1
|
Schleh MW, Ryan BJ, Ahn C, Ludzki AC, Van Pelt DW, Pitchford LM, Chugh OK, Luker AT, Luker KE, Samovski D, Abumrad NA, Burant CF, Horowitz JF. Impaired suppression of fatty acid release by insulin is a strong predictor of reduced whole-body insulin-mediated glucose uptake and skeletal muscle insulin receptor activation. Acta Physiol (Oxf) 2025; 241:e14249. [PMID: 39487600 DOI: 10.1111/apha.14249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 09/06/2024] [Accepted: 09/24/2024] [Indexed: 11/04/2024]
Abstract
AIM To examine factors underlying why most, but not all, adults with obesity exhibit impaired insulin-mediated glucose uptake, we compared: (1) adipose tissue fatty acid (FA) release, (2) skeletal muscle lipid droplet (LD) characteristics, and (3) insulin signalling events, in skeletal muscle of adults with obesity with relatively high versus low insulin-mediated glucose uptake. METHODS Seventeen adults with obesity (BMI: 36 ± 3 kg/m2) completed a 2 h hyperinsulinemic-euglycemic clamp with stable isotope tracer infusions to measure glucose rate of disappearance (glucose Rd) and FA rate of appearance (FA Ra). Skeletal muscle biopsies were collected at baseline and 30 min into the insulin infusion. Participants were stratified into HIGH (n = 7) and LOW (n = 10) insulin sensitivity cohorts by their glucose Rd during the hyperinsulinemic clamp (LOW< 400; HIGH >550 nmol/kgFFM/min/[μU/mL]). RESULTS Insulin-mediated suppression of FA Ra was lower in LOW compared with HIGH (p < 0.01). In skeletal muscle, total intramyocellular lipid content did not differ between cohorts. However, the size of LDs in the subsarcolemmal region (SS) of type II muscle fibres was larger in LOW compared with HIGH (p = 0.01). Additionally, insulin receptor-β (IRβ) interactions with regulatory proteins CD36 and Fyn were lower in LOW versus HIGH (p < 0.01), which aligned with attenuated insulin-mediated Tyr phosphorylation of IRβ and downstream insulin-signalling proteins in LOW. CONCLUSION Collectively, reduced ability for insulin to suppress FA mobilization, with accompanying modifications in intramyocellular LD size and distribution, and diminished IRβ interaction with key regulatory proteins may be key contributors to impaired insulin-mediated glucose uptake commonly found in adults with obesity.
Collapse
Affiliation(s)
- Michael W Schleh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Benjamin J Ryan
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Cheehoon Ahn
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Alison C Ludzki
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Douglas W Van Pelt
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Lisa M Pitchford
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Olivia K Chugh
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Austin T Luker
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, Ann Arbor, Michigan, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Dmitri Samovski
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nada A Abumrad
- Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Charles F Burant
- Division of Metabolism, Endocrinology, and Diabetes, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Jeffrey F Horowitz
- Substrate Metabolism Laboratory, School of Kinesiology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
2
|
Muthuswamy K, Vasanthakumar K, Panneerselvan P, Thangamani L, Krishnan V, Piramanayagam S, Subramaniam S. FAHFA promotes intracellular calcium signaling via activating the fat taste receptor, CD36 and Src protein kinases in mice taste bud cells. Biochim Biophys Acta Gen Subj 2024; 1868:130722. [PMID: 39426759 DOI: 10.1016/j.bbagen.2024.130722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 08/30/2024] [Accepted: 10/08/2024] [Indexed: 10/21/2024]
Abstract
Two lipid sensors, CD36 and GPR120, are crucial for the orosensory detection of fat taste and for mediating fat preference. However, the mechanism by which endogenous lipid (FAHFA) binds to CD36 to initiate intracellular signaling remains unexplained. Hence, the primary objective of this study is to investigate the binding mechanism of FAHFA to CD36 and its role in isolated mouse taste bud cells (mTBCs). The Schrodinger platform was used to assess the molecular dynamics of protein and ligand interactions, and an in vitro experiment was used to validate the findings. Based on the docking score of the ligand, the molecular mechanistic activities of the targeted complexes, CD36-5-POHSA (-8.2 kcal/mol), were investigated using the dynamic simulation. In comparison to linoleic acid (LA), POHSA rapidly increased [Ca2+]i via acting on CD36, and 5-POHSA treatment in mTBCs activated src-kinase at 20 μM. CD36 siRNA transfection in TBCs downregulate the CD36 protein expression as well as [Ca2+]i flux. This study suggests that 5-POHSA may help combat taste abnormalities and the adverse effects of obesity by binding to the lingual CD36 receptor and activating the tongue-brain axis.
Collapse
Affiliation(s)
- Karthi Muthuswamy
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India; Men's Health Research Unit, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Keerthana Vasanthakumar
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Prabha Panneerselvan
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Lokesh Thangamani
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Vasanth Krishnan
- Molecular Biology Laboratory, Department of Botany, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Shanmughavel Piramanayagam
- Computational Biology Lab, Department of Bioinformatics, Bharathiar University, Coimbatore, Tamilnadu 641046, India
| | - Selvakumar Subramaniam
- Molecular Physiology Laboratory, Department of Biochemistry, Bharathiar University, Coimbatore, Tamilnadu 641046, India.
| |
Collapse
|
3
|
Tsuji T, Tseng YH. Adipose tissue-derived lipokines in metabolism. Curr Opin Genet Dev 2023; 81:102089. [PMID: 37473635 PMCID: PMC10528474 DOI: 10.1016/j.gde.2023.102089] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/21/2023] [Accepted: 06/22/2023] [Indexed: 07/22/2023]
Abstract
Adipose tissue is a crucial regulator of metabolism with functions that include energy storage and dissipation as well as the secretion of bioactive molecules. As the largest endocrine organ in the body, the adipose tissue produces diverse bioactive molecules, including peptides, metabolites, and extracellular vesicles, which communicate with and modulate the function of other organs. In recent years, lipid metabolites, also known as lipokines, have emerged as key signaling molecules that actively participate in multiple metabolic processes. This review highlights the latest advances in adipose tissue-derived lipokines and their underlying cellular and molecular functions. Furthermore, we offer our perspective on the future directions for adipose-derived bioactive lipids and potential therapeutic implications for obesity and its associated complications.
Collapse
Affiliation(s)
- Tadataka Tsuji
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA; Harvard Stem Cell Institute, Harvard University, Cambridge, MA, USA.
| |
Collapse
|
4
|
Samovski D, Jacome-Sosa M, Abumrad NA. Fatty Acid Transport and Signaling: Mechanisms and Physiological Implications. Annu Rev Physiol 2023; 85:317-337. [PMID: 36347219 DOI: 10.1146/annurev-physiol-032122-030352] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Long-chain fatty acids (FAs) are components of plasma membranes and an efficient fuel source and also serve as metabolic regulators through FA signaling mediated by membrane FA receptors. Impaired tissue FA uptake has been linked to major complications of obesity, including insulin resistance, cardiovascular disease, and type 2 diabetes. Fatty acid interactions with a membrane receptor and the initiation of signaling can modify pathways related to nutrient uptake and processing, cell proliferation or differentiation, and secretion of bioactive factors. Here, we review the major membrane receptors involved in FA uptake and FA signaling. We focus on two types of membrane receptors for long-chain FAs: CD36 and the G protein-coupled FA receptors FFAR1 and FFAR4. We describe key signaling pathways and metabolic outcomes for CD36, FFAR1, and FFAR4 and highlight the parallels that provide insight into FA regulation of cell function.
Collapse
Affiliation(s)
- Dmitri Samovski
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Miriam Jacome-Sosa
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA;
| | - Nada A Abumrad
- Center for Human Nutrition, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri, USA; .,Department of Cell Biology and Physiology, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
5
|
Asano M, Kajita K, Fuwa M, Kajita T, Mori I, Akahoshi N, Ishii I, Morita H. Opposing Roles of Sphingosine 1-Phosphate Receptors 1 and 2 in Fat Deposition and Glucose Tolerance in Obese Male Mice. Endocrinology 2023; 164:6998551. [PMID: 36690339 PMCID: PMC9906621 DOI: 10.1210/endocr/bqad019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 01/04/2023] [Accepted: 01/20/2023] [Indexed: 01/25/2023]
Abstract
Sphingosine 1-phosphate (S1P) is a bioactive sphingolipid that regulates fundamental cellular processes such as proliferation, migration, apoptosis, and differentiation through 5 cognate G protein-coupled receptors (S1P1-S1P5). We previously demonstrated that blockade of S1P2 signaling in S1P2-deficient mice attenuates high-fat diet-induced adipocyte hypertrophy and glucose intolerance and an S1P2-specific antagonist JTE-013 inhibits, whereas an S1P1/S1P3 dual antagonist (VPC23019) activates, adipogenic differentiation of preadipocytes. Based on those observations, this study examined whether an S1P1-specific agonist, SEW-2871, VPC23019, or their combination acts on obesity and glucose intolerance in leptin-deficient ob/ob mice. The oral administration of SEW-2871 or JTE-013 induced significant reductions in body/epididymal fat weight gains and epididymal/inguinal fat adipocyte sizes and improved glucose intolerance and adipocyte inflammation in ob/ob mice but not in their control C57BL/6J mice. Both SEW-2871 and JTE-013 decreased messenger RNA levels of tumor necrosis factor-α and CD11c, whereas they increased those of CD206 and adiponectin in the epididymal fats isolated from ob/ob mice with no changes in the levels of peroxisome proliferator activated receptor γ and its regulated genes. By contrast, VPC23019 did not cause any such alterations but counteracted with all those SEW-2871 actions in these mice. In conclusion, the S1P1 agonist SEW-2871 acted like the S1P2 antagonist JTE-013 to reduce body/epididymal fats and improve glucose tolerance in obese mice. Therefore, this study raises the possibility that endogenous S1P could promote obesity/type 2 diabetes through the S1P2, whereas exogenous S1P could act against them through the S1P1.
Collapse
Affiliation(s)
- Motochika Asano
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Kazuo Kajita
- Correspondence: Kazuo Kajita, MD, PhD, Department of Health and Nutrition, Faculty of Home Economics, Gifu Women’s University, 80 Taromaru, Gifu 501-2592, Japan.
| | - Masayuki Fuwa
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Toshiko Kajita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Ichiro Mori
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Noriyuki Akahoshi
- Department of Health Chemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Isao Ishii
- Department of Health Chemistry, Showa Pharmaceutical University, Tokyo 194-8543, Japan
| | - Hiroyuki Morita
- Department of General Internal Medicine, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
6
|
Djesevic M, Hasic S, Lepara O, Jahic R, Kurtovic A, Fajkic A. CRP/HDL-C and Monocyte/HDL-C ratios as Predictors of Metabolic Syndrome in Patients With Type 2 Diabetes Mellitus. Acta Inform Med 2023; 31:254-259. [PMID: 38379696 PMCID: PMC10875961 DOI: 10.5455/aim.2023.31.254-259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 12/14/2023] [Indexed: 02/22/2024] Open
Abstract
Background Metabolic syndrome (MetS) denotes a cluster of co-occurring medical conditions associated with regulating hyperglycemia and acute cardiovascular events and complications. The escalating frequency of MetS among individuals afflicted with type 2 diabetes mellitus (T2DM) underscores its burgeoning significance as a critical public health concern and a complex clinical conundrum. Timely identification is imperative to avert the expedited progression of diabetic complications. Objective To investigate the role of CRP/HDL-C and Monocyte/HDL ratios in predicting MetS in T2DM individuals. Methods The study was designed as a two-year prospective study and included 80 T2DM patients divided into MetS and non-MetS groups based on MetS development over two years. The patients' serums were analyzed for complete blood count parameters, lipid profile, and C-reactive protein (CRP). Based on the laboratory test results, Monocyte/HDL-C and CRP/HDL-C ratios were calculated and analyzed. The receiver operating characteristic (ROC) curve and their corresponding areas under the curve (AUC) were used to determine prognostic accuracy. Results Monocyte/HDL-C ratio and CRP/HDL-C ratio were significantly higher in MetS-T2DM2 than in nonMetS-T2DM (p=0.003 and p=0.029, respectively). The results of ROC curve analysis have shown that the CRP/HDL-C ratio (AUC of 0.695) and Monocytes/HDL-C ratio (AUC of 0.645) can serve as good predictors of MetS in T2DM patients. Conclusion This study confirms the reliability of the Monocytes/HDL-C and CRP/HDL-C ratios as novel, simple, low-cost, and valuable predictors of MetS development in T2DM.
Collapse
Affiliation(s)
- Miralem Djesevic
- Department of Cardiology, Private Policlinic Center Eurofarm Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Sabaheta Hasic
- Department of Medical Biochemistry, Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| | - Orhan Lepara
- Department of Physiology, Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| | - Rijad Jahic
- General Hospital “Prim. Dr. Abdulah Nakas” Sarajevo, Bosnia and Herzegovina
| | - Avdo Kurtovic
- Clinical Center, University of Tuzla, Bosnia and Herzegovina
| | - Almir Fajkic
- Department of Pathophysiology, Faculty of Medicine, University of Sarajevo, Bosnia and Herzegovina
| |
Collapse
|