1
|
Wisetchat S, Stevens KA, Frost SR. Facial modeling and measurement based upon homologous topographical features. PLoS One 2024; 19:e0304561. [PMID: 38820264 PMCID: PMC11142440 DOI: 10.1371/journal.pone.0304561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 05/13/2024] [Indexed: 06/02/2024] Open
Abstract
Measurement of human faces is fundamental to many applications from recognition to genetic phenotyping. While anthropometric landmarks provide a conventional set of homologous measurement points, digital scans are increasingly used for facial measurement, despite the difficulties in establishing their homology. We introduce an alternative basis for facial measurement, which 1) provides a richer information density than discrete point measurements, 2) derives its homology from shared facial topography (ridges, folds, etc.), and 3) quantifies local morphological variation following the conventions and practices of anatomical description. A parametric model that permits matching a broad range of facial variation by the adjustment of 71 parameters is demonstrated by modeling a sample of 80 adult human faces. The surface of the parametric model can be adjusted to match each photogrammetric surface mesh generally to within 1 mm, demonstrating a novel and efficient means for facial shape encoding. We examine how well this scheme quantifies facial shape and variation with respect to geographic ancestry and sex. We compare this analysis with a more conventional, landmark-based geometric morphometric (GMM) study with 43 landmarks placed on the same set of scans. Our multivariate statistical analysis using the 71 attribute values separates geographic ancestry groups and sexes with a high degree of reliability, and these results are broadly similar to those from GMM, but with some key differences that we discuss. This approach is compared with conventional, non-parametric methods for the quantification of facial shape, including generality, information density, and the separation of size and shape. Potential uses for phenotypic and dysmorphology studies are also discussed.
Collapse
Affiliation(s)
- Sawitree Wisetchat
- Department of Anthropology, University of Oregon, Eugene, Oregon, United States of America
| | - Kent A. Stevens
- Department of Computer and Information Science, University of Oregon, Eugene, Oregon, United States of America
| | - Stephen R. Frost
- Department of Anthropology, University of Oregon, Eugene, Oregon, United States of America
| |
Collapse
|
2
|
Xie M, Kaiser M, Gershtein Y, Schnyder D, Deviatiiarov R, Gazizova G, Shagimardanova E, Zikmund T, Kerckhofs G, Ivashkin E, Batkovskyte D, Newton PT, Andersson O, Fried K, Gusev O, Zeberg H, Kaiser J, Adameyko I, Chagin AS. The level of protein in the maternal murine diet modulates the facial appearance of the offspring via mTORC1 signaling. Nat Commun 2024; 15:2367. [PMID: 38531868 DOI: 10.1038/s41467-024-46030-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 02/09/2024] [Indexed: 03/28/2024] Open
Abstract
The development of craniofacial skeletal structures is fascinatingly complex and elucidation of the underlying mechanisms will not only provide novel scientific insights, but also help develop more effective clinical approaches to the treatment and/or prevention of the numerous congenital craniofacial malformations. To this end, we performed a genome-wide analysis of RNA transcription from non-coding regulatory elements by CAGE-sequencing of the facial mesenchyme of human embryos and cross-checked the active enhancers thus identified against genes, identified by GWAS for the normal range human facial appearance. Among the identified active cis-enhancers, several belonged to the components of the PI3/AKT/mTORC1/autophagy pathway. To assess the functional role of this pathway, we manipulated it both genetically and pharmacologically in mice and zebrafish. These experiments revealed that mTORC1 signaling modulates craniofacial shaping at the stage of skeletal mesenchymal condensations, with subsequent fine-tuning during clonal intercalation. This ability of mTORC1 pathway to modulate facial shaping, along with its evolutionary conservation and ability to sense external stimuli, in particular dietary amino acids, indicate that the mTORC1 pathway may play a role in facial phenotypic plasticity. Indeed, the level of protein in the diet of pregnant female mice influenced the activity of mTORC1 in fetal craniofacial structures and altered the size of skeletogenic clones, thus exerting an impact on the local geometry and craniofacial shaping. Overall, our findings indicate that the mTORC1 signaling pathway is involved in the effect of environmental conditions on the shaping of craniofacial structures.
Collapse
Affiliation(s)
- Meng Xie
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Biosciences and Nutrition, Karolinska Institute, Flemingsberg, Sweden
- School of Psychological and Cognitive Sciences, PKU-IDG/McGovern Institute for Brain Research, Peking University, Beijing, China
| | - Markéta Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Yaakov Gershtein
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Daniela Schnyder
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Ruslan Deviatiiarov
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Guzel Gazizova
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
| | - Elena Shagimardanova
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
| | - Tomáš Zikmund
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Greet Kerckhofs
- Biomechanics Lab, Institute of Mechanics, Materials, and Civil Engineering (iMMC), UCLouvain, Louvain-la-Neuve, Belgium
- Pole of Morphology, Institute of Experimental and Clinical Research (IREC), UCLouvain, Woluwe, Belgium
- Department of Materials Engineering, KU Leuven, Leuven, Belgium
- Prometheus, Division for Skeletal Tissue Engineering, KU Leuven, Leuven, Belgium
| | - Evgeny Ivashkin
- A.N. Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
- Department of Developmental and Comparative Physiology, N.K. Koltsov Institute of Developmental Biology, Russian Academy of Sciences, Moscow, Russia
| | - Dominyka Batkovskyte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Phillip T Newton
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Astrid Lindgren Children's hospital, Stockholm, Sweden
| | - Olov Andersson
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Kaj Fried
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Oleg Gusev
- Regulatory Genomics Research Center, Kazan Federal University, Kazan, Russia
- Endocrinology Research Center, Moscow, Russia
- Life Improvement by Future Technologies (LIFT) Center, Moscow, Russia
- Intractable Disease Research Center, Juntendo University, Tokyo, Japan
| | - Hugo Zeberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Jozef Kaiser
- Central European Institute of Technology, Brno University of Technology, Brno, Czech Republic
| | - Igor Adameyko
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria.
| | - Andrei S Chagin
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
3
|
Mohammed J, Arora N, Matthews HS, Hansen K, Bader M, Walsh S, Shaffer JR, Weinberg SM, Swigut T, Claes P, Selleri L, Wysocka J. A common cis-regulatory variant impacts normal-range and disease-associated human facial shape through regulation of PKDCC during chondrogenesis. eLife 2024; 13:e82564. [PMID: 38483448 PMCID: PMC10939500 DOI: 10.7554/elife.82564] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 02/18/2024] [Indexed: 03/17/2024] Open
Abstract
Genome-wide association studies (GWAS) identified thousands of genetic variants linked to phenotypic traits and disease risk. However, mechanistic understanding of how GWAS variants influence complex morphological traits and can, in certain cases, simultaneously confer normal-range phenotypic variation and disease predisposition, is still largely lacking. Here, we focus on rs6740960, a single nucleotide polymorphism (SNP) at the 2p21 locus, which in GWAS studies has been associated both with normal-range variation in jaw shape and with an increased risk of non-syndromic orofacial clefting. Using in vitro derived embryonic cell types relevant for human facial morphogenesis, we show that this SNP resides in an enhancer that regulates chondrocytic expression of PKDCC - a gene encoding a tyrosine kinase involved in chondrogenesis and skeletal development. In agreement, we demonstrate that the rs6740960 SNP is sufficient to confer chondrocyte-specific differences in PKDCC expression. By deploying dense landmark morphometric analysis of skull elements in mice, we show that changes in Pkdcc dosage are associated with quantitative changes in the maxilla, mandible, and palatine bone shape that are concordant with the facial phenotypes and disease predisposition seen in humans. We further demonstrate that the frequency of the rs6740960 variant strongly deviated among different human populations, and that the activity of its cognate enhancer diverged in hominids. Our study provides a mechanistic explanation of how a common SNP can mediate normal-range and disease-associated morphological variation, with implications for the evolution of human facial features.
Collapse
Affiliation(s)
- Jaaved Mohammed
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Neha Arora
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Harold S Matthews
- Department of Human Genetics, KU LeuvenLeuvenBelgium
- Medical Imaging Research Center, University Hospitals LeuvenLeuvenBelgium
| | - Karissa Hansen
- Program in Craniofacial Biology, Department of Orofacial Sciences and Department of Anatomy, Institute of Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Maram Bader
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Susan Walsh
- Department of Biology, Indiana University IndianapolisIndianapolisUnited States
| | - John R Shaffer
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of PittsburghPittsburghUnited States
- Department of Human Genetics, University of PittsburghPittsburghUnited States
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, University of PittsburghPittsburghUnited States
- Department of Human Genetics, University of PittsburghPittsburghUnited States
- Department of Anthropology, University of PittsburghPittsburghUnited States
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
| | - Peter Claes
- Department of Human Genetics, KU LeuvenLeuvenBelgium
- Medical Imaging Research Center, University Hospitals LeuvenLeuvenBelgium
- Department of Electrical Engineering, ESAT/PSI, KU LeuvenLeuvenBelgium
- Murdoch Children’s Research InstituteMelbourneAustralia
| | - Licia Selleri
- Program in Craniofacial Biology, Department of Orofacial Sciences and Department of Anatomy, Institute of Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San FranciscoSan FranciscoUnited States
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of MedicineStanfordUnited States
- Department of Developmental Biology, Stanford University School of MedicineStanfordUnited States
- Howard Hughes Medical Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
4
|
Cho HW, Ban HJ, Jin HS, Cha S, Eom YB. A genome-wide association scan reveals novel loci for facial traits of Koreans. Genomics 2023; 115:110710. [PMID: 37734486 DOI: 10.1016/j.ygeno.2023.110710] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 09/07/2023] [Accepted: 09/18/2023] [Indexed: 09/23/2023]
Abstract
DNA-based prediction of externally visible characteristics (EVC) with SNPs is one of the research areas of interest in the forensic field. Based on a previous study performing GWAS on facial traits in a Korean population, herein, we present results stemming from GWA analysis with KoreanChip and novel genetic loci satisfying genome-wide significant level. We discovered a total of 20 signals and 12 loci were found to have novel associations with facial traits, including six loci located in intergenic regions and six loci located at UBE2O, HECTD2, CCDC108, TPK1, FCN2, and FRMPD1. Additionally, we performed a polygenic score analysis for 33 distance-related traits in facial phenotyping and determined genetic relationships between facial traits and SNPs using the GCTA program. The results of the current study offer an understanding of how facial morphology is influenced by complex genetic structures and provide insights into forensic investigation and population genetics.
Collapse
Affiliation(s)
- Hye-Won Cho
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea
| | - Hyo-Jeong Ban
- Korea Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea
| | - Hyun-Seok Jin
- Department of Biomedical Laboratory Science, College of Life and Health Sciences, Hoseo University, Asan, Chungnam 31499, Republic of Korea
| | - Seongwon Cha
- Korea Medicine (KM) Data Division, Korea Institute of Oriental Medicine, Daejeon 34054, Republic of Korea.
| | - Yong-Bin Eom
- Department of Medical Sciences, Graduate School, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea; Department of Biomedical Laboratory Science, College of Medical Sciences, Soonchunhyang University, Asan, Chungnam 31538, Republic of Korea.
| |
Collapse
|
5
|
Gisladottir RS, Helgason A, Halldorsson BV, Helgason H, Borsky M, Chien YR, Gudnason J, Gudjonsson SA, Moisik S, Dediu D, Thorleifsson G, Tragante V, Bustamante M, Jonsdottir GA, Stefansdottir L, Rutsdottir G, Magnusson SH, Hardarson M, Ferkingstad E, Halldorsson GH, Rognvaldsson S, Skuladottir A, Ivarsdottir EV, Norddahl G, Thorgeirsson G, Jonsdottir I, Ulfarsson MO, Holm H, Stefansson H, Thorsteinsdottir U, Gudbjartsson DF, Sulem P, Stefansson K. Sequence variants affecting voice pitch in humans. SCIENCE ADVANCES 2023; 9:eabq2969. [PMID: 37294764 PMCID: PMC10256171 DOI: 10.1126/sciadv.abq2969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/04/2023] [Indexed: 06/11/2023]
Abstract
The genetic basis of the human vocal system is largely unknown, as are the sequence variants that give rise to individual differences in voice and speech. Here, we couple data on diversity in the sequence of the genome with voice and vowel acoustics in speech recordings from 12,901 Icelanders. We show how voice pitch and vowel acoustics vary across the life span and correlate with anthropometric, physiological, and cognitive traits. We found that voice pitch and vowel acoustics have a heritable component and discovered correlated common variants in ABCC9 that associate with voice pitch. The ABCC9 variants also associate with adrenal gene expression and cardiovascular traits. By showing that voice and vowel acoustics are influenced by genetics, we have taken important steps toward understanding the genetics and evolution of the human vocal system.
Collapse
Affiliation(s)
- Rosa S. Gisladottir
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
- Department of Icelandic and Comparative Cultural Studies, University of Iceland, Saemundargata 2, 102 Reykjavik, Iceland
| | - Agnar Helgason
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
- Department of Anthropology, University of Iceland, Saemundargata 10, 102 Reykjavik, Iceland
| | - Bjarni V. Halldorsson
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
- Department of Engineering, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland
| | - Hannes Helgason
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
| | - Michal Borsky
- Department of Engineering, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland
| | - Yu-Ren Chien
- Department of Engineering, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland
| | - Jon Gudnason
- Department of Engineering, Reykjavik University, Menntavegur 1, 101 Reykjavik, Iceland
| | | | - Scott Moisik
- Division of Linguistics and Multilingual Studies, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Dan Dediu
- Department of Catalan Philology and General Linguistics, University of Barcelona, Gran Via 585, Barcelona 08007, Spain
- University of Barcelona Institute for Complex Systems (UBICS), Martí Franquès 1, Barcelona 08028, Spain
- Catalan Institute for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, Barcelona 08010, Spain
| | | | | | | | | | | | | | | | | | - Egil Ferkingstad
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
| | - Gisli H. Halldorsson
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland
| | | | | | | | | | - Gudmundur Thorgeirsson
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | - Ingileif Jonsdottir
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | - Magnus O. Ulfarsson
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland
| | - Hilma Holm
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
| | | | - Unnur Thorsteinsdottir
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| | - Daniel F. Gudbjartsson
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Dunhagi 5, 107 Reykjavik, Iceland
| | - Patrick Sulem
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
| | - Kari Stefansson
- deCODE Genetics/Amgen Inc., Sturlugata 8, 101 Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Vatnsmyrarvegur 16, 101 Reykjavik, Iceland
| |
Collapse
|
6
|
Lago C, Okida DKP, Cordeiro JFB, Gerber JT, Kuchler EC, Rebellato NLB, Moro A, Scariot R, Sebastiani AM. Genetic Polymorphisms of Estrogen Receptors α and β are Associated with Craniofacial Measurements in Patients With Dentofacial Deformity. J Craniofac Surg 2023; 34:1262-1266. [PMID: 36264685 DOI: 10.1097/scs.0000000000009064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 08/08/2022] [Indexed: 02/04/2023] Open
Abstract
Dentofacial deformities are characterized by abnormalities in craniofacial development that affects the individual's skeletal and occlusion, often causing functional and esthetic problems. In literature, there is an involvement of polymorphisms in estrogen receptor 1 (ESR1) and estrogen receptor 2 (ESR2) genes in craniofacial measurements. The aim of this study was to evaluate a possible association between polymorphisms in ESR1 (rs2234693 and rs9340799) and ESR2 (rs1256049 and rs4986938) genes with cephalometric measurements in individuals with dentofacial deformities. This cross-sectional study was performed with 158 individuals in the preoperative period of orthognathic surgery. The cephalometric measurements obtained through lateral cephalogram using Dolphin Imaging software. For genetic analysis, the DNA extracted from epithelial cells of the oral mucosa and were genotyped using the real-time polymerase chain reaction. The data found submitted to statistical analysis, through the Kolmogorov-Smirnov, Mann-Whitney, and Kruskal-Wallis tests, using the IBM SPSS software version 24.0. Considered a significance level of 0.05. We found association between polymorphisms and cephalometric measurements just in the female sex. The polymorphisms ESR1/rs9340799 ( P= 0.003), ESR1/rs2234693 ( P= 0.026), and ESR2/rs1256049 ( P= 0.046) were associated with the upper gonial angle (Ar-Go-N). The polymorphism ESR2/rs1256049 was also associated with the facial axis-rickets (NBa-PtGn) ( P= 0.004), anterior cranial base (SN) ( P= 0.036), and Y-axis (SGn-SN) ( P= 0.031).
Collapse
Affiliation(s)
- Camila Lago
- School of Health Sciences, Positivo University, Campo Comprido
| | | | | | | | | | | | - Alexandre Moro
- School of Health Sciences, Positivo University, Campo Comprido
| | - Rafaela Scariot
- Department of Stomatology, School of Dentistry, Federal University of Parana, Curitiba, PR
| | | |
Collapse
|
7
|
Li Q, Chen J, Faux P, Delgado ME, Bonfante B, Fuentes-Guajardo M, Mendoza-Revilla J, Chacón-Duque JC, Hurtado M, Villegas V, Granja V, Jaramillo C, Arias W, Barquera R, Everardo-Martínez P, Sánchez-Quinto M, Gómez-Valdés J, Villamil-Ramírez H, Silva de Cerqueira CC, Hünemeier T, Ramallo V, Wu S, Du S, Giardina A, Paria SS, Khokan MR, Gonzalez-José R, Schüler-Faccini L, Bortolini MC, Acuña-Alonzo V, Canizales-Quinteros S, Gallo C, Poletti G, Rojas W, Rothhammer F, Navarro N, Wang S, Adhikari K, Ruiz-Linares A. Automatic landmarking identifies new loci associated with face morphology and implicates Neanderthal introgression in human nasal shape. Commun Biol 2023; 6:481. [PMID: 37156940 PMCID: PMC10167347 DOI: 10.1038/s42003-023-04838-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/12/2023] [Indexed: 05/10/2023] Open
Abstract
We report a genome-wide association study of facial features in >6000 Latin Americans based on automatic landmarking of 2D portraits and testing for association with inter-landmark distances. We detected significant associations (P-value <5 × 10-8) at 42 genome regions, nine of which have been previously reported. In follow-up analyses, 26 of the 33 novel regions replicate in East Asians, Europeans, or Africans, and one mouse homologous region influences craniofacial morphology in mice. The novel region in 1q32.3 shows introgression from Neanderthals and we find that the introgressed tract increases nasal height (consistent with the differentiation between Neanderthals and modern humans). Novel regions include candidate genes and genome regulatory elements previously implicated in craniofacial development, and show preferential transcription in cranial neural crest cells. The automated approach used here should simplify the collection of large study samples from across the world, facilitating a cosmopolitan characterization of the genetics of facial features.
Collapse
Affiliation(s)
- Qing Li
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
| | - Jieyi Chen
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Pierre Faux
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France
| | - Miguel Eduardo Delgado
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- División Antropología, Facultad de Ciencias Naturales y Museo, Universidad Nacional de La Plata, La Plata, República Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas, CONICET, Buenos Aires, República Argentina
| | - Betty Bonfante
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France
| | - Macarena Fuentes-Guajardo
- Departamento de Tecnología Médica, Facultad de Ciencias de la Salud, Universidad de Tarapacá, Arica, 1000000, Chile
| | - Javier Mendoza-Revilla
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
- Unit of Human Evolutionary Genetics, Institut Pasteur, Paris, 75015, France
| | - J Camilo Chacón-Duque
- Division of Vertebrates and Anthropology, Department of Earth Sciences, Natural History Museum, London, SW7 5BD, UK
| | - Malena Hurtado
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Valeria Villegas
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Vanessa Granja
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Claudia Jaramillo
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - William Arias
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - Rodrigo Barquera
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
- Department of Archaeogenetics, Max Planck Institute for the Science of Human History (MPI-SHH), Jena, 07745, Germany
| | - Paola Everardo-Martínez
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Mirsha Sánchez-Quinto
- Forensic Science, Faculty of Medicine, UNAM (Universidad Nacional Autónoma de México), Mexico City, 06320, Mexico
| | - Jorge Gómez-Valdés
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Hugo Villamil-Ramírez
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, 4510, Mexico
| | | | - Tábita Hünemeier
- Departamento de Genética e Biologia Evolutiva, Instituto de Biociências, Universidade de São Paulo, São Paulo, SP, 05508-090, Brazil
| | - Virginia Ramallo
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - Sijie Wu
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Siyuan Du
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Andrea Giardina
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Soumya Subhra Paria
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Mahfuzur Rahman Khokan
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom
| | - Rolando Gonzalez-José
- Instituto Patagónico de Ciencias Sociales y Humanas, Centro Nacional Patagónico, CONICET, Puerto Madryn, U9129ACD, Argentina
| | - Lavinia Schüler-Faccini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
| | - Maria-Cátira Bortolini
- Departamento de Genética, Universidade Federal do Rio Grande do Sul, Porto Alegre, 90040-060, Brazil
| | - Victor Acuña-Alonzo
- Molecular Genetics Laboratory, National School of Anthropology and History, Mexico City, 14050, Mexico, 6600, Mexico
| | - Samuel Canizales-Quinteros
- Unidad de Genomica de Poblaciones Aplicada a la Salud, Facultad de Química, UNAM-Instituto Nacional de Medicina Genómica, Mexico City, 4510, Mexico
| | - Carla Gallo
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Giovanni Poletti
- Laboratorios de Investigación y Desarrollo, Facultad de Ciencias y Filosofía, Universidad Peruana Cayetano Heredia, Lima, 31, Perú
| | - Winston Rojas
- GENMOL (Genética Molecular), Universidad de Antioquia, Medellín, 5001000, Colombia
| | - Francisco Rothhammer
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Arica, 1000000, Chile
| | - Nicolas Navarro
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, Dijon, 21000, France
- EPHE, PSL University, Paris, 75014, France
| | - Sijia Wang
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China
- CAS Key Laboratory of Computational Biology, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
| | - Kaustubh Adhikari
- School of Mathematics and Statistics, Faculty of Science, Technology, Engineering and Mathematics, The Open University, Milton Keynes, MK7 6AA, United Kingdom.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| | - Andrés Ruiz-Linares
- Ministry of Education Key Laboratory of Contemporary Anthropology and Collaborative Innovation Center of Genetics and Development, School of Life Sciences and Human Phenome Institute, Fudan University, Yangpu District, Shanghai, 200438, China.
- Aix-Marseille Université, CNRS, EFS, ADES, Marseille, 13005, France.
- Department of Genetics, Evolution and Environment, and UCL Genetics Institute, University College London, London, WC1E 6BT, UK.
| |
Collapse
|
8
|
Dediu D, Jennings EM, Van't Ent D, Moisik SR, Di Pisa G, Schulze J, de Geus EJC, den Braber A, Dolan CV, Boomsma DI. The heritability of vocal tract structures estimated from structural MRI in a large cohort of Dutch twins. Hum Genet 2022; 141:1905-1923. [PMID: 35831475 PMCID: PMC9672028 DOI: 10.1007/s00439-022-02469-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 06/18/2022] [Indexed: 11/04/2022]
Abstract
While language is expressed in multiple modalities, including sign, writing, or whistles, speech is arguably the most common. The human vocal tract is capable of producing the bewildering diversity of the 7000 or so currently spoken languages, but relatively little is known about its genetic bases, especially in what concerns normal variation. Here, we capitalize on five cohorts totaling 632 Dutch twins with structural magnetic resonance imaging (MRI) data. Two raters placed clearly defined (semi)landmarks on each MRI scan, from which we derived 146 measures capturing the dimensions and shape of various vocal tract structures, but also aspects of the head and face. We used Genetic Covariance Structure Modeling to estimate the additive genetic, common environmental or non-additive genetic, and unique environmental components, while controlling for various confounds and for any systematic differences between the two raters. We found high heritability, h2, for aspects of the skull and face, the mandible, the anteroposterior (horizontal) dimension of the vocal tract, and the position of the hyoid bone. These findings extend the existing literature, and open new perspectives for understanding the complex interplay between genetics, environment, and culture that shape our vocal tracts, and which may help explain cross-linguistic differences in phonetics and phonology.
Collapse
Affiliation(s)
- Dan Dediu
- Department of Catalan Philology and General Linguistics, University of Barcelona, Barcelona, Spain.
- Universitat de Barcelona Institute of Complex Systems (UBICS), Barcelona, Spain.
- Catalan Institute for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Emily M Jennings
- Faculty of Linguistics, Philology and Phonetics, University of Oxford, Oxford, UK
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dennis Van't Ent
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Scott R Moisik
- Linguistics and Multilingual Studies, Nanyang Technological University, Singapore, Singapore
| | - Grazia Di Pisa
- Department of Linguistics, Universität Konstanz, Constance, Germany
| | | | - Eco J C de Geus
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Anouk den Braber
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Alzheimer Center, Neuroscience Amsterdam, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Conor V Dolan
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Dorret I Boomsma
- Department of Biological Psychology, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
9
|
Wang P, Sun X, Miao Q, Mi H, Cao M, Zhao S, Wang Y, Shu Y, Li W, Xu H, Bai D, Zhang Y. Novel genetic associations with five aesthetic facial traits: A genome-wide association study in the Chinese population. Front Genet 2022; 13:967684. [PMID: 36035146 PMCID: PMC9411802 DOI: 10.3389/fgene.2022.967684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 06/27/2022] [Indexed: 11/17/2022] Open
Abstract
Background: The aesthetic facial traits are closely related to life quality and strongly influenced by genetic factors, but the genetic predispositions in the Chinese population remain poorly understood. Methods: A genome-wide association studies (GWAS) and subsequent validations were performed in 26,806 Chinese on five facial traits: widow’s peak, unibrow, double eyelid, earlobe attachment, and freckles. Functional annotation was performed based on the expression quantitative trait loci (eQTL) variants, genome-wide polygenic scores (GPSs) were developed to represent the combined polygenic effects, and single nucleotide polymorphism (SNP) heritability was presented to evaluate the contributions of the variants. Results: In total, 21 genetic associations were identified, of which ten were novel: GMDS-AS1 (rs4959669, p = 1.29 × 10−49) and SPRED2 (rs13423753, p = 2.99 × 10−14) for widow’s peak, a previously unreported trait; FARSB (rs36015125, p = 1.96 × 10−21) for unibrow; KIF26B (rs7549180, p = 2.41 × 10−15), CASC2 (rs79852633, p = 4.78 × 10−11), RPGRIP1L (rs6499632, p = 9.15 × 10−11), and PAX1 (rs147581439, p = 3.07 × 10−8) for double eyelid; ZFHX3 (rs74030209, p = 9.77 × 10−14) and LINC01107 (rs10211400, p = 6.25 × 10−10) for earlobe attachment; and SPATA33 (rs35415928, p = 1.08 × 10−8) for freckles. Functionally, seven identified SNPs tag the missense variants and six may function as eQTLs. The combined polygenic effect of the associations was represented by GPSs and contributions of the variants were evaluated using SNP heritability. Conclusion: These identifications may facilitate a better understanding of the genetic basis of features in the Chinese population and hopefully inspire further genetic research on facial development.
Collapse
Affiliation(s)
- Peiqi Wang
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xinghan Sun
- Genomic & Phenomic Data Center, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
- Department of Biobank, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
| | - Qiang Miao
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Hao Mi
- Department of Biobank, Chengdu 23Mofang Biotechnology Co., Ltd, Chengdu, China
| | - Minyuan Cao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Shan Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yiyi Wang
- Department of Dermatology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yang Shu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Li
- Department of Dermatology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Department of Laboratory Medicine/Research Center of Clinical Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Ding Bai
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- *Correspondence: Ding Bai, ; Yan Zhang,
| | - Yan Zhang
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- State Key Laboratory of Biotherapy, Department of Thoracic Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- *Correspondence: Ding Bai, ; Yan Zhang,
| |
Collapse
|
10
|
Huang J, Wang C, Ouyang J, Tang H, Zheng S, Xiong Y, Gao Y, Wu Y, Wang L, Yan X, Chen H. Identification of Key Candidate Genes for Beak Length Phenotype by Whole-Genome Resequencing in Geese. Front Vet Sci 2022; 9:847481. [PMID: 35372529 PMCID: PMC8964941 DOI: 10.3389/fvets.2022.847481] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Accepted: 02/15/2022] [Indexed: 12/14/2022] Open
Abstract
The domestic goose is an important economic animal in agriculture and its beak, a trait with high heritability, plays an important role in promoting food intake and defending against attacks. In this study, we sequenced 772 420-day-old Xingguo gray geese (XGG) using a low-depth (~1 ×) whole-genome resequencing strategy. We detected 12,490,912 single nucleotide polymorphisms (SNPs) using the standard GATK and imputed with STITCH. We then performed a genome-wide association study on the beak length trait in XGG. The results indicated that 57 SNPs reached genome-wide significance levels for the beak length trait and were assigned to seven genes, including TAPT1, DHX15, CCDC149, LGI2, SEPSECS, ANAPC4, and Slc34a2. The different genotypes of the most significant SNP (top SNP), which was located upstream of LGI2 and explained 7.24% of the phenotypic variation in beak length, showed significant differences in beak length. Priority-based significance analysis concluded that CCDC149, LGI2, and SEPSECS genes in the most significant quantitative trait locus interval were the most plausible positional and functional candidate genes for beak length development in the XGG population. These findings not only enhance our understanding of the genetic mechanism of the beak length phenotype in geese, but also lay the foundation for further studies to facilitate the genetic selection of traits in geese.
Collapse
|
11
|
Steiper ME, Grube NT, Gagnon CM. Elevated diversity in loci linked to facial morphology is consistent with the hypothesis that individual facial recognition is important across hominoids. AMERICAN JOURNAL OF PHYSICAL ANTHROPOLOGY 2021; 174:785-791. [PMID: 33454958 DOI: 10.1002/ajpa.24233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 11/05/2022]
Abstract
OBJECTIVES The ability to use visual signals to identify individuals is an important feature of primate social groups, including humans. Sheehan and Nachman (2014) showed that loci linked to facial morphology had elevated levels of diversity and interpreted this as evidence that the human face is under frequency-dependent selection to enhance individual recognition (Nature Communications 5). In our study, we tested whether this pattern is found in non-human ape species, to help understand whether individual recognition might also play a role in species other than humans. MATERIALS AND METHODS We examined levels of genetic diversity in an available population genomic dataset of humans, chimpanzees, bonobos, gorillas, and orangutans for three sets of loci, (1) loci linked to facial morphology, (2) loci linked to height, and (3) neutrally evolving regions. We tested whether loci linked to facial morphology were more variable than loci linked to height or neutrally evolving loci in each of these species. RESULTS We found significantly elevated diversity in loci linked to facial morphology in chimpanzees, gorillas, and Sumatran and Bornean orangutans. DISCUSSION Our findings closely parallel those of Sheehan and Nachman and are consistent with the idea that selection for facial diversity and individual recognition has not only shaped the evolution of the human face, but it has similarly shaped the evolution of most of our closest primate relatives. We also discuss alternative hypotheses for this pattern.
Collapse
Affiliation(s)
- Michael E Steiper
- Department of Anthropology, Hunter College of the City University of New York (CUNY), New York, New York, USA.,Program in Anthropology, The Graduate Center of the City University of New York (CUNY), New York, New York, USA.,New York Consortium in Evolutionary Primatology (NYCEP), New York, New York, USA
| | - Natalia T Grube
- Department of Biology, The Pennsylvania State University, State College, Pennsylvania, USA
| | | |
Collapse
|
12
|
Liu D, Alhazmi N, Matthews H, Lee MK, Li J, Hecht JT, Wehby GL, Moreno LM, Heike CL, Roosenboom J, Feingold E, Marazita ML, Claes P, Liao EC, Weinberg SM, Shaffer JR. Impact of low-frequency coding variants on human facial shape. Sci Rep 2021; 11:748. [PMID: 33436952 PMCID: PMC7804299 DOI: 10.1038/s41598-020-80661-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 12/18/2020] [Indexed: 01/29/2023] Open
Abstract
The contribution of low-frequency variants to the genetic architecture of normal-range facial traits is unknown. We studied the influence of low-frequency coding variants (MAF < 1%) in 8091 genes on multi-dimensional facial shape phenotypes in a European cohort of 2329 healthy individuals. Using three-dimensional images, we partitioned the full face into 31 hierarchically arranged segments to model facial morphology at multiple levels, and generated multi-dimensional phenotypes representing the shape variation within each segment. We used MultiSKAT, a multivariate kernel regression approach to scan the exome for face-associated low-frequency variants in a gene-based manner. After accounting for multiple tests, seven genes (AR, CARS2, FTSJ1, HFE, LTB4R, TELO2, NECTIN1) were significantly associated with shape variation of the cheek, chin, nose and mouth areas. These genes displayed a wide range of phenotypic effects, with some impacting the full face and others affecting localized regions. The missense variant rs142863092 in NECTIN1 had a significant effect on chin morphology and was predicted bioinformatically to have a deleterious effect on protein function. Notably, NECTIN1 is an established craniofacial gene that underlies a human syndrome that includes a mandibular phenotype. We further showed that nectin1a mutations can affect zebrafish craniofacial development, with the size and shape of the mandibular cartilage altered in mutant animals. Findings from this study expanded our understanding of the genetic basis of normal-range facial shape by highlighting the role of low-frequency coding variants in several novel genes.
Collapse
Affiliation(s)
- Dongjing Liu
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Nora Alhazmi
- Department of Oral Biology, Harvard School of Dental Medicine, Boston, MA, USA
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
| | - Harold Matthews
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Gasthuisberg, Leuven, Belgium
| | - Myoung Keun Lee
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiarui Li
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Jacqueline T Hecht
- Department of Pediatrics, University of Texas McGovern Medical Center, Houston, TX, USA
| | - George L Wehby
- Department of Health Management and Policy, University of Iowa, Iowa City, IA, USA
| | - Lina M Moreno
- Department of Orthodontics, University of Iowa, Iowa City, IA, USA
| | - Carrie L Heike
- Department of Pediatrics, Seattle Children's Craniofacial Center, University of Washington, Seattle, WA, USA
| | - Jasmien Roosenboom
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Eleanor Feingold
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mary L Marazita
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Peter Claes
- Department of Human Genetics, KU Leuven, Leuven, Belgium
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
| | - Eric C Liao
- Department of Surgery, Center for Regenerative Medicine, Massachusetts General Hospital, Shriners Hospital, Boston, MA, USA
| | - Seth M Weinberg
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| | - John R Shaffer
- Department of Human Genetics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
13
|
White JD, Indencleef K, Naqvi S, Eller RJ, Hoskens H, Roosenboom J, Lee MK, Li J, Mohammed J, Richmond S, Quillen EE, Norton HL, Feingold E, Swigut T, Marazita ML, Peeters H, Hens G, Shaffer JR, Wysocka J, Walsh S, Weinberg SM, Shriver MD, Claes P. Insights into the genetic architecture of the human face. Nat Genet 2021; 53:45-53. [PMID: 33288918 PMCID: PMC7796995 DOI: 10.1038/s41588-020-00741-7] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/23/2020] [Indexed: 01/28/2023]
Abstract
The human face is complex and multipartite, and characterization of its genetic architecture remains challenging. Using a multivariate genome-wide association study meta-analysis of 8,246 European individuals, we identified 203 genome-wide-significant signals (120 also study-wide significant) associated with normal-range facial variation. Follow-up analyses indicate that the regions surrounding these signals are enriched for enhancer activity in cranial neural crest cells and craniofacial tissues, several regions harbor multiple signals with associations to different facial phenotypes, and there is evidence for potential coordinated actions of variants. In summary, our analyses provide insights into the understanding of how complex morphological traits are shaped by both individual and coordinated genetic actions.
Collapse
Affiliation(s)
- Julie D White
- Department of Anthropology, Pennsylvania State University, State College, PA, USA.
| | - Karlijne Indencleef
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
| | - Sahin Naqvi
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - Ryan J Eller
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Hanne Hoskens
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Jasmien Roosenboom
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Myoung Keun Lee
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jiarui Li
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium
| | - Jaaved Mohammed
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Stephen Richmond
- Applied Clinical Research and Public Health, School of Dentistry, Cardiff University, Cardiff, UK
| | - Ellen E Quillen
- Department of Internal Medicine, Section of Molecular Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
- Center for Precision Medicine, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Heather L Norton
- Department of Anthropology, University of Cincinnati, Cincinnati, OH, USA
| | - Eleanor Feingold
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Tomek Swigut
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
| | - Mary L Marazita
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Hilde Peeters
- Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Greet Hens
- Department of Neurosciences, Experimental Oto-Rhino-Laryngology, KU Leuven, Leuven, Belgium
| | - John R Shaffer
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
| | - Joanna Wysocka
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Susan Walsh
- Department of Biology, Indiana University Purdue University Indianapolis, Indianapolis, IN, USA
| | - Seth M Weinberg
- Department of Oral Biology, Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Human Genetics, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Anthropology, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mark D Shriver
- Department of Anthropology, Pennsylvania State University, State College, PA, USA
| | - Peter Claes
- Department of Electrical Engineering, ESAT/PSI, KU Leuven, Leuven, Belgium.
- Medical Imaging Research Center, UZ Leuven, Leuven, Belgium.
- Department of Human Genetics, KU Leuven, Leuven, Belgium.
- Murdoch Children's Research Institute, Melbourne, Victoria, Australia.
| |
Collapse
|
14
|
Katz DC, Aponte JD, Liu W, Green RM, Mayeux JM, Pollard KM, Pomp D, Munger SC, Murray SA, Roseman CC, Percival CJ, Cheverud J, Marcucio RS, Hallgrímsson B. Facial shape and allometry quantitative trait locus intervals in the Diversity Outbred mouse are enriched for known skeletal and facial development genes. PLoS One 2020; 15:e0233377. [PMID: 32502155 PMCID: PMC7274373 DOI: 10.1371/journal.pone.0233377] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The biology of how faces are built and come to differ from one another is complex. Discovering normal variants that contribute to differences in facial morphology is one key to untangling this complexity, with important implications for medicine and evolutionary biology. This study maps quantitative trait loci (QTL) for skeletal facial shape using Diversity Outbred (DO) mice. The DO is a randomly outcrossed population with high heterozygosity that captures the allelic diversity of eight inbred mouse lines from three subspecies. The study uses a sample of 1147 DO animals (the largest sample yet employed for a shape QTL study in mouse), each characterized by 22 three-dimensional landmarks, 56,885 autosomal and X-chromosome markers, and sex and age classifiers. We identified 37 facial shape QTL across 20 shape principal components (PCs) using a mixed effects regression that accounts for kinship among observations. The QTL include some previously identified intervals as well as new regions that expand the list of potential targets for future experimental study. Three QTL characterized shape associations with size (allometry). Median support interval size was 3.5 Mb. Narrowing additional analysis to QTL for the five largest magnitude shape PCs, we found significant overrepresentation of genes with known roles in growth, skeletal and facial development, and sensory organ development. For most intervals, one or more of these genes lies within 0.25 Mb of the QTL's peak. QTL effect sizes were small, with none explaining more than 0.5% of facial shape variation. Thus, our results are consistent with a model of facial diversity that is influenced by key genes in skeletal and facial development and, simultaneously, is highly polygenic.
Collapse
Affiliation(s)
- David C. Katz
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - J. David Aponte
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Wei Liu
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Rebecca M. Green
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| | - Jessica M. Mayeux
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - K. Michael Pollard
- Department of Molecular Medicine, The Scripps Research Institute, La Jolla, CA, United States of America
| | - Daniel Pomp
- Department of Genetics, University of North Carolina School of Medicine, Chapel Hill, NC, United States of America
| | - Steven C. Munger
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | - Charles C. Roseman
- Department of Evolution, Ecology, and Behavior, University of Illinois Urbana Champaign, Urbana, IL, United States of America
| | - Christopher J. Percival
- Department of Anthropology, Stony Brook University, Stony Brook, NY, United States of America
| | - James Cheverud
- Department of Biology, Loyola University Chicago, Chicago, IL, United States of America
| | - Ralph S. Marcucio
- Department of Orthopaedic Surgery, School of Medicine, University of California San Francisco, San Francisco, CA, United States of America
| | - Benedikt Hallgrímsson
- Department of Cell Biology & Anatomy, Alberta Children’s Hospital Research Institute and McCaig Bone and Joint Institute, Cumming School of Medicine, University of Calgary, AB, Canada
| |
Collapse
|