1
|
Song X, Hao P, Gao L, Li X, Zhang C. Effects on Mass Transfer in the Bone Lacunar-Canalicular System under Different Radial Extracorporeal Shock Waves. Tissue Eng Regen Med 2025; 22:297-308. [PMID: 39979553 PMCID: PMC11926316 DOI: 10.1007/s13770-025-00707-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/22/2024] [Accepted: 01/13/2025] [Indexed: 02/22/2025] Open
Abstract
BACKGROUND The bone lacunar-canalicular system (LCS) is an important microscopic infrastructure for signaling and solute transport in bone tissue, which guarantees the normal physiological processes of bone tissue, and there is a direct relationship between osteoporosis and intrabody mass transfer; however, the mass transfer pattern of the LCS has not yet been clarified under different intensities of in extracorporeal shock waves. The present study aims to assess the effect of extracorporeal shock waves on mass transfer in LCS. METHODS Sodium fluorescein tracer was taken as the transport substance, and the fluorescence intensities of osteocytes at lacuna in bovine cortical bone were used to indicate the mass transfer effect. The free diffusion and different extracorporeal shock waves were performed in LCS experiments and the fluorescence intensities of the superficial, shallow, middle, and deep layers of osteocytes, which were arranged in a proximity-to-distant order away from the Haversian canal, were detected by laser scanning confocal microscopy. RESULTS The results showed that, under different shock waves, the fluorescence intensities of superficial lacunae were the highest in an osteon, followed by shallow and middle layers, and the fluorescence intensities of deep lacunae furthest from the Haversian canal were the lowest, with a decreasing trend and a decreased range of 44.75-97.11%. Relative to free diffusion, the fluorescence intensities of the lacunae in each layer increased by 33.16%, 20.56%, 16.11%, and 26.64% in the superficial, shallow, middle, and deep layers of osteocytes, respectively, under the effect of the extracorporeal shock waves at 1 bar; the fluorescence intensities of the middle layer increased by 100.03% when the intensity was 5 bar, and average fluorescence intensities increased the most with an incremental value of 81.34% in all different shock waves; the fluorescence intensities of the lacunae of each layer was enhanced with a range of 110.93-161.03% by 8 bar. CONCLUSION Extracorporeal shock waves promoted tracer mass transfer within the LCS, and the higher the shock wave magnitudes, the larger the mass transfer in LCS. The transport of solute molecules, nutrients, and signaling molecules within the LCS was facilitated by the extracorporeal shock waves, which may help to address bone diseases such as osteoporosis from the direction of mass transfer in LCS.
Collapse
Affiliation(s)
- Xinlei Song
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Pujun Hao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| | - Lilan Gao
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China
| | - Xuejin Li
- School of Aeronautics and Astronautics, Zhejiang University, 38 Zheda Road Hangzhou, Zhejiang, 310027, China
| | - Chunqiu Zhang
- Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
2
|
Kaneguchi A, Yamaoka K, Ozawa J. Long-term observation of marrow adipose tissue and trabecular bone in the rat proximal tibial epiphysis after anterior cruciate ligament reconstruction: effects of immobilization and non-weightbearing. Biotech Histochem 2025; 100:72-82. [PMID: 40008463 DOI: 10.1080/10520295.2025.2470622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025] Open
Abstract
Anterior cruciate ligament (ACL) injury and subsequent reconstruction induce marrow adipose tissue (MAT) accumulation accompanied by bone loss. Short-term immobilization or non-weightbearing after ACL reconstruction further promotes MAT accumulation. However, it is unclear if combining immobilization and non-weightbearing synergistically promotes MAT accumulation. Additionally, it is unknown whether MAT increase induced by immobilization or non-weightbearing can be reversed through remobilization or reloading. We aimed to address these questions. ACL-reconstructed rats were divided into four groups: no intervention, immobilization, non-weightbearing, or immobilization plus non-weightbearing. Immobilization and non-weightbearing were applied for 2 weeks, after which all rats were allowed to move unrestricted. Intact rats were used as controls. The marrow adiposity and trabecular bone in the proximal tibia were histologically assessed at 2-, 4-, and 12-weeks post-surgery. ACL reconstruction induced MAT accumulation and trabecular bone loss accompanied by increased osteoclastogenesis. Two weeks of immobilization and non-weightbearing after ACL reconstruction individually promoted MAT accumulation, but the combined use of these interventions had a similar impact on MAT accumulation as either of each intervention. Importantly, the increased MAT induced by immobilization or non-weightbearing did not reverse even after remobilization or reloading. Neither immobilization, non-weightbearing, nor both conditions combined after ACL reconstruction further decreased trabecular bone compared to no intervention. These findings suggest no synergistic effect of immobilization and non-weightbearing on MAT accumulation, and MAT accumulation induced by 2 weeks of both immobilization or non-weightbearing did not decrease even after at least 10 weeks of remobilization or reloading. MAT accumulation due to both immobilization and non-weightbearing did not have negative effects on trabecular bone.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Hiroshima, Japan
| |
Collapse
|
3
|
Jiang T, Hu G, Yang R, Guan Z. Panax Notoginseng Saponins Regulate Angiogenic Cytokines Through the PI3K/AKT/mTOR Signaling Pathway to Promote Fracture Healing in Ovariectomized Rats. J Med Food 2024; 27:824-833. [PMID: 38868856 DOI: 10.1089/jmf.2024.k.0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Osteoporotic fractures seriously affect the quality of life of the elderly. Panax notoginseng saponins (PNS) have the potential function of preventing osteoporosis. The Phosphatidylinositol 3-kinase (PI3K)/protein kinase (AKT)/mammalian target of rapamycin (mTOR) pathway is involved in the regulation of osteoporosis and has been proven to be related to VEGF secretion and angiogenesis. Therefore, this study aimed to explore the effects of PNS on ovariectomized rats with osteoporotic fracture through the PI3K/AKT/mTOR pathway and angiogenesis-related factors. Female Sprague-Dawley rats were randomly divided into normal control, fracture model, ovariectomized fracture model, low-dose PNS (100 mg/kg/d), and high-dose PNS (200 mg/kg/d). The ovariectomized rat fracture model was established. In low and high dose groups, PNS was administered intraperitoneally. The vascularization of fracture ends was detected in vitro by micro-CT on the 7th, 14th, and 21st day after modeling, and the area and number of blood vessels in the unit field of vision of the callus healing plane were seen by hematoxylin-eosin staining. The expression levels of PI3K, AKT1, mTOR, hypoxia inducible factor-1; VEGF: vascular endothelial growth factor (HIF-1), VEGF, Ang-1, VEGFR2, and angiopoietin like 2 Gene (ANGPTL2) were determined using Western blotting. In the PNS treatment group, the area of cortical bone increased, the area of callus decreased, and the number and area of blood vessels increased significantly when compared with the ovariectomized fracture model group. PNS regulates the PI3K/AKT/mTOR signaling pathway and promotes the expression of vascular-related cytokines (VEGF, Ang-1, VEGFR2, and ANGPTL2) in osteoporotic fractures. PNS may regulate the expression of vascular-related factors through the PI3K/AKT/mTOR pathway and promote the healing of osteoporotic fractures in ovariectomized rats.
Collapse
Affiliation(s)
- Taiping Jiang
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Guang Hu
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Rongkun Yang
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| | - Zhiyu Guan
- Department of Orthopedics, The First Affiliated Hospital of Guizhou University of Chinese Medicine, Guiyang, China
| |
Collapse
|
4
|
Sun J, Xie W, Wu Y, Li Z, Li Y. Accelerated Bone Healing via Electrical Stimulation. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2404190. [PMID: 39115981 DOI: 10.1002/advs.202404190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/01/2024] [Indexed: 08/10/2024]
Abstract
Piezoelectric effect produces an electrical signal when stress is applied to the bone. When the integrity of the bone is destroyed, the biopotential within the defect site is reduced and several physiological responses are initiated to facilitate healing. During the healing of the bone defect, the bioelectric potential returns to normal levels. Treatment of fractures that exceed innate regenerative capacity or exhibit delayed healing requires surgical intervention for bone reconstruction. For bone defects that cannot heal on their own, exogenous electric fields are used to assist in treatment. This paper reviews the effects of exogenous electrical stimulation on bone healing, including osteogenesis, angiogenesis, reduction in inflammation and effects on the peripheral nervous system. This paper also reviews novel electrical stimulation methods, such as small power supplies and nanogenerators, that have emerged in recent years. Finally, the challenges and future trends of using electrical stimulation therapy for accelerating bone healing are discussed.
Collapse
Affiliation(s)
- Jianfeng Sun
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Wenqing Xie
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yuxiang Wu
- School of Kinesiology, Jianghan University, Wuhan, Hubei, 430056, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| |
Collapse
|
5
|
Luo S, Zhang C, Xiong W, Song Y, Wang Q, Zhang H, Guo S, Yang S, Liu H. Advances in electroactive biomaterials: Through the lens of electrical stimulation promoting bone regeneration strategy. J Orthop Translat 2024; 47:191-206. [PMID: 39040489 PMCID: PMC11261049 DOI: 10.1016/j.jot.2024.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 05/16/2024] [Accepted: 06/07/2024] [Indexed: 07/24/2024] Open
Abstract
The regenerative capacity of bone is indispensable for growth, given that accidental injury is almost inevitable. Bone regenerative capacity is relevant for the aging population globally and for the repair of large bone defects after osteotomy (e.g., following removal of malignant bone tumours). Among the many therapeutic modalities proposed to bone regeneration, electrical stimulation has attracted significant attention owing to its economic convenience and exceptional curative effects, and various electroactive biomaterials have emerged. This review summarizes the current knowledge and progress regarding electrical stimulation strategies for improving bone repair. Such strategies range from traditional methods of delivering electrical stimulation via electroconductive materials using external power sources to self-powered biomaterials, such as piezoelectric materials and nanogenerators. Electrical stimulation and osteogenesis are related via bone piezoelectricity. This review examines cell behaviour and the potential mechanisms of electrostimulation via electroactive biomaterials in bone healing, aiming to provide new insights regarding the mechanisms of bone regeneration using electroactive biomaterials. The translational potential of this article This review examines the roles of electroactive biomaterials in rehabilitating the electrical microenvironment to facilitate bone regeneration, addressing current progress in electrical biomaterials and the mechanisms whereby electrical cues mediate bone regeneration. Interactions between osteogenesis-related cells and electroactive biomaterials are summarized, leading to proposals regarding the use of electrical stimulation-based therapies to accelerate bone healing.
Collapse
Affiliation(s)
- Songyang Luo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Chengshuo Zhang
- Hepatobiliary Surgery Department, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Wei Xiong
- Department of Plastic Surgery, The First Hospital of Shihezi Medical University, Shihezi, 832000, China
| | - Yiping Song
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Hangzhou Zhang
- Department of Orthopedics, The First Hospital of China Medical University, Shenyang Sports Medicine Clinical Medical Research Center, Shenyang, 110001, China
| | - Shu Guo
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Shude Yang
- Department of Plastic Surgery, The First Hospital of China Medical University, Shenyang, 110001, China
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| | - Huanye Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang, 110001, China
| |
Collapse
|
6
|
Guo X, Lv M, Lin J, Guo J, Lin J, Li S, Sun Y, Zhang X. Latest Progress of LIPUS in Fracture Healing: A Mini-Review. JOURNAL OF ULTRASOUND IN MEDICINE : OFFICIAL JOURNAL OF THE AMERICAN INSTITUTE OF ULTRASOUND IN MEDICINE 2024; 43:643-655. [PMID: 38224522 DOI: 10.1002/jum.16403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/09/2023] [Accepted: 12/17/2023] [Indexed: 01/17/2024]
Abstract
The use of low-intensity pulsed ultrasound (LIPUS) for promoting fracture healing has been Food and Drug Administration (FDA)-approved since 1994 due to largely its non-thermal effects of sound flow sound radiation force and so on. Numerous clinical and animal studies have shown that LIPUS can accelerate the healing of fresh fractures, nonunions, and delayed unions in pulse mode regardless of LIPUS devices or circumstantial factors. Rare clinical studies show limitations of LIPUS for treating fractures with intramedullary nail fixation or low patient compliance. The biological effect is achieved by regulating various cellular behaviors involving mesenchymal stem/stromal cells (MSCs), osteoblasts, chondrocytes, and osteoclasts and with dose dependency on LIPUS intensity and time. Specifically, LIPUS promotes the osteogenic differentiation of MSCs through the ROCK-Cot/Tpl2-MEK-ERK signaling. Osteoblasts, in turn, respond to the mechanical signal of LIPUS through integrin, angiotensin type 1 (AT1), and PIEZO1 mechano-receptors, leading to the production of inflammatory factors such as COX-2, MCP-1, and MIP-1β fracture repair. LIPUS also induces CCN2 expression in chondrocytes thereby coordinating bone regeneration. Finally, LIPUS suppresses osteoclast differentiation and gene expression by interfering with the ERK/c-Fos/NFATc1 cascade. This mini-review revisits the known effects and mechanisms of LIPUS on bone fracture healing and strengthens the need for further investigation into the underlying mechanisms.
Collapse
Affiliation(s)
- Xin Guo
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Maojiang Lv
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
- Zun Yi Medical University, Zhuhai, China
| | - Jie Lin
- Department of Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Jiang Guo
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Jianjing Lin
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Shun Li
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| | - Yi Sun
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
- Department of Orthopaedics and Traumatology, The University of Hong Kong, Hong Kong SAR, China
| | - Xintao Zhang
- School of Rehabilitation Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- Department of Sports Medicine and Rehabilitation, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
7
|
Wu Z, Yang Y, Wang M. Silencing p75NTR regulates osteogenic differentiation and angiogenesis of BMSCs to enhance bone healing in fractured rats. J Orthop Surg Res 2024; 19:192. [PMID: 38504358 PMCID: PMC10953090 DOI: 10.1186/s13018-024-04653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 03/02/2024] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Fractures heal through a process that involves angiogenesis and osteogenesis but may also lead to non-union or delayed healing. Bone marrow mesenchymal stem cells (BMSCs) have been reported to play a pivotal role in bone formation and vascular regeneration and the p75 neurotrophin receptor (p75NTR) as being an important regulator of osteogenesis. Herein, we aim to determine the potential mediation of BMSCs by p75NTR in bone healing. METHODS Rat BMSCs were identified by flow cytometry (FCM) to detect cell cycle and surface markers. Then transfection of si/oe-p75NTR was performed in BMSCs, followed by Alizarin red staining to detect osteogenic differentiation of cells, immunofluorescence double staining was performed to detect the expression of p75NTR and sortilin, co-immunoprecipitation (CO-IP) was conducted to analyze the interaction between p75NTR and sortilin, and EdU staining and cell scratch assay to assess the proliferation and migration of human umbilical vein endothelial cells (HUVECs). The expression of HIF-1α, VEGF, and apoptosis-related proteins were also detected. In addition, a rat fracture healing model was constructed, and BMSCs-si-p75NTR were injected, following which the fracture condition was observed using micro-CT imaging, and the expression of platelet/endothelial cell adhesion molecule-1 (CD31) was assessed. RESULTS The results showed that BMSCs were successfully isolated, p75NTR inhibited apoptosis and the osteogenic differentiation of BMSCs, while si-p75NTR led to a decrease in sortilin expression in BMSCs, increased proliferation and migration in HUVECs, and upregulation of HIF-1α and VEGF expression. In addition, an interaction was observed between p75NTR and sortilin. The knockdown of p75NTR was found to reduce the severity of fracture in rats and increase the expression of CD31 and osteogenesis-related proteins. CONCLUSION Silencing p75NTR effectively modulates BMSCs to promote osteogenic differentiation and angiogenesis, offering a novel perspective for improving fracture healing.
Collapse
Affiliation(s)
- Zhifeng Wu
- Department of Trauma and Arthrology, First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China
| | - Yongming Yang
- Department of Trauma and Arthrology, First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China
| | - Ming Wang
- Department of Trauma and Arthrology, First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, China.
| |
Collapse
|
8
|
Kaneguchi A, Yamaoka K, Ozawa J. The Effects of Corticosteroid Administration and Treadmill Exercise on Marrow Adipose Tissue and Trabecular Bone after Anterior Cruciate Ligament Reconstruction in Rats. Acta Histochem Cytochem 2024; 57:47-55. [PMID: 38463208 PMCID: PMC10918434 DOI: 10.1267/ahc.23-00068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 01/22/2024] [Indexed: 03/12/2024] Open
Abstract
We aimed to investigate the effects of short-term corticosteroid administration after anterior cruciate ligament (ACL) reconstruction on marrow adipose tissue (MAT) and trabecular bone mass, as well as to examine whether treadmill exercise can mitigate MAT increase and trabecular bone deterioration caused by corticosteroid. ACL-reconstructed rats were divided into groups: no intervention, daily treadmill exercise (60 min/day), administration of the steroidal drug dexamethasone (250 μg/kg on days 0-5, 7, and 9 post-operatively), or dexamethasone administration combined with treadmill exercise. Untreated rats were served as controls. At day 10 or 30 post-operatively, histological assessments were performed in the proximal tibial epiphysis. MAT accumulation and trabecular bone loss were observed after ACL reconstruction. Dexamethasone promoted MAT accumulation at day 10 post-operatively but did not affect the trabecular bone loss. The MAT accumulation caused by dexamethasone reversed within 21 days after discontinuation. Treadmill exercise did not influence the changes in the MAT and trabecular bone areas. Short-term corticosteroid administration after ACL reconstruction promoted MAT accumulation while not affecting trabecular bone area. The MAT accumulation resulting from corticosteroid administration was reversible after discontinuation. Treadmill exercise could not mitigate the accumulation of MAT caused by corticosteroid administration and did not affect trabecular bone area.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555–36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555–36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555–36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
9
|
Kaneguchi A, Yamaoka K, Ozawa J. Effects of Weight Bearing on Marrow Adipose Tissue and Trabecular Bone after Anterior Cruciate Ligament Reconstruction in the Rat Proximal Tibial Epiphysis. Acta Histochem Cytochem 2024; 57:15-24. [PMID: 38463204 PMCID: PMC10918432 DOI: 10.1267/ahc.23-00060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 01/11/2024] [Indexed: 03/12/2024] Open
Abstract
The effects of mechanical unloading after anterior cruciate ligament (ACL) reconstruction on bone and marrow adipose tissue (MAT) are unclear. We investigated weight bearing effects on bone and MAT after ACL reconstruction. Rats underwent unilateral knee ACL transection and reconstruction, followed by hindlimb unloading (non-weight bearing), no intervention (low-weight bearing, the hindlimb standing time ratio (STR; operated/contralateral) during treadmill locomotion ranging from 0.55 to 0.91), or sustained morphine administration (moderate-weight bearing, STR ranging from 0.80 to 0.95). Untreated rats were used as controls. At 7 or 14 days after surgery, changes in trabecular bone and MAT in the proximal tibial were assessed histologically. Histological assessments at 7 or 14 days after surgery showed that ACL reconstruction without post-operative intervention did not significantly change trabecular bone and MAT areas. Hindlimb unloading after ACL reconstruction induced MAT accumulation with adipocyte hyperplasia and hypertrophy within 14 days, but did not significantly affect trabecular bone area. Increased weight bearing through morphine administration did not affect trabecular bone and MAT parameters. Our results suggest that early weight bearing after ACL reconstruction is important in reducing MAT accumulation, and that reduction in weight bearing alone is not sufficient to induce bone loss early after ACL reconstruction.
Collapse
Affiliation(s)
- Akinori Kaneguchi
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Kaoru Yamaoka
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| | - Junya Ozawa
- Department of Rehabilitation, Faculty of Rehabilitation, Hiroshima International University, Kurose-Gakuendai 555-36, Higashi-Hiroshima, Hiroshima, Japan
| |
Collapse
|
10
|
Inoue S, Li C, Hatakeyama J, Jiang H, Kuroki H, Moriyama H. Higher-intensity ultrasound accelerates fracture healing via mechanosensitive ion channel Piezo1. Bone 2023; 177:116916. [PMID: 37777037 DOI: 10.1016/j.bone.2023.116916] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/08/2023] [Accepted: 09/18/2023] [Indexed: 10/02/2023]
Abstract
Osteoporosis-related fractures are a major public health problem. Mechanobiological stimulation utilizing low-intensity pulsed ultrasound (LIPUS) is the most widely accepted modality for accelerating fracture healing. However, recent evidence has demonstrated the ineffectiveness of LIPUS, and the biophysical mechanisms of ultrasound-induced bone formation also remain elusive. Here, we demonstrate that ultrasound at a higher intensity than LIPUS effectively accelerates fracture healing in a mouse osteoporotic fracture model. Higher-intensity ultrasound promoted chondrogenesis and hypertrophic differentiation of chondrocytes in the fracture callus. Higher-intensity ultrasound also increased osteoblasts and newly formed bone in the callus, resulting in accelerated endochondral ossification during fracture healing. In addition, we found that accelerated fracture healing by ultrasound exposure was attenuated when the mechanosensitive ion channel Piezo1 was inhibited by GsMTx4. Ultrasound-induced new bone formation in the callus was attenuated in fractured mice treated with GsMTx4. Similar results were also confirmed in a 3D osteocyte-osteoblast co-culture system, where osteocytic Piezo1 knockdown attenuated the expression of osteoblastic genes after ultrasound exposure. Together these results demonstrate that higher-intensity ultrasound than clinically used LIPUS can accelerate endochondral ossification after fractures. Furthermore, our results suggest that mechanotransduction via Piezo1 mediates ultrasound-stimulated fracture healing and bone formation.
Collapse
Affiliation(s)
- Shota Inoue
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Changxin Li
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Junpei Hatakeyama
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan; Research Fellowship of the Japan Society for the Promotion of Science, Japan
| | - Hanlin Jiang
- Department of Rehabilitation Science, Graduate School of Health Sciences, Kobe University, Kobe, Japan
| | - Hiroshi Kuroki
- Department of Physical Therapy, Human Health Sciences, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Hideki Moriyama
- Life and Medical Sciences Area, Health Sciences Discipline, Kobe University, Kobe, Japan.
| |
Collapse
|
11
|
Wuerfel T, Schmitz C, Jokinen LLJ. The Effects of the Exposure of Musculoskeletal Tissue to Extracorporeal Shock Waves. Biomedicines 2022; 10:biomedicines10051084. [PMID: 35625821 PMCID: PMC9138291 DOI: 10.3390/biomedicines10051084] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/01/2022] [Accepted: 05/04/2022] [Indexed: 12/14/2022] Open
Abstract
Extracorporeal shock wave therapy (ESWT) is a safe and effective treatment option for various pathologies of the musculoskeletal system. Many studies address the molecular and cellular mechanisms of action of ESWT. However, to date, no uniform concept could be established on this matter. In the present study, we perform a systematic review of the effects of exposure of musculoskeletal tissue to extracorporeal shock waves (ESWs) reported in the literature. The key results are as follows: (i) compared to the effects of many other forms of therapy, the clinical benefit of ESWT does not appear to be based on a single mechanism; (ii) different tissues respond to the same mechanical stimulus in different ways; (iii) just because a mechanism of action of ESWT is described in a study does not automatically mean that this mechanism is relevant to the observed clinical effect; (iv) focused ESWs and radial ESWs seem to act in a similar way; and (v) even the most sophisticated research into the effects of exposure of musculoskeletal tissue to ESWs cannot substitute clinical research in order to determine the optimum intensity, treatment frequency and localization of ESWT.
Collapse
|
12
|
Tan Y, Reed-Maldonado AB, Wang G, Banie L, Peng D, Zhou F, Chen Y, Wang Z, Lin G, Lue TF. Microenergy acoustic pulse therapy restores urethral wall integrity and continence in a rat model of female stress incontinence. Neurourol Urodyn 2022; 41:1323-1335. [PMID: 35451520 PMCID: PMC9329256 DOI: 10.1002/nau.24939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/07/2022] [Indexed: 11/10/2022]
Abstract
OBJECTIVE To determine the outcomes and mechanisms of microenergy acoustic pulse (MAP) therapy in an irreversible rat model of female stress urinary incontinence. MATERIALS AND METHODS Twenty-four female Sprague-Dawley rats were randomly assigned into four groups: sham control (sham), vaginal balloon dilation and ovariectomy (VBDO), VBDO + β-aminopropionitrile (BAPN), and VBDO + β-aminopropionitrile treated with MAP (MAP). MAP therapy was administered twice per week for 4 weeks. After a 1-week washout period, all 24 rats were evaluated with functional and histological studies. The urethral vascular plexus was examined by immunofluorescence staining with antibodies against collagen IV and von Willebrand factor (vWF). The urethral smooth muscle stem/progenitor cells (uSMPCs) were isolated and functionally studied in vivo and in vitro. RESULTS Functional study with leak point pressure (LPP) measurement showed that the MAP group had significantly higher LPPs compared to VBDO and BAPN groups. MAP ameliorated the decline in urethral wall thickness and increased the amount of extracellular matrix within the urethral wall, especially in the urethral and vaginal elastic fibers. MAP also improved the disruption of the urethral vascular plexus in the treated animals. In addition, MAP enhanced the regeneration of urethral and vaginal smooth muscle, and uSMPCs could be induced by MAP to differentiate into smooth muscle and neuron-like cells in vitro. CONCLUSION MAP appears to restore urethral wall integrity by increasing muscle content in the urethra and the vagina and by improving the urethral vascular plexus and the extracellular matrix.
Collapse
Affiliation(s)
- Yan Tan
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA.,Department of Andrology, Renmin Hospital, Hubei University of Medicine, Shiyan, China
| | - Amanda B Reed-Maldonado
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA.,Department of Urology, Tripler Army Medical Center, Honolulu, Hawaii, USA
| | - Guifang Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Lia Banie
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Dongyi Peng
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Feng Zhou
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Yinwei Chen
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Zhao Wang
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Guiting Lin
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| | - Tom F Lue
- Knuppe Molecular Urology Laboratory, Department of Urology, School of Medicine, University of California, San Francisco, California, USA
| |
Collapse
|