1
|
Hosseini S, Diegelmann J, Folwaczny M, Sabbagh H, Otto S, Kakoschke TK, Wichelhaus A, Baumert U, Janjic Rankovic M. Investigation of Oxidative-Stress Impact on Human Osteoblasts During Orthodontic Tooth Movement Using an In Vitro Tension Model. Int J Mol Sci 2024; 25:13525. [PMID: 39769290 PMCID: PMC11677893 DOI: 10.3390/ijms252413525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 01/11/2025] Open
Abstract
In recent years, there has been a growing number of adult orthodontic patients with periodontal disease. The progression of periodontal disease is well-linked to oxidative stress (OS). Nevertheless, the impact of OS on orthodontic tooth movement (OTM) is not fully clarified. Therefore, we applied an OS in vitro-model utilizing H2O2 to study its effect on tension-induced mechanotransduction in human osteoblasts (hOBs). Experimental parameters were established based on cell viability and proliferation. Apoptosis detection was based on caspase-3/7 activity. Gene expression related to bone-remodeling (RUNX2, P2RX7, TNFRSF11B/OPG), inflammation (CXCL8/IL8, IL6, PTRGS2/COX2), autophagy (MAP1LC3A/LC3, BECN1), and apoptosis (CASP3, CASP8) was analyzed by RT-qPCR. IL6 and PGE2 secretion were determined by ELISA. Tension increased the expression of PTRGS2/COX2 in all groups, especially after stimulation with higher H2O2 concentration. This corresponds also to the measured PGE2 concentrations. CXCL8/IL8 was upregulated in all groups. Cells subjected to tension alone showed a general upregulation of osteogenic differentiation-related genes; however, pre-stimulation with OS did not induce significant changes especially towards downregulation. MAP1LC3A/LC3, BECN1 and CASP8 were generally upregulated in cells without OS pre-stimulation. Our results suggest that OS might have considerable impacts on cellular behavior during OTM.
Collapse
Affiliation(s)
- Samira Hosseini
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (H.S.); (A.W.); (U.B.)
| | - Julia Diegelmann
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (J.D.); (M.F.)
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (J.D.); (M.F.)
| | - Hisham Sabbagh
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (H.S.); (A.W.); (U.B.)
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (S.O.); (T.K.K.)
| | - Tamara Katharina Kakoschke
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, LMU University Hospital, LMU Munich, 80337 Munich, Germany; (S.O.); (T.K.K.)
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (H.S.); (A.W.); (U.B.)
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (H.S.); (A.W.); (U.B.)
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (H.S.); (A.W.); (U.B.)
| |
Collapse
|
2
|
Hosseini S, Diegelmann J, Folwaczny M, Frasheri I, Wichelhaus A, Sabbagh H, Seidel C, Baumert U, Janjic Rankovic M. Investigation of Impact of Oxidative Stress on Human Periodontal Ligament Cells Exposed to Static Compression. Int J Mol Sci 2024; 25:13513. [PMID: 39769281 PMCID: PMC11678643 DOI: 10.3390/ijms252413513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/04/2025] Open
Abstract
Oxidative stress (OS) is a common feature of many inflammatory diseases, oral pathologies, and aging processes. The impact of OS on periodontal ligament cells (PDLCs) in relation to oral pathologies, including periodontal diseases, has been investigated in different studies. However, its impact on orthodontic tooth movement (OTM) remains poorly understood. This study used an in vitro model with human PDLCs previously exposed to H2O2 to investigate the effects of OS under a static compressive force which simulated the conditions of OTM. Human PDLCs were treated with varying concentrations of H2O2 to identify sub-lethal doses that affected viability minimally. To mimic compromised conditions resembling OTM under OS, the cells were pretreated with the selected H2O2 concentrations for 24 h. Using an in vitro loading model, a static compressive force (2 g/cm2) was applied for an additional 24 h. The cell viability, proliferation, and cytotoxicity were evaluated using live/dead and resazurin assays. Apoptosis induction was assessed based on caspase-3/7 activity. The gene expression related to bone remodeling (RUNX2, TNFRSF11B/OPG, BGLAP), inflammation (IL6, CXCL8/IL8, PTGS2/COX2), apoptosis (CASP3, CASP8), and autophagy (MAP1LC3A/LC3, BECN1) was analyzed using RT-qPCR. This study suggests an altering effect of previous OS exposure on static-compression-related mechanosensing. Further research is needed to fully elucidate these mechanisms.
Collapse
Affiliation(s)
- Samira Hosseini
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (A.W.); (C.S.); (U.B.)
| | - Julia Diegelmann
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (J.D.); (M.F.); (I.F.)
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (J.D.); (M.F.); (I.F.)
| | - Iris Frasheri
- Department of Conservative Dentistry and Periodontology, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (J.D.); (M.F.); (I.F.)
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (A.W.); (C.S.); (U.B.)
| | - Hisham Sabbagh
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (A.W.); (C.S.); (U.B.)
| | - Corrina Seidel
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (A.W.); (C.S.); (U.B.)
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (A.W.); (C.S.); (U.B.)
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, LMU University Hospital, LMU Munich, 80336 Munich, Germany; (S.H.); (A.W.); (C.S.); (U.B.)
| |
Collapse
|
3
|
Cumplido-Laso G, Benitez DA, Mulero-Navarro S, Carvajal-Gonzalez JM. Transcriptional Regulation of Airway Epithelial Cell Differentiation: Insights into the Notch Pathway and Beyond. Int J Mol Sci 2023; 24:14789. [PMID: 37834236 PMCID: PMC10573127 DOI: 10.3390/ijms241914789] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/15/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
The airway epithelium is a critical component of the respiratory system, serving as a barrier against inhaled pathogens and toxins. It is composed of various cell types, each with specific functions essential to proper airway function. Chronic respiratory diseases can disrupt the cellular composition of the airway epithelium, leading to a decrease in multiciliated cells (MCCs) and an increase in secretory cells (SCs). Basal cells (BCs) have been identified as the primary stem cells in the airway epithelium, capable of self-renewal and differentiation into MCCs and SCs. This review emphasizes the role of transcription factors in the differentiation process from BCs to MCCs and SCs. Recent advancements in single-cell RNA sequencing (scRNAseq) techniques have provided insights into the cellular composition of the airway epithelium, revealing specialized and rare cell types, including neuroendocrine cells, tuft cells, and ionocytes. Understanding the cellular composition and differentiation processes within the airway epithelium is crucial for developing targeted therapies for respiratory diseases. Additionally, the maintenance of BC populations and the involvement of Notch signaling in BC self-renewal and differentiation are discussed. Further research in these areas could provide valuable insights into the mechanisms underlying airway epithelial homeostasis and disease pathogenesis.
Collapse
Affiliation(s)
- Guadalupe Cumplido-Laso
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| | | | | | - Jose Maria Carvajal-Gonzalez
- Departamento de Bioquímica, Biología Molecular y Genética, Facultad de Ciencias, Universidad de Extremadura, 06071 Badajoz, Spain; (D.A.B.); (S.M.-N.)
| |
Collapse
|
4
|
Yong J, Groeger S, Ruiz-Heiland G, Ruf S. Selection and validation of reference gene for RT-qPCR studies in co-culture system of mouse cementoblasts and periodontal ligament cells. BMC Res Notes 2022; 15:57. [PMID: 35168676 PMCID: PMC8845258 DOI: 10.1186/s13104-022-05948-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 02/02/2022] [Indexed: 01/31/2023] Open
Abstract
Abstract
Objective
RT-qPCR is a reliable method for gene expression analysis, but the accuracy of the quantitative data depends on the appropriate selection of reference genes. A Co-culture system consisting of periodontal ligament cells (SV-PDL) and cementoblasts (OCCM-30) to investigate the crosstalk between these two cell lines under orthodontic condition is essential for experimental orthodontic setups in-vitro. Therefore, we aimed to identify a set of reliable reference genes suitable for RT-qPCR studies for prospective co-culture systems of OCCM-30 and SV-PDL cells.
Results
The results demonstrated that PPIB, GUSB and RPLP0 turned out to be the three most stable reference genes for OCCM-30 in the co-culture system, while PPIB, POLR2A and RPLP0 have the three highest rankings for SV-PDL cells in the co-culture system. The most stable gene combination were PPIB and POLR2A in the co-culture system. In conclusion, PPIB is overall the most stably expressed reference gene for OCCM-30 or SV-PDL cell line in the system. The combination of PPIB and POLR2A as reference genes are indicated to be the potential and mandatory to obtain accurate quantification results for normalizing RT-qPCR data in genes of interest expression in these two cell lines co-culture systems.
Collapse
|
5
|
Sun C, Janjic Rankovic M, Folwaczny M, Stocker T, Otto S, Wichelhaus A, Baumert U. Effect of Different Parameters of In Vitro Static Tensile Strain on Human Periodontal Ligament Cells Simulating the Tension Side of Orthodontic Tooth Movement. Int J Mol Sci 2022; 23:ijms23031525. [PMID: 35163446 PMCID: PMC8835937 DOI: 10.3390/ijms23031525] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/21/2022] [Accepted: 01/26/2022] [Indexed: 02/01/2023] Open
Abstract
This study aimed to investigate the effects of different magnitudes and durations of static tensile strain on human periodontal ligament cells (hPDLCs), focusing on osteogenesis, mechanosensing and inflammation. Static tensile strain magnitudes of 0%, 3%, 6%, 10%, 15% and 20% were applied to hPDLCs for 1, 2 and 3 days. Cell viability was confirmed via live/dead cell staining. Reference genes were tested by reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR) and assessed. The expressions of TNFRSF11B, ALPL, RUNX2, BGLAP, SP7, FOS, IL6, PTGS2, TNF, IL1B, IL8, IL10 and PGE2 were analyzed by RT-qPCR and/or enzyme-linked immunosorbent assay (ELISA). ALPL and RUNX2 both peaked after 1 day, reaching their maximum at 3%, whereas BGLAP peaked after 3 days with its maximum at 10%. SP7 peaked after 1 day at 6%, 10% and 15%. FOS peaked after 3 days with its maximum at 3%, 6% and 15%. The expressions of IL6 and PTGS2 both peaked after 1 day, with their minimum at 10%. PGE2 peaked after 1 day (maximum at 20%). The ELISA of IL6 peaked after 3 days, with the minimum at 10%. In summary, the lower magnitudes promoted osteogenesis and caused less inflammation, while the higher magnitudes inhibited osteogenesis and enhanced inflammation. Among all magnitudes, 10% generally caused a lower level of inflammation with a higher level of osteogenesis.
Collapse
Affiliation(s)
- Changyun Sun
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Thomas Stocker
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Sven Otto
- Department of Oral and Maxillofacial Surgery and Facial Plastic Surgery, University Hospital, LMU Munich, 80336 Munich, Germany;
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, 80336 Munich, Germany; (C.S.); (M.J.R.); (T.S.); (A.W.)
- Correspondence:
| |
Collapse
|
6
|
Sun C, Janjic Rankovic M, Folwaczny M, Otto S, Wichelhaus A, Baumert U. Effect of Tension on Human Periodontal Ligament Cells: Systematic Review and Network Analysis. Front Bioeng Biotechnol 2021; 9:695053. [PMID: 34513810 PMCID: PMC8429507 DOI: 10.3389/fbioe.2021.695053] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 08/10/2021] [Indexed: 01/09/2023] Open
Abstract
Orthodontic tooth movement is based on the remodeling of tooth-surrounding tissues in response to mechanical stimuli. During this process, human periodontal ligament cells (hPDLCs) play a central role in mechanosensing and mechanotransduction. Various in vitro models have been introduced to investigate the effect of tension on hPDLCs. They provide a valuable body of knowledge on how tension influences relevant genes, proteins, and metabolites. However, no systematic review summarizing these findings has been conducted so far. Aim of this systematic review was to identify all related in vitro studies reporting tension application on hPDLCs and summarize their findings regarding force parameters, including magnitude, frequency and duration. Expression data of genes, proteins, and metabolites was extracted and summarized. Studies' risk of bias was assessed using tailored risk of bias tools. Signaling pathways were identified by protein-protein interaction (PPI) networks using STRING and GeneAnalytics. According to our results, Flexcell Strain Unit® and other silicone-plate or elastic membrane-based apparatuses were mainly adopted. Frequencies of 0.1 and 0.5 Hz were predominantly applied for dynamic equibiaxial and uniaxial tension, respectively. Magnitudes of 10 and 12% were mostly employed for dynamic tension and 2.5% for static tension. The 10 most commonly investigated genes, proteins and metabolites identified, were mainly involved in osteogenesis, osteoclastogenesis or inflammation. Gene-set enrichment analysis and PPI networks gave deeper insight into the involved signaling pathways. This review represents a brief summary of the massive body of knowledge in this field, and will also provide suggestions for future researches on this topic.
Collapse
Affiliation(s)
- Changyun Sun
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Matthias Folwaczny
- Department of Conservative Dentistry and Periodontology, University Hospital, LMU Munich, Munich, Germany
| | - Sven Otto
- Department of Oral and Maxillofacial Plastic Surgery, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Munich, Germany
| |
Collapse
|
7
|
PELP1 promotes the expression of RUNX2 via the ERK pathway during the osteogenic differentiation of human periodontal ligament stem cells. Arch Oral Biol 2021; 124:105078. [PMID: 33607589 DOI: 10.1016/j.archoralbio.2021.105078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 01/25/2021] [Accepted: 02/04/2021] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study was to determine the physiological function and mechanism of proline-, glutamic acid-, and leucine-rich protein 1 (PELP1) in the osteogenic differentiation of human periodontal ligament stem cells (hPDLSCs) at the molecular level in vitro. DESIGN During the osteogenic differentiation of hPDLSCs, the change of PELP1 and the osteogenic commitment markers runt-related transcription factor 2(RUNX2), alkaline phosphatase (ALP) and osteocalcin (OCN) were monitored by quantitative real-time PCR (qRT-PCR) and western blots. To elucidate how PELP1 regulates RUNX2, the expression of RUNX2, the phosphorylation of extracellular regulated protein kinases (ERK) and subcellular location of PELP1 were detected under conditions that PELP1 was either knockdown by specific siRNA or overexpressed. A pharmacological inhibitor of ERK, U0126 was used while PELP1 was overexpressed, and the expression of RUNX2 was monitored by qRT-PCR. RESULTS PELP1 was upregulated during the osteogenic differentiation of hPDLSCs. Knockdown of PELP1 suppressed the expression of RUNX2, whereas overexpression of PELP1 increased RUNX2 expression. Moreover, PELP1 knockdown resulted in reduced ERK phosphorylation and RUNX2 expression, and PELP1 overexpression induced RUNX2 expression was inhibited by U0126 in the hPDLSCs. CONCLUSIONS PELP1 regulates the expression of RUNX2 during the osteogenic differentiation of hPDLSCs and that the ERK pathway is involved in this process.
Collapse
|
8
|
Kim MKM, Burns MJ, Serjeant ME, Séguin CA. The mechano-response of murine annulus fibrosus cells to cyclic tensile strain is frequency dependent. JOR Spine 2020; 3:e21114. [PMID: 33392464 PMCID: PMC7770207 DOI: 10.1002/jsp2.1114] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/20/2020] [Accepted: 06/29/2020] [Indexed: 12/11/2022] Open
Abstract
The intervertebral disk (IVD) is a composite structure essential for spine stabilization, load bearing, and movement. Biomechanical factors are important contributors to the IVD microenvironment regulating joint homeostasis; however, the cell type-specific effectors of mechanotransduction in the IVD are not fully understood. The current study aimed to determine the effects of cyclic tensile strain (CTS) on annulus fibrosus (AF) cells and identify mechano-sensitive pathways. Using a cell-type specific reporter mouse to differentiation NP and AF cells from the murine IVD, we characterized AF cells in dynamic culture exposed to CTS (6% strain) at specific frequencies (0.1 Hz, 1.0 Hz, or 2.0 Hz). We demonstrate that our culture model maintains the phenotype of primary AF cells and that the bioreactor system delivers uniform biaxial strain across the cell culture surface. We show that exposure of AF cells to CTS induces cytoskeleton reorganization resulting in stress fiber formation, with acute exposure to CTS at 2.0 Hz inducing a significant yet transient increase ERK1/2 pathway activation. Using SYBPR-based qPCR to assess the expression of extracellular matrix (ECM) genes, ECM-remodeling genes, candidate mechano-sensitive genes, inflammatory cytokines and cell surface receptors, we demonstrated that exposure of AF cells to CTS at 0.1 Hz increased Acan, Prg4, Col1a1 and Mmp3 expression. AF cells exposed to CTS at 1.0 Hz showed a significant increase in the expression of Acan, Myc, and Tnfα. Exposure of AF cells to CTS at 2.0 Hz induced a significant increase in Acan, Prg4, Cox2, Myc, Fos, and Tnfα expression. Among the cell surface receptors assessed, AF cells exposed to CTS at 2.0 Hz showed a significant increase in Itgβ1, Itgα5, and Trpv4 expression. Our findings demonstrate that the response of AF cells to CTS is frequency dependent and suggest that mechanical loading may directly contribute to matrix remodeling and the onset of local tissue inflammation in the murine IVD.
Collapse
Affiliation(s)
- Min Kyu M. Kim
- Department of Physiology and PharmacologySchulich School of Medicine & Dentistry, The University of Western OntarioLondonOntarioCanada
- Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Marissa J. Burns
- Department of Physiology and PharmacologySchulich School of Medicine & Dentistry, The University of Western OntarioLondonOntarioCanada
| | - Meaghan E. Serjeant
- Department of Physiology and PharmacologySchulich School of Medicine & Dentistry, The University of Western OntarioLondonOntarioCanada
- Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| | - Cheryle A. Séguin
- Department of Physiology and PharmacologySchulich School of Medicine & Dentistry, The University of Western OntarioLondonOntarioCanada
- Bone and Joint Institute, The University of Western OntarioLondonOntarioCanada
| |
Collapse
|
9
|
Zhang G, Li H, Zhao W, Li M, Tian L, Ju W, Li X. miR-205 regulates bone turnover in elderly female patients with type 2 diabetes mellitus through targeted inhibition of Runx2. Exp Ther Med 2020; 20:1557-1565. [PMID: 32742387 PMCID: PMC7388399 DOI: 10.3892/etm.2020.8867] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/30/2020] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to explore the expression of microribonucleic acid (microRNA) (miR)-205 in bone tissues and serum of elderly female patients with type 2 diabetes mellitus (T2DM) complicated with osteoporosis (OP), and to investigate the effect of miR-205 on osteogenesis/adipogenesis of bone marrow mesenchymal stem cells (BMSCs) and its mechanism in elderly female mice with T2DM + OP. The bone tissues and serum of 24 female patients with T2DM + OP at the Third Affiliated Hospital of Qiqihar Medical University were collected as the research group, while those of 24 healthy people were collected as the control group. The expression level of miR-205 was detected in both groups via reverse transcription-polymerase chain reaction (RT-PCR). Then the elderly female mouse model of T2DM + OP was established as a model group, while normal mice of the same age were used as the control group. The mice in the model and control groups were transfected with miR-205 mimic, negative control (NC)-mimic, miR-205-inhibitor and NC-inhibitor. Alizarin red S (ARS) staining and RT-PCR were conducted after osteogenic induction for 21 days, and oil red O (ORO) staining and RT-PCR were performed after adipogenic induction for 24 days. The overexpression of miR-205 inhibited osteogenic differentiation and promoted adipogenic differentiation of BMSCs in elderly female mice with T2DM + OP, while knockdown of miR-205 promoted osteogenic differentiation and inhibited adipogenic differentiation of BMSCs in elderly female mice with T2DM + OP. In addition, miR-205 was able to directly suppress the expression of its target gene RUNX family transcription factor 2 (Runx2). The expression level of miR-205 was obviously increased in female patients with T2DM + OP and the elderly female mouse model of T2DM + OP. In addition, miR-205 was able to regulate the osteogenic/adipogenic differentiation of BMSCs, and miR-205/Runx2 may be a new method and target for the treatment of female patients with T2DM + OP.
Collapse
Affiliation(s)
- Guangfeng Zhang
- Department of MRI, The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Huafeng Li
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Wenjie Zhao
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Min Li
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Linlin Tian
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Wenwen Ju
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| | - Xiaobing Li
- Department of Endocrinology (I), The Third Affiliated Hospital of Qiqihar Medical University, Qiqihar, Heilongjiang 161099, P.R. China
| |
Collapse
|
10
|
Janjic Rankovic M, Docheva D, Wichelhaus A, Baumert U. Effect of static compressive force on in vitro cultured PDL fibroblasts: monitoring of viability and gene expression over 6 days. Clin Oral Investig 2019; 24:2497-2511. [PMID: 31728735 DOI: 10.1007/s00784-019-03113-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Accepted: 10/07/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The aim was to investigate the impact of static compressive force (CF) application on human PDL-derived fibroblasts (HPDF) in vitro for up to 6 days on the expression of specific genes and to monitor cell growth and cell viability. MATERIALS AND METHODS CF of 2 g/cm2 was applied on HPDFs for 1-6 days. On each day, gene expression (cFOS, HB-GAM, COX2, IL6, TNFα, RUNX2, and P2RX2) and secretion (TNFα, PGE2) were determined by RT-qPCR and ELISA, respectively. Cell growth and cell viability were monitored daily. RESULTS In comparison with controls, significant upregulation of cFOS in compressed HPDFs was observed. HB-GAM showed no changes in expression, except on day 5 (P < 0.001). IL6 expression was significantly upregulated from day 2-5, reaching the maximum on day 3 (P < 0.001). TNFα expression was upregulated on all but day 2. COX2 showed upregulation, reaching the plateau from day 3 (P < 0.001) until day 4 (P < 0.001), and returning to the initial state till day 6. P2RX7 was downregulated on days 2 and 4 to 6 (P < 0.001). RUNX2 was downregulated on days 2 and 5 (both P < 0.001). Cells in both groups were proliferating, and no negative effect on cell viability was observed. CONCLUSION Results suggest high molecular activity up to 6 days, therefore introducing further need for in vitro studies with a longer duration that would explain other genes and metabolites involved in orthodontic tooth movement (OTM). CLINICAL RELEVANCE Extension of an established in vitro force application system for prolonged force application (6 days) simulating the initial phase of OTM.
Collapse
Affiliation(s)
- Mila Janjic Rankovic
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| | - Denitsa Docheva
- Experimental Trauma Surgery, Department of Trauma Surgery, University Regensburg Medical Centre, Regensburg, Germany
| | - Andrea Wichelhaus
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany
| | - Uwe Baumert
- Department of Orthodontics and Dentofacial Orthopedics, University Hospital, LMU Munich, Goethestrasse 70, 80336, Munich, Germany.
| |
Collapse
|
11
|
Firth FA, Farrar R, Farella M. Investigating orthodontic tooth movement: challenges and future directions. J R Soc N Z 2019. [DOI: 10.1080/03036758.2019.1684957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Fiona A. Firth
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Rachel Farrar
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| | - Mauro Farella
- Sir John Walsh Research Institute, University of Otago, Dunedin, New Zealand
| |
Collapse
|