-34) and was approved in 2017 as the second osteoanabolic peptide for treating osteoporosis. We previously showed that intermittent abaloparatide is equally as effective as PTH (1-34). This study was designed to compare the catabolic effects of PTH (1-34) and abaloparatide on bone in young female wild-type mice. Two-month-old C57Bl/6J female mice were continuously infused with human PTH (1-34) or abaloparatide at 80 μg/kg BW/day or vehicle for 2 weeks. At euthanasia, DEXA-PIXImus was performed to assess bone mineral density (BMD) in the whole body, femurs, tibiae, and vertebrae. Bone turnover marker levels were measured in sera, femurs were harvested for micro-computer tomography (μCT) analyses and histomorphometry, and tibiae were separated into cortical and trabecular fractions for gene expression analyses. Our results demonstrated that the infusion of abaloparatide resulted in a similar decrease in BMD as infused PTH (1-34) at all sites. μCT and histomorphometry analyses showed similar decreases in cortical bone thickness and BMD associated with an increase in bone turnover from the increased bone formation rate found by in vivo double labeling and serum P1NP and increased bone resorption as shown by osteoclast numbers and serum cross-linked C-telopeptide. Trabecular bone did not show major changes with either treatment. Osteoblastic gene expression analyses of trabecular and cortical bone revealed that infusion of PTH (1-34) or abaloparatide led to similar and different actions in genes of osteoblast differentiation and activity. As with intermittent and in vitro treatment, both infused PTH (1-34) and abaloparatide similarly regulated downstream genes of the PTHR1/SIK/HDAC4 pathway such as Sost and Mmp13 but differed for those of the PTHR1/SIK/CRTC pathway. Taken together, at the same dose, infused abaloparatide causes the same high bone turnover as infused PTH (1-34) with a net resorption in female wild-type mice. © 2023 The Authors. JBMR Plus published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carole Le Henaff
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Brandon Finnie
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Maria Pacheco
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Zhiming He
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Joshua Johnson
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| | - Nicola C Partridge
- Department of Molecular Pathobiology New York University College of Dentistry New York New York USA
| |
Collapse
|
7
|
Kim B, Cho YJ, Lim W. Osteoporosis therapies and their mechanisms of action (Review). Exp Ther Med 2021; 22:1379. [PMID: 34650627 PMCID: PMC8506919 DOI: 10.3892/etm.2021.10815] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/04/2021] [Indexed: 12/15/2022] Open
Abstract
Osteoporosis is a common disease that affects millions of patients worldwide and is most common in menopausal women. The main characteristics of osteoporosis are low bone density and increased risk of fractures due to deterioration of the bone architecture. Osteoporosis is a chronic disease that is difficult to treat; thus, investigations into novel effective therapeutic methods are required. A number of studies have focused on determining the most effective treatment options for this disease. There are several treatment options for osteoporosis that differ depending on the characteristics of the disease, and these include both well-established and newly developed drugs. The present review focuses on the various drugs available for osteoporosis, the associated mechanisms of action and the methods of administration.
Collapse
Affiliation(s)
- Beomchang Kim
- Laboratory of Orthopaedic Research, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Yong Jin Cho
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| | - Wonbong Lim
- Laboratory of Orthopaedic Research, School of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Department of Orthopaedic Surgery, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
- Department of Premedical Sciences, College of Medicine, Chosun University, Gwangju 61452, Republic of Korea
| |
Collapse
|
8
|
Singer AJ, Liu J, Yan H, Stad RK, Gandra SR, Yehoshua A. Treatment patterns and long-term persistence with osteoporosis therapies in women with Medicare fee-for-service (FFS) coverage. Osteoporos Int 2021; 32:2473-2484. [PMID: 34095966 PMCID: PMC8608759 DOI: 10.1007/s00198-021-05951-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Accepted: 04/05/2021] [Indexed: 11/15/2022]
Abstract
UNLABELLED Osteoporosis, a chronic disease, requires long-term therapy. In Medicare-insured women, denosumab persistence was higher than oral bisphosphonate persistence over up to 3 years of follow-up. Longer-term persistence was higher among women who persisted in the first year of therapy. INTRODUCTION Osteoporosis, a chronic, progressive disease, requires long-term therapy; this study assessed long-term persistence with anti-resorptive therapies in postmenopausal women. METHODS This retrospective cohort study used administrative claims for women with data in the 100% Medicare osteoporosis sample who initiated (index date) denosumab, oral/intravenous (IV) bisphosphonate, or raloxifene between 2011 and 2014 and who had ≥ 1 year (zoledronic acid: 14 months) of pre-initiation medical/pharmacy coverage (baseline). Persistence was assessed from index date through end of continuous coverage, post-index evidence of censoring events (e.g., incident cancer), death, or end of study (December 31, 2015). RESULTS The study included 318,419 oral bisphosphonate users (78% alendronate), 145,056 denosumab users, 48,066 IV bisphosphonate users, and 31,400 raloxifene users; mean age ranged from 75.5 years (raloxifene) to 78.5 years (denosumab). In women with at least 36 months of follow-up (denosumab N = 25,107; oral bisphosphonates N = 79,710), more denosumab than oral bisphosphonate initiators were persistent at 1 year (73% vs. 39%), 2 years (50% vs. 25%), and 3 years (38% vs. 17%). Persistence decreased over time for all treatment groups, with denosumab users having the highest persistence in every follow-up time interval at or after 18 months. Women using denosumab, oral bisphosphonates, or raloxifene who persisted in a given year were more likely to remain persistent through the subsequent year. CONCLUSIONS Denosumab users persisted longer with therapy than women using other anti-resorptive medications, including oral bisphosphonates. Early persistence may predict long-term persistence. Overall persistence with osteoporosis medications is suboptimal and may impact fracture risk. Efforts to improve first year persistence are needed.
Collapse
Affiliation(s)
- A J Singer
- MedStar Georgetown University Hospital and Georgetown University Medical Center, Washington, DC, USA
| | - J Liu
- Chronic Disease Research Group (CDRG), Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - H Yan
- Chronic Disease Research Group (CDRG), Hennepin Healthcare Research Institute, Minneapolis, MN, USA
| | - R K Stad
- Global Health Economics, Amgen, Inc., Thousand Oaks, CA, USA
| | - S R Gandra
- Global Health Economics, Amgen, Inc., Thousand Oaks, CA, USA
| | - A Yehoshua
- Global Health Economics, Amgen, Inc., Thousand Oaks, CA, USA.
| |
Collapse
|
9
|
Liu W, Xie G, Yuan G, Xie D, Lian Z, Lin Z, Ye J, Zhou W, Zhou W, Li H, Wang X, Feng H, Liu Y, Yao G. 6'-O-Galloylpaeoniflorin Attenuates Osteoclasto-genesis and Relieves Ovariectomy-Induced Osteoporosis by Inhibiting Reactive Oxygen Species and MAPKs/c-Fos/NFATc1 Signaling Pathway. Front Pharmacol 2021; 12:641277. [PMID: 33897430 PMCID: PMC8058459 DOI: 10.3389/fphar.2021.641277] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/19/2021] [Indexed: 02/05/2023] Open
Abstract
Emerging evidence suggests bright prospects of some natural antioxidants in the treatment of osteoporosis. 6'-O-Galloylpaeoniflorin (GPF), an antioxidant isolated from peony roots (one of very widely used Oriental medicines, with various anti-inflammatory, antitumor, and antioxidant activities), shows a series of potential clinical applications. However, its effects on osteoporosis remain poorly investigated. The current study aimed to explore whether GPF can attenuate osteoclastogenesis and relieve ovariectomy-induced osteoporosis via attenuating reactive oxygen species (ROS), and investigate the possible mechanism. After the culture of primary murine bone marrow-derived macrophages/monocytes were induced by the use of macrophage colony-stimulating factor (M-CSF) and the receptor activator of NF-κB ligand (RANKL) and then treated with GPF. Cell proliferation and viability were assessed by Cell Counting Kit-8 (CCK-8) assay. Thereafter, the role of GPF in the production of osteoclasts and the osteogenic resorption of mature osteoclasts were evaluated by tartrate-resistant acid phosphatase (TRAP) staining, podosome belt formation, and resorption pit assay. Western blotting and qRT-PCR examination were performed to evaluate proteins' generation and osteoclast-specific gene levels, respectively. The ROS generation in cells was measured in vitro by 2',7'-Dichlorodi-hydrofluorescein diacetate (DCFH-DA). Ovariectomy-induced osteoporosis mouse administered with GPF or vehicle was performed to explore the in vivo potential of GPF, then a micro-CT scan was performed in combination with histological examination for further analysis. GPF suppressed the formation of osteoclasts and podosome belts, as well as bone resorption when induced by RANKL through affecting intracellular ROS activity, MAPKs signaling pathway, and subsequent NFATc1 translocation and expression, as well as osteoclast-specific gene expression in vitro. In vivo study suggested that exposure to GPF prevented osteoporosis-related bone loss in the ovariectomized mice. These findings indicate that GPF attenuates osteoclastogenesis and relieves ovariectomy-induced osteoporosis by inhibiting ROS and MAPKs/c-Fos/NFATc1 signaling pathway. This suggested that GPF may be potentially used to treat bone diseases like periodontitis, rheumatoid arthritis, and osteoporosis associated with osteoclasts.
Collapse
Affiliation(s)
- Wenjie Liu
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Gang Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Guixin Yuan
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Dantao Xie
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zhen Lian
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Zihong Lin
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Jiajie Ye
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Wenyun Zhou
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Weijun Zhou
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Henghui Li
- Institute of Translational Medicine, Shanghai University, Shanghai, China
| | - Xinjia Wang
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
| | - Haotian Feng
- Guangxi Key Laboratory of Regenerative Medicine, Guangxi Medical University, Nanning, China
- Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, China
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Ying Liu
- Institute of Translational Medicine, Shanghai University, Shanghai, China
- *Correspondence: Ying Liu, ; Guanfeng Yao,
| | - Guanfeng Yao
- Department of Orthopedics, The Second Affiliated Hospital, Shantou University Medical College, Shantou, China
- *Correspondence: Ying Liu, ; Guanfeng Yao,
| |
Collapse
|
10
|
Chindamo G, Sapino S, Peira E, Chirio D, Gonzalez MC, Gallarate M. Bone Diseases: Current Approach and Future Perspectives in Drug Delivery Systems for Bone Targeted Therapeutics. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E875. [PMID: 32370009 PMCID: PMC7279399 DOI: 10.3390/nano10050875] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 04/16/2020] [Accepted: 04/19/2020] [Indexed: 12/14/2022]
Abstract
Bone diseases include a wide group of skeletal-related disorders that cause mobility limitations and mortality. In some cases, e.g., in osteosarcoma (OS) and metastatic bone cancer, current treatments are not fully effective, mainly due to low patient compliance and to adverse side effects. To overcome these drawbacks, nanotechnology is currently under study as a potential strategy allowing specific drug release kinetics and enhancing bone regeneration. Polymers, ceramics, semiconductors, metals, and self-assembled molecular complexes are some of the most used nanoscale materials, although in most cases their surface properties need to be tuned by chemical or physical reactions. Among all, scaffolds, nanoparticles (NPs), cements, and hydrogels exhibit more advantages than drawbacks when compared to other nanosystems and are therefore the object of several studies. The aim of this review is to provide information about the current therapies of different bone diseases focusing the attention on new discoveries in the field of targeted delivery systems. The authors hope that this paper could help to pursue further directions about bone targeted nanosystems and their application for bone diseases and bone regeneration.
Collapse
Affiliation(s)
- Giulia Chindamo
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Simona Sapino
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Elena Peira
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Daniela Chirio
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| | - Mónica Cristina Gonzalez
- Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina;
| | - Marina Gallarate
- Department of Drug Science and Technology, University of Turin, 10125 Turin, Italy; (G.C.); (E.P.); (D.C.); (M.G.)
| |
Collapse
|
11
|
Le Henaff C, Ricarte F, Finnie B, He Z, Johnson J, Warshaw J, Kolupaeva V, Partridge NC. Abaloparatide at the Same Dose Has the Same Effects on Bone as PTH (1-34) in Mice. J Bone Miner Res 2020; 35:714-724. [PMID: 31793033 PMCID: PMC7145759 DOI: 10.1002/jbmr.3930] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 11/18/2019] [Accepted: 11/24/2019] [Indexed: 12/25/2022]
Abstract
Abaloparatide, a novel analog of parathyroid hormone-related protein (PTHrP 1-34), became in 2017 the second osteoanabolic therapy for the treatment of osteoporosis. This study aims to compare the effects of PTH (1-34), PTHrP (1-36), and abaloparatide on bone remodeling in male mice. Intermittent daily subcutaneous injections of 80 μg/kg/d were administered to 4-month-old C57Bl/6J male mice for 6 weeks. During treatment, mice were followed by DXA-Piximus to assess changes in bone mineral density (BMD) in the whole body, femur, and tibia. At either 4 or 18 hours after the final injection, femurs were harvested for μCT analyses and histomorphometry, sera were assayed for bone turnover marker levels, and tibias were separated into cortical, trabecular, and bone marrow fractions for gene expression analyses. Our results showed that, compared with PTH (1-34), abaloparatide resulted in a similar increase in BMD at all sites, whereas no changes were found with PTHrP (1-36). With both PTH (1-34) and abaloparatide, μCT and histomorphometry analyses revealed similar increases in bone volume associated with an increased trabecular thickness, in bone formation rate as shown by P1NP serum level and in vivo double labeling, and in bone resorption as shown by CTX levels and osteoclast number. Gene expression analyses of trabecular and cortical bone showed that PTH (1-34) and abaloparatide led to different actions in osteoblast differentiation and activity, with increased Runx2, Col1A1, Alpl, Bsp, Ocn, Sost, Rankl/Opg, and c-fos at different time points. Abaloparatide seems to generate a faster response on osteoblastic gene expression than PTH (1-34). Taken together, abaloparatide at the same dose is as effective as PTH (1-34) as an osteoanabolic, with an increase in bone formation but also an increase in bone resorption in male mice. © 2019 American Society for Bone and Mineral Research.
Collapse
Affiliation(s)
- Carole Le Henaff
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Florante Ricarte
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Brandon Finnie
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Zhiming He
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Joshua Johnson
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Johanna Warshaw
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Victoria Kolupaeva
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| | - Nicola C Partridge
- Department of Basic Science and Craniofacial Biology, New York University College of Dentistry, New York, NY, USA
| |
Collapse
|
12
|
Pazianas M. Bones, heart and the new anabolic agent romosozumab. Postgrad Med J 2019; 95:521-523. [DOI: 10.1136/postgradmedj-2019-136699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 07/11/2019] [Accepted: 07/21/2019] [Indexed: 11/04/2022]
|
13
|
Zhang Q, Tang X, Liu Z, Song X, Peng D, Zhu W, Ouyang Z, Wang W. Hesperetin Prevents Bone Resorption by Inhibiting RANKL-Induced Osteoclastogenesis and Jnk Mediated Irf-3/c-Jun Activation. Front Pharmacol 2018; 9:1028. [PMID: 30254586 PMCID: PMC6142014 DOI: 10.3389/fphar.2018.01028] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 08/24/2018] [Indexed: 12/13/2022] Open
Abstract
Bone homeostasis and resorption is regulated by the proper activation of osteoclasts, whose stimulation largely depends on the receptor activator of nuclear factor κB ligand (RANKL)-RANK signaling. Herein, for the first time, we showed that interferon regulatory factor (Irf)-3 was intimately involved in RANKL-induced osteoclast formation. In addition, hesperetin (Hes) derived from citrus fruit could inhibit RANKL-induced osteoclast differentiation and maturation among three types of osteoclast precursors with inhibited formation of F-actin rings and resorption pits on bone slices. More importantly, by using SP600125, a selective Jnk inhibitor, we showed that Hes was able to significantly attenuate the Jnk downstream expression of Irf-3 and c-Jun, thereby inactivating NF-κB/MAPK signaling and transcriptional factor NFATc-1, leading to suppression of osteoclast-specific genes, which resulted in impaired osteoclastogenesis and functionality. An ovariectomized (OVX) osteoporosis mouse model demonstrated that Hes could increase trabecular bone volume fractions (BV/TV), trabecular thickness, and trabecular number, whereas it decreased trabecular separation in OVX mice with well-preserved trabecular bone architecture and decreased levels of TRAP-positive osteoclasts. This is further evidenced by the diminished serum expression of bone resorption marker CTX and enhanced production of osteoblastic ALP in vivo. Taken together, these results suggested that Hes could inhibit Jnk-mediated Irf-3/c-Jun activation, thus attenuating RANKL-induced osteoclast formation and function both in vitro and in vivo.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xinqiao Tang
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, China
| | - Zhong Liu
- Department of Orthopedics, Xiangtan Central Hospital, Xiangtan, China
| | - Xiaoxia Song
- Department of Respiratory Medicine, Xiangtan Central Hospital, Xiangtan, China
| | - Dan Peng
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wei Zhu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhengxiao Ouyang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
14
|
Hu Z, Chen Y, Song L, Yik JHN, Haudenschild DR, Fan S. Flavopiridol Protects Bone Tissue by Attenuating RANKL Induced Osteoclast Formation. Front Pharmacol 2018; 9:174. [PMID: 29773986 PMCID: PMC5944179 DOI: 10.3389/fphar.2018.00174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 02/15/2018] [Indexed: 01/23/2023] Open
Abstract
Bone resorption and homeostasis is carried out by osteoclasts, whose differentiation and activity are regulated by the RANK/RANKL axis. Our previous studies using a mouse model of joint injury show that joint trauma induces local inflammation followed by bone remodeling. The transcription factor cyclin-dependent kinase 9 (CDK9) is the major regulator of inflammation, as CDK9 inhibitor flavopiridol effectively suppress injury-induced inflammatory response. The objective of this study was to investigate the underlying mechanism through which flavopiridol regulates bone resorption. The effects of CDK9 inhibition, by the specific-inhibitor flavopiridol, on bone resorption were determined in vivo using two distinct and clinically relevant bone remodeling models. The first model involved titanium particle-induced acute osteolysis, and the second model was ovariectomy-induced chronic osteoporosis. The effects and mechanism of CDK9 inhibition on osteoclastogenesis were examined using in vitro culture of bone marrow macrophages (BMMs). Our results indicated that flavopiridol potently suppressed bone resorption in both in vivo bone-remodeling models. In addition, CDK9 inhibition suppressed in vitro osteoclastogenesis of BMM and reduced their expression of osteoclast-specific genes. Finally, we determined that flavopiridol suppressed RANKL signaling pathway via inhibition of p65 phosphorylation and nuclear translocation of NF-κB. Summary, CDK9 is a potential therapeutic target to prevent osteolysis and osteoporosis by flavopiridol treatment.
Collapse
Affiliation(s)
- Zi'ang Hu
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yilei Chen
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Lijiang Song
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jasper H N Yik
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California, Davis, Davis, CA, United States
| | - Dominik R Haudenschild
- Lawrence J. Ellison Musculoskeletal Research Center, Department of Orthopaedic Surgery, University of California, Davis, Davis, CA, United States
| | - Shunwu Fan
- Department of Orthopaedic Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
15
|
Enhanced cortical bone expansion in Lgals3-deficient mice during aging. Bone Res 2018; 6:7. [PMID: 30886760 PMCID: PMC6416267 DOI: 10.1038/s41413-017-0003-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/13/2017] [Accepted: 08/28/2017] [Indexed: 12/12/2022] Open
Abstract
Imbalances between bone formation and bone resorption, which can occur due to aging or sex hormone deprivation, result in decreased bone mass and an increased risk of fracture. Previous studies have suggested that the β-galactoside binding lectin, galectin-3, is involved in bone remodeling. We compared bone parameters of mice having null alleles of the galectin-3 gene (Lgals3-KO) with those of their wild-type littermates. Lgals3 deficiency increased cortical bone expansion at 36 weeks (wk) and preserved or enhanced bone mass in both male and female mutant mice. In addition, female Lgals3-KO mice were protected from age-related loss of trabecular bone. Histomorphometry and ex vivo primary cell differentiation assays showed increased osteoblastogenesis with little-to-no effect on osteoclastogenesis, suggesting the increased bone mass phenotype is primarily due to increased anabolism. Our study identifies galectin-3 as a negative regulator of bone formation and suggests that disruption of galectin-3 may be useful in preventing bone loss during aging. Researchers have identified a promising new drug target to reduce bone loss during aging, a protein called galectin-3. Bones undergo lifelong remodeling via resorption of old bone and generation of new bone. With aging, the balance tips towards resorption, weakening bones. Galectin-3 was known to be involved in bone remodeling and levels increased with age. Bart Williams and co-workers at the Van Andel Research Institute in Grand Rapids, USA, investigated whether the age-related increase in galectin-3 increased bone loss. Using mice lacking the gene encoding galectin-3, the researchers measured bone mass at different ages. In older mice, bone mass was preserved or even enhanced. Further investigation of bone cells showed the increase was probably due to increased bone formation, rather than decreased bone resorption. The researchers conclude that disrupting galectin-3 may help to prevent aging-related bone loss.
Collapse
|
16
|
Pavone V, Testa G, Giardina SMC, Vescio A, Restivo DA, Sessa G. Pharmacological Therapy of Osteoporosis: A Systematic Current Review of Literature. Front Pharmacol 2017; 8:803. [PMID: 29163183 PMCID: PMC5682013 DOI: 10.3389/fphar.2017.00803] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2017] [Accepted: 10/24/2017] [Indexed: 01/22/2023] Open
Abstract
Osteoporosis is the most common bone disease affecting millions of people worldwide, particularly in elderly or in post-menopausal women. The pathogenesis is useful to understand the possible mechanism of action of anti-osteoporotic drugs. Early diagnosis, possible with several laboratory and instrumental tests, allows a major accuracy in the choice of anti-osteoporosis drugs. Treatment of osteoporosis is strictly related to severity of pathology and consists on prevention of fragility fractures with a correct lifestyle and adequate nutritional supplements, and use of pharmacological therapy, started in patients with osteopenia and history of fragility fracture of the hip or spine. The purpose of this review is to focus on main current pharmacological products to treat osteoporotic patients.
Collapse
Affiliation(s)
- Vito Pavone
- Dipartimento di Chirurgia Generale e Specialità Medico-Chirurgiche, Sezione di Ortopedia, A.O.U.P. Vittorio Emanuele, Università di Catania, Catania, Italy
| | - Gianluca Testa
- Dipartimento di Chirurgia Generale e Specialità Medico-Chirurgiche, Sezione di Ortopedia, A.O.U.P. Vittorio Emanuele, Università di Catania, Catania, Italy
| | - Serena M. C. Giardina
- Dipartimento di Chirurgia Generale e Specialità Medico-Chirurgiche, Sezione di Ortopedia, A.O.U.P. Vittorio Emanuele, Università di Catania, Catania, Italy
| | - Andrea Vescio
- Dipartimento di Chirurgia Generale e Specialità Medico-Chirurgiche, Sezione di Ortopedia, A.O.U.P. Vittorio Emanuele, Università di Catania, Catania, Italy
| | - Domenico A. Restivo
- Neurologic Unit, Department of Internal Medicine, Nuovo “Garibaldi” Hospital, Catania, Italy
| | - Giuseppe Sessa
- Dipartimento di Chirurgia Generale e Specialità Medico-Chirurgiche, Sezione di Ortopedia, A.O.U.P. Vittorio Emanuele, Università di Catania, Catania, Italy
| |
Collapse
|
17
|
Therapeutic Management of a Substantial Pelvic Aneurysmatic Bone Cyst Including the Off-Label Use of Denosumab in a 35-Year-Old Female Patient. Case Rep Orthop 2017; 2017:9125493. [PMID: 29181213 PMCID: PMC5664234 DOI: 10.1155/2017/9125493] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Accepted: 09/19/2017] [Indexed: 11/17/2022] Open
Abstract
Aneurysmal bone cysts (ABC) are benign bone tumors, which are highly vascularized. The main course of treatment is curettage followed by bone grafting or cement insertion. Still recurrence remains a main problem for patients. Denosumab is a monoclonal antibody, which acts as an inhibitor of the RANK/RANKL pathway, diminishing bone turnover. Recent case reports have shown that Denosumab can be a promising therapeutic agent for people suffering from therapy-resistant ABC. We report the case of a 35-year-old female patient presenting with a pronounced ABC of the pelvis. Since the tumor was inoperable, Denosumab was administered, leading to a significant shrinkage of the lesion, which allowed surgical intervention. Upon recurrence, Denosumab was restarted putting the patient once more into remission. Follow-up was four years overall with a clinical and radiological stable disease for fifteen months after final discontinuation of the monoclonal antibody. Therefore, our case further underlines the potential of Denosumab in the treatment of ABC.
Collapse
|
18
|
ZOFKOVA I, BLAHOS J. New Molecules Modulating Bone Metabolism – New Perspectives in the Treatment of Osteoporosis. Physiol Res 2017; 66:S341-S347. [DOI: 10.33549/physiolres.933720] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
In this review the authors outline traditional antiresorptive pharmaceuticals, such as bisphosphonates, monoclonal antibodies against RANKL, SERMs, as well as a drug with an anabolic effect on the skeleton, parathormone. However, there is also a focus on non-traditional strategies used in therapy for osteolytic diseases. The newest antiosteoporotic pharmaceuticals increase osteoblast differentiation via BMP signaling (harmine), or stimulate osteogenic differentiation of mesenchymal stem cells through Wnt/β-catenin (icarrin, isoflavonoid caviunin, or sulfasalazine). A certain promise in the treatment of osteoporosis is shown by molecules targeting non-coding microRNAs (which are critical for osteoclastogenesis) or those stimulating osteoblast activity via epigenetic mechanisms. Vitamin D metabolites have specific antiosteoporotic potencies, modulating the skeleton not only via mineralization, but markedly also through the direct effects on the bone microstructure.
Collapse
Affiliation(s)
- I. ZOFKOVA
- Institute of Endocrinology, Prague, Czech Republic
| | | |
Collapse
|
19
|
Matsumoto MA, de Abreu Furquim EM, Gonçalves A, Santiago-Júnior JF, Saraiva PP, Cardoso CL, Munerato MS, Okamoto R. Aged rats under zoledronic acid therapy and oral surgery. J Craniomaxillofac Surg 2017; 45:781-787. [PMID: 28318924 DOI: 10.1016/j.jcms.2017.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 11/30/2016] [Accepted: 02/03/2017] [Indexed: 12/18/2022] Open
Abstract
INTRODUCTION Aging brings a number of health conditions that can compromise the healing process in elderly individuals, significantly when it comes to bone tissue. The aim of the present study was to analyze the effects of zoledronic acid (ZL) therapy on socket healing of aged male rats. MATERIALS AND METHODS Twenty-four Wistar male rats, 20 months old, underwent surgical procedures for the extraction of the upper right incisor and were divided into two groups according to the treatment: Control (C) - intravenous (IV) 0.9% saline, ZL - 0.035 mg/kg of IV zoledronic acid, both every 15 days. At the fifth dose of both substances, tooth extractions were performed and the animals were euthanized after 14 and 28 days. RESULTS IV administration of ZL caused OPG-RANKL system imbalance, resulting in deficient bone formation and remodeling and alteration of osteoclast morphology, as well as maintaining persistent inflammation during the healing period. CONCLUSIONS IV administration of ZL delayed extracted dental socket healing of aged rats, but not enough to cause osteonecrosis, raising a question about different responses to IV BP therapy considering animal age.
Collapse
Affiliation(s)
- Mariza Akemi Matsumoto
- São Paulo State University (Unesp) (Head: Prof. W. R. Poi), School of Dentistry, Araçatuba, Rua José Bonifácio 1193, Araçatuba, SP, Brazil.
| | - Elisa Mara de Abreu Furquim
- São Paulo State University (Unesp) (Head: Prof. W. R. Poi), School of Dentistry, Araçatuba, Rua José Bonifácio 1193, Araçatuba, SP, Brazil
| | - Alaíde Gonçalves
- São Paulo State University (Unesp) (Head: Prof. W. R. Poi), School of Dentistry, Araçatuba, Rua José Bonifácio 1193, Araçatuba, SP, Brazil
| | | | - Patrícia Pinto Saraiva
- School of Dentistry, Sagrado Coração University - USC, Rua Irmã Arminda 10-50, Bauru, SP, Brazil
| | - Camila Lopes Cardoso
- School of Dentistry, Sagrado Coração University - USC, Rua Irmã Arminda 10-50, Bauru, SP, Brazil
| | - Marcelo Salles Munerato
- School of Dentistry, Sagrado Coração University - USC, Rua Irmã Arminda 10-50, Bauru, SP, Brazil
| | - Roberta Okamoto
- São Paulo State University (Unesp) (Head: Prof. W. R. Poi), School of Dentistry, Araçatuba, Rua José Bonifácio 1193, Araçatuba, SP, Brazil
| |
Collapse
|
20
|
Lee SJ, Lee EH, Park SY, Kim JE. Induction of fibrillin-2 and periostin expression in Osterix-knockdown MC3T3-E1 cells. Gene 2016; 596:123-129. [PMID: 27751812 DOI: 10.1016/j.gene.2016.10.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/30/2016] [Accepted: 10/13/2016] [Indexed: 12/16/2022]
Abstract
Osteoporosis is the most common age-related bone disease that is characterized by an imbalance between osteoblasts for bone formation and osteoclasts for bone resorption. Anti-catabolic drugs have been developed to inhibit osteoclast activity and to prevent bone loss in osteoporosis. However, because it is difficult to increase bone mass in osteoporotic bone, it would be beneficial to simultaneously enhance osteoblast function and thus form bone. Osterix (Osx) is an essential transcription factor for osteoblast differentiation. To date, many studies have focused on discovering Osx target genes and on increasing osteoblast differentiation. However, Osx targets and the mechanisms controlling osteoblast differentiation, are not well known. Here, we generated stable Osx-knockdown cell lines by employing shRNA in MC3T3-E1 osteoblastic cells. Stable Osx-knockdown osteoblasts exhibited a significant reduction in cell differentiation and nodule formation, which was similar to the reduced osteoblast activity observed in an Osx-deficient mouse model. Using an Affymetrix GeneChip microarray, we determined the differential gene expression profile in response to Osx knockdown, which provided insight into molecular mechanisms underlying osteoblast differentiation. Of 2743 genes with roles in cell differentiation, 15 were upregulated and 2 were downregulated in Osx-knockdown osteoblasts. In particular, the expression of fibrillin-2 and periostin was significantly increased in Osx-knockdown osteoblasts compared to that in control cells, as validated by RT-PCR and quantitative real-time PCR. Finally, this study showed differential gene expression profiles for Osx-mediated osteoblast differentiation, suggesting that fibrillin-2 and periostin will be target candidates of Osx in osteoblast differentiation.
Collapse
Affiliation(s)
- So-Jeong Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Eun-Hye Lee
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 700-422, Republic of Korea
| | - Seung-Yoon Park
- Department of Biochemistry, School of Medicine, Dongguk University, Gyeongju 780-714, Republic of Korea
| | - Jung-Eun Kim
- Department of Molecular Medicine, Cell and Matrix Research Institute, Kyungpook National University School of Medicine, Daegu 700-422, Republic of Korea; BK21 Plus KNU Biomedical Convergence Program, Department of Biomedical Science, Kyungpook National University, Daegu 700-422, Republic of Korea.
| |
Collapse
|