1
|
Väisänen M, Siukosaari P, Tjäderhane L. How epigenetics and miRNA affect gene expression in dental pulp inflammation: A narrative review. Int Endod J 2025; 58:833-847. [PMID: 40016884 DOI: 10.1111/iej.14211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/10/2025] [Accepted: 02/11/2025] [Indexed: 03/01/2025]
Abstract
BACKGROUND Pulpitis, an inflammatory condition of the dental pulp, typically arises due to caries. It can remain asymptomatic for extended periods, complicating its diagnosis. The inflammatory response induced by bacterial invasion encompasses both cell-mediated and humoural immunity, accompanied by neural and vascular changes. The primary aim of inflammation is to eradicate invading pathogens from the pulp. However, failure to eliminate pathogens may result in necrosis of the pulp. Before direct bacterial contact with cells occurs, the pulp initiates protective responses like the formation of tertiary dentine. The interaction between bacterial surface proteins and specific receptors on pulp cells, primarily odontoblasts and dendritic cells, activates intracellular signalling pathways. These cascades, mediated by transcription factors, regulate gene expression and subsequent protein synthesis, thereby modulating the inflammatory response. In addition to proinflammatory and anti-inflammatory mediators, microRNAs and epigenetic modifications play a key role in gene expression in dental pulp. Epigenetic changes including DNA methylation and histone modifications can occur within the pulp. OBJECTIVES Dental pulp inflammation represents a highly intricate network of signalling pathways, messenger molecules and cellular interactions. The ongoing research continuously expands our understanding of these processes. The objective of this review is to investigate mechanisms of dental pulp inflammation, concentrating on the regulation of gene expression. This consists of transcription factors, microRNAs, epigenetic modifications and mitochondrial DNA, among others. This review aims to highlight recent findings about biomolecular and epigenetical mechanisms of pulpitis as well as their role in gene expression. CONCLUSIONS Pulp inflammation is a complex series of events happening on a molecular and cellular level. Even though the pulp tissue is hardly examined in vivo, laboratory studies offer great new insights and potential for our understanding of its inflammatory mechanisms. Recognition of bacterial components by pulp cells is the initiator of overlapping signalling pathways that will eventually lead to gene activation or repression. Specific genes might be activated, resulting in the production of messenger molecules like cytokines and chemokines. Trending topics of medicine like microRNA and epigenetics are also discussed in the context of dentistry. This knowledge could be used to develop new therapeutics in endodontics.
Collapse
Affiliation(s)
- Milo Väisänen
- Faculty of Medicine (Dentistry), University of Helsinki, Helsinki, Finland
| | - Päivi Siukosaari
- Faculty of Medicine (Dentistry), University of Helsinki, Helsinki, Finland
| | - Leo Tjäderhane
- Faculty of Medicine (Dentistry), University of Helsinki, Helsinki, Finland
| |
Collapse
|
2
|
Zhou W, Huang W, You H, Zhang M, Ma Y, Liu L, Lin M, He S, Huang Y. EZH2 knockout in mice activates STAT3 signalling via STAT3 methylation and modulates ferroptosis in pulpitis-affected dental pulp vascular endothelial cells: A laboratory investigation. Int Endod J 2025. [PMID: 40164972 DOI: 10.1111/iej.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 02/05/2025] [Accepted: 03/21/2025] [Indexed: 04/02/2025]
Abstract
AIM Recent findings suggest that mitigating ferroptosis could serve as an effective strategy for treating inflammation. This study aimed to investigate the role that the enhancer of zeste homologue 2 (EZH2) mediated the signal transducer and activator of transcription 3 (stat3) methylation plays in the modulation of ferroptosis in pulpitis. The study results offer potential advancements in the therapeutic approaches for pulpitis and provide new insights and strategies for managing this condition. METHODOLOGY Bioinformatics analysis combined with methylation capture sequencing of EZH2fl/flCre+/- pulp tissue was used to explore the association between pulpitis and ferroptosis. In this study, we used an EZH2 knockout model prepared through lentiviral transduction and an LPS-induced inflammatory model of endometrial mesenchymal stromal cells to confirm the role that the EZH2/STAT3 axis plays in ferroptosis. RESULTS Bioinformatics analysis identified a link between pulpitis and DNA methylation. Methylation sequencing further revealed the association of methylation with ferroptosis and the regulation of STAT3 methylation by EZH2. In vitro, lipopolysaccharide (LPS) stimulation induced ferroptosis, whereas EZH2 disruption suppressed STAT3 expression but increased Glutathione Peroxidase 4 (GPX4) expression, leading to the escalation of oxidative stress and exacerbation of ferroptosis. This illustrates the complex interactions between methylation, ferroptosis and oral inflammation, highlighting potential therapeutic targets. CONCLUSIONS Overall, pulpitis plays a crucial role in EZH2-mediated STAT3 methylation and activates ferroptosis by regulating GPX4 expression. This study provides new insights and strategies for treatment and advances our understanding of the pathogenesis of pulpitis.
Collapse
Affiliation(s)
- Weilin Zhou
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Weili Huang
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Hongjing You
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Minyi Zhang
- School of Pharmaceutical, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yue Ma
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Lingjie Liu
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Mengxuan Lin
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Shuqi He
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| | - Yi Huang
- Hospital of Stomatology, the First Affiliated Hospital, Clinical Research Platform for Interdiscipline, School of Stomatology, Jinan University, Guangzhou, China
| |
Collapse
|
3
|
Li Y, Guo X, Yao H, Zhang Z, Zhao H. Epigenetic control of dental stem cells: progress and prospects in multidirectional differentiation. Epigenetics Chromatin 2024; 17:37. [PMID: 39623487 PMCID: PMC11613947 DOI: 10.1186/s13072-024-00563-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024] Open
Abstract
Dental stem cells, with their exceptional proliferative capacity and multidirectional differentiation potential, hold significant promise for dental and oral tissue regeneration. Epigenetic inheritance, which involves stable and heritable changes in gene expression and function without alterations to the DNA sequence, plays a critical role in numerous biological processes. Environmental factors are particularly influential in epigenetic inheritance, as variations in exposure can lead to changes in epigenetic modifications that subsequently impact gene expression. Epigenetic mechanisms are widely involved in processes such as bone homeostasis, embryogenesis, stem cell fate determination, and disease development. Recently, the epigenetic regulation of dental stem cells has attracted considerable research attention. This paper reviews studies focused on the epigenetic mechanisms governing the multidirectional differentiation of dental stem cells.
Collapse
Affiliation(s)
- Yan Li
- Hospital of Stomatology, Jilin University, Changchun, 130021, China
| | - Xinwei Guo
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Hua Yao
- Department of Stomatology, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Zhimin Zhang
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| | - Hongyan Zhao
- Hospital of Stomatology, Jilin University, Changchun, 130021, China.
| |
Collapse
|
4
|
Zhao Z, Attanasio C, Zong C, Pedano MS, Cadenas de Llano-Pérula M. How does orthodontic tooth movement influence the dental pulp? RNA-sequencing on human premolars. Int Endod J 2024; 57:1783-1801. [PMID: 39086033 DOI: 10.1111/iej.14131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/11/2024] [Accepted: 07/18/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVES The objective of this study is to analyse the gene expression profile of the dental pulp (DP) of human premolars subjected to 7 and 28 days of orthodontic force (OF) in vivo by using RNA sequencing. The maxillary and mandibular DP were additionally compared. METHODS Healthy patients requiring orthodontic premolar extractions were randomly assigned to one of the three groups: control (CG) where no OF was applied, 7 and 28 days, where premolars were extracted either 7 or 28 days after the application of a 50-100 g OF. Total RNA was extracted from the DP and analysed via RNA-seq. Differentially expressed genes (DEGs) were identified using a false discovery rate and fold change threshold of <0.05 and ≥1.5, respectively. Functional analysis was performed. RESULTS After 7 days of OF, pulp reaction indicates immune response, hypoxia, DNA damage and epigenetic regulation. After 28 days, cell adhesion, migration, organization and tissue repair are evident. The maxillary and mandibular pulp tissues react differently to OF. The maxilla exhibits minimal alterations, mostly related to immune response at 7 days and tissue repair at 28 days, whereas the mandible shows mostly DNA damage and epigenetic regulation at 7 days and return to the original state at 28 days. CONCLUSIONS This study demonstrates that the early reaction of the DP to OF is marked by immune response, hypoxia and DNA damage. In contrast, after 28 days, cell adhesion, migration, organization, tissue repair and dentine formation are observed. Maxillary and mandibular premolars react differently to OF: although the maxilla exhibits minimal alterations at both time points, the mandible mostly shows DNA damage, epigenetic regulation, and immune response at 7 days. These disparities could stem from different blood supplies or the lower maxillary bone density, potentially triggering faster biological changes. Our findings provide insights into the gene regulatory networks modulating DP response to OF.
Collapse
Affiliation(s)
- Zuodong Zhao
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Catia Attanasio
- Laboratory of Gene Regulation and Disease, Department of Human Genetics, KU Leuven, Leuven, Belgium
| | - Chen Zong
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - Mariano Simón Pedano
- Department of Oral Health Sciences-Endodontics and BIOMAT - Biomaterials Research Group, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| | - María Cadenas de Llano-Pérula
- Department of Oral Health Sciences-Orthodontics, KU Leuven and Dentistry, University Hospitals Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Wang S, Kawashima N, Han P, Sunada-Nara K, Yu Z, Tazawa K, Fujii M, Kieu TQ, Okiji T. MicroRNA-27a-5p Downregulates Expression of Proinflammatory Cytokines in Lipopolysaccharide-Stimulated Human Dental Pulp Cells via the NF-κB Signaling Pathway. Int J Mol Sci 2024; 25:9694. [PMID: 39273640 PMCID: PMC11395329 DOI: 10.3390/ijms25179694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/05/2024] [Accepted: 09/05/2024] [Indexed: 09/15/2024] Open
Abstract
MicroRNA-27a-5p (miR-27a-5p) was significantly upregulated in dental pulp inflammation, yet its underlying mechanisms remain unclear. This study investigated the effect of miR-27a-5p on the expression of proinflammatory cytokines in human dental pulp cells (hDPCs) stimulated by lipopolysaccharide (LPS). LPS-stimulated hDPCs showed concurrent increases in the expression of miR-27a-5p and proinflammatory cytokines (IL-6, IL-8, and MCP1), and the increased expression was suppressed by NF-κB inhibitor BAY 11-0785. Transfection of the miR-27a-5p mimic downregulated the expression of proinflammatory cytokines, NF-κB activity, and the expression of NF-κB signaling activators (TAB1, IRAK4, RELA, and FSTL1) in LPS-stimulated hDPCs. Luciferase reporter assays revealed that miR-27a-5p bound directly to the 3'-UTR of TAB1. siTAB1 downregulated NF-κB activity and proinflammatory cytokine expression. Downregulation of proinflammatory cytokine expression, NF-κB activity, and NF-κB signaling activator expression (TAB1, IRAK4, and RELA) was also found in LPS-stimulated rat incisor pulp tissue explants following transfection with the miR-27a-5p mimic ex vivo. MiR-27a-5p, whose expression was induced by NF-κB signaling, negatively regulated the synthesis of proinflammatory cytokines via targeting NF-κB signaling. In particular, TAB1, a potent NF-κB activator, was targeted by miR-27a-5p. These results provide insights into the negative regulatory effects of miR-27a-5p, particularly those targeting the TAB1-NF-κB signaling pathway, on pulp inflammation.
Collapse
Affiliation(s)
- Shihan Wang
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Nobuyuki Kawashima
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Peifeng Han
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Keisuke Sunada-Nara
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Ziniu Yu
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Kento Tazawa
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Mayuko Fujii
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| | - Thoai Quoc Kieu
- Department of Pediatric Dentistry, Faculty of Odonto-Stomatology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 17000, Vietnam
| | - Takashi Okiji
- Department of Pulp Biology and Endodontics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University (TMDU), Tokyo 113-8549, Japan
| |
Collapse
|
6
|
Liu M, Jia W, Bai L, Lin Q. Dysregulation of lncRNA TFAP2A-AS1 is involved in the pathogenesis of pulpitis by the regulation of microRNA-32-5p. Immun Inflamm Dis 2024; 12:e1312. [PMID: 39254474 PMCID: PMC11386341 DOI: 10.1002/iid3.1312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 04/17/2024] [Accepted: 05/29/2024] [Indexed: 09/11/2024] Open
Abstract
OBJECTIVE This study was designed to evaluate TFAP2A-AS1 expression in the dental pulp of teeth with or without pulpitis and to determine the function of TFAP2A-AS1 in pulp cells. METHODS GSE92681 was analyzed to filter out differentially expressed lncRNAs. Pulp samples from teeth with pulpitis and healthy teeth (control) were examined using real-time (RT) quantitative polymerase chain reaction (qPCR). Human dental pulp stem cells (hDPSCs) were cultured in a specific medium for osteogenic induction, or treated with lipopolysaccharide (LPS) to simulate inflammation. The viability and apoptosis of human DPSCs (hDPSCs) were determined by XTT assay and apoptosis detection kit. Inflammation was induced by LPS and assessed by measuring the expression and release of inflammatory cytokines after TFAP2A-AS1 knockdown. Osteogenic differentiation of hDPSCs was investigated by determining expression levels of osteogenic markers and alkaline phosphatase (ALP) activity after TFAP2A-AS1 overexpression. The downstream microRNA (miRNA) was predicted. Dual-luciferase reporter was used to confirm the binding between miR-32-5p and TFAP2A-AS1. RESULTS The expression of TFAP2A-AS1 was evaluated in inflamed pulp using RT-qPCR. TFAP2A-AS1 had a discriminatory ability for healthy individuals and patients with pulpitis. The expression of TFAP2A-AS1 decreased upon the osteogenic differentiation of hDPSCs, and increased upon the LPS induction. TFAP2A-AS1 can reverse the osteogenic differentiation of hDPSCs, as evidenced by decreased levels of dentine sialophosphoprotein, dentin matrix protein-1, and ALP activity. TFAP2A-AS1 knockdown can promote cell proliferation of hDPSCs and relieve LPS-induced inflammation, as evidenced by decreased levels of TNF-α, IL-1β, and IL-6. miR-32-5p was identified as a downstream miRNA of TFAP2A-AS1. CONCLUSION This study demonstrated the expression and potential function of TFAP2A-AS1 in the human dental pulp. TFAP2A-AS1 can inhibit odontogenic differentiation but promote inflammation in pulp cells.
Collapse
Affiliation(s)
- Mingming Liu
- Department of Laboratory CenterThe First Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Weijing Jia
- Department of Laboratory CenterThe First Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Lin Bai
- Department of Laboratory CenterThe First Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Qiaolin Lin
- Department of StomatologyShijiazhuang Fourth HospitalShijiazhuangChina
| |
Collapse
|
7
|
Stefańska K, Volponi AA, Kulus M, Waśko J, Farzaneh M, Grzelak J, Azizidoost S, Mozdziak P, Bukowska D, Antosik P, Zabel M, Podhorska-Okołów M, Dzięgiel P, Szcześniak M, Woszczyk M, Kempisty B. Dental pulp stem cells - A basic research and future application in regenerative medicine. Biomed Pharmacother 2024; 178:116990. [PMID: 39024839 DOI: 10.1016/j.biopha.2024.116990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 06/10/2024] [Accepted: 06/15/2024] [Indexed: 07/20/2024] Open
Abstract
Dental pulp is a valuable and accessible source of stem cells (DPSCs) with characteristics similar to mesenchymal stem cells. DPSCs can regenerate a range of tissues and their potential for clinical application in regenerative medicine is promising. DPSCs have been found to express low levels of Class II HLA-DR (MHC) molecules, making them potential candidates for allogeneic transplantation without matching the donor's tissue. Research on the correlation between non-coding RNAs (ncRNAs) and human dental pulp stem cells (DPSCs) provides promising insights into the use of these cells in clinical settings for a wide range of medical conditions. It is possible to use a number of ncRNAs in order to restore the functional role of downregulated ncRNAs that are correlated with osteoblastogenesis, or to suppress the functional role of overexpressed ncRNAs associated with osteoclast differentiation in some cases.
Collapse
Affiliation(s)
- Katarzyna Stefańska
- Cellivia 3 S.A., Poznan 60-529, Poland; Department of Histology and Embryology, Poznan University of Medical Sciences, Poznan 60-781, Poland.
| | - Ana Angelova Volponi
- Centre for Craniofacial and Regenerative Biology, Dental Institute, King's College London, London WC2R 2LS, UK.
| | - Magdalena Kulus
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | | | - Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Joanna Grzelak
- Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Shirin Azizidoost
- Atherosclerosis Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Paul Mozdziak
- Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA.
| | - Dorota Bukowska
- Department of Diagnostics and Clinical Sciences, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Paweł Antosik
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland.
| | - Maciej Zabel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; Division of Anatomy and Histology, University of Zielona Góra, Zielona Góra 65-046, Poland.
| | - Marzenna Podhorska-Okołów
- Division of Ultrastructural Research, Department of Human Morphology and Embryology, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Piotr Dzięgiel
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland.
| | - Marta Szcześniak
- Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, Poznań 60-812, Poland; Department of Maxillofacial Surgery, Poznan University of Medical Sciences, Przybyszewskiego 49, Poznań 60-355, Poland.
| | | | - Bartosz Kempisty
- Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, Torun 87-100, Poland; Division of Anatomy, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, Wroclaw 50-368, Poland; College of Agriculture and Life Sciences, North Carolina State University, Raleigh, NC 27695, USA; Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, Brno, Czech Republic
| |
Collapse
|
8
|
Huang L, Chen X, Yang X, Zhang Y, Liang Y, Qiu X. Elucidating epigenetic mechanisms governing odontogenic differentiation in dental pulp stem cells: an in-depth exploration. Front Cell Dev Biol 2024; 12:1394582. [PMID: 38863943 PMCID: PMC11165363 DOI: 10.3389/fcell.2024.1394582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Accepted: 05/13/2024] [Indexed: 06/13/2024] Open
Abstract
Epigenetics refers to the mechanisms such as DNA methylation and histone modification that influence gene expression without altering the DNA sequence. These epigenetic modifications can regulate gene transcription, splicing, and stability, thereby impacting cell differentiation, development, and disease occurrence. The formation of dentin is intrinsically linked to the odontogenic differentiation of dental pulp stem cells (DPSCs), which are recognized as the optimal cell source for dentin-pulp regeneration due to their varied odontogenic potential, strong proliferative and angiogenic characteristics, and ready accessibility Numerous studies have demonstrated the critical role of epigenetic regulation in DPSCs differentiation into specific cell types. This review thus provides a comprehensive review of the mechanisms by which epigenetic regulation controls the odontogenesis fate of DPSCs.
Collapse
Affiliation(s)
| | | | | | | | | | - Xiaoling Qiu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
9
|
Meng T, Liu X, Zhang J, Li S, He W, Li W. MicroRNA-181b attenuates lipopolysaccharide-induced inflammatory responses in pulpitis via the PLAU/AKT/NF-κB axis. Int Immunopharmacol 2024; 127:111451. [PMID: 38154211 DOI: 10.1016/j.intimp.2023.111451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/17/2023] [Accepted: 12/23/2023] [Indexed: 12/30/2023]
Abstract
OBJECTIVE This study aimed to investigate the role and underlying mechanisms of microRNA (miRNA)-181b in the inflammatory response in pulpitis. METHODS Quantitative reverse-transcription polymerase chain reaction (qRT-PCR), fluorescence in situ hybridization (FISH), and immunofluorescence techniques were used to determine the miRNA-181b and urokinase-type plasminogen activator (PLAU) expression levels in inflamed human dental pulp tissues (HDPTs) and lipopolysaccharide (LPS)-stimulated human dental pulp cells (hDPCs). The targets of miRNA-181b were identified and confirmed using a bioinformatics analysis, RNA sequencing, and dual-luciferase gene reporter assays. The effect of miRNA-181b or PLAU on proinflammatory cytokine expression in hDPCs was examined using qRT-PCR and western blotting. RNA sequencing was conducted to examine the signaling pathways implicated in miRNA-181b-mediated pulpitis. Western blotting and qRT-PCR were used to determine the miRNA-181b /PLAU/AKT/NF-κB signaling axis in pulpitis. A rat pulpitis model was created to observe the histopathological changes in the dental pulp tissue after the topical application of miRNA-181b agomir. RESULTS A significant decrease in miRNA-181b and an increase in PLAU were observed in HDPTs compared to the healthy controls, and these two factors showed a negative correlation. MiRNA-181b directly targeted PLAU. The miRNA-181b inhibitor resulted in a significant upregulation of IL-1β, IL-6 and TNF-α, whereas the knockdown of PLAU reversed this proinflammatory effect. Conversely, PLAU overexpression prevented the anti-inflammatory effects of the miRNA-181b mimics. Mechanistically, miRNA-181b inhibited the AKT/NF-κB pathway by targeting PLAU. In vivo application of the miRNA-181b agomir to inflamed pulp tissue alleviated inflammation. CONCLUSION MiRNA-181b targets PLAU, negatively regulating pro-inflammatory cytokine expression via the AKT/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Tiantian Meng
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Xinpai Liu
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Jing Zhang
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Song Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| | - Wei He
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China; School of Basic Medical Sciences, Anhui Medical University, 81#Mei Shan Road, Hefei 230032, Anhui, China.
| | - Wuli Li
- College & Hospital of Stomatology, Anhui Medical University, Key Lab. of Oral Diseases Research of Anhui Province, 69# Mei Shan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
10
|
Luo C, He J, Wang N, Zhu N, Zhang L, Wang Y, Qin M, Hui T. Enhanced reparatory effect of EI1 on dental pulp via extracellular matrix remodeling by miR-181b-2-3p inhibitor. J Dent Sci 2024; 19:177-185. [PMID: 38303812 PMCID: PMC10829547 DOI: 10.1016/j.jds.2023.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 05/02/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose Extracellular matrix (ECM) is crucial for dental pulp repair. The aim of this paper is to investigate the ECM remodeling effect of miR-181b-2-3p (a microRNA) and to verify the reparatory effect of EI1 (an epigenetic drug) and miR-181b-2-3p inhibitor on dental pulp. Materials and methods Levels of ECM-related factors in EI1-treated human dental pulp cells (hDPCs) were measured by qRT-PCR and Western blot. The anti-inflammation effect of EI1 was examined in Lipopolysaccharide-stimulated hDPCs. miR-181b-2-3p mimics or inhibitors were transfected into hDPCs and then the cells' functions were detected. A dual luciferase reporter assay was used to identify the targets of miR-181b-2-3p. Pulpotomy using miR-181b-2-3p antagomirs and EI1 as pulp capping materials was performed in male six-week-old Sprague-Dawley rats. Results EI1 upregulated ECM-related genes expression in hDPCs, but failed to upregulate the collagen1A1 (COL1A1) protein level. Pro-inflammatory factors were downregulated by EI1 in Lipopolysaccharide-stimulated hDPCs. Overexpression of miR-181b-2-3p downregulated the expression of transforming growth factor-β2 (TGF-β2) and fibronectin type III domain-containing protein 5 precursor (FNDC5), while the inhibition had the opposite effect. Dual luciferase reporter assays demonstrated that miR-181b-2-3p targets TGF-β2, FNDC5 and integrin alpha 4 protein (ITGA4). Compared to EI1 was used alone, EI1 combined with the inhibitor upregulated the protein levels of COL1A1, fibronectin (FN1) and TGF-β2 in hDPCs, promoted hDPCs migration, and exhibited reparatory effects on inflamed rat pulp tissue. Conclusion miR-181b-2-3p inhibitor could enhance the reparatory effect of EI1 via ECM remodeling in dental pulp both in vitro and in vivo.
Collapse
Affiliation(s)
- Chiyi Luo
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Jie He
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
- Shenzhen Children's Hospital, Shenzhen, China
| | - Nan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Ningxin Zhu
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Lixin Zhang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Yuanyuan Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| | - Tianqian Hui
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology, Beijing, China
| |
Collapse
|
11
|
Israr F, Masood Ul Hasan S, Hussain M, Qazi FUR, Hasan A. Investigating In Situ Expression of Neurotrophic Factors and Partner Proteins in Irreversible Pulpitis. J Endod 2023; 49:1668-1675. [PMID: 37660765 DOI: 10.1016/j.joen.2023.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2023] [Revised: 07/30/2023] [Accepted: 08/26/2023] [Indexed: 09/05/2023]
Abstract
INTRODUCTION In situ assessments of neurotrophic factors and their associated molecular partners have not been explored to date, particularly in humans. The present investigation aimed to explore the expressional dysregulation of neurotrophic factors (nerve growth factor [NGF], brain derived neurotrophic factor [BDNF], and NT4/5), their receptors (TrkA and TrkB), and their modulators (USP36 and Nedd4-2) directly in irreversibly inflamed human pulp tissues. METHODS Forty samples each of healthy and irreversibly inflamed pulp were extirpated for the study. Immunohistochemical examinations were carried out for the anatomic changes and expression of neurotrophic factors and partner proteins. Expression was digitally quantified using the IHC profiler module of ImageJ and deduced as optical density. Statistical analyses were carried out by GraphPad Prism. RESULTS Decrease in nuclear and vessel diameters was observed in irreversibly inflamed pulp tissues. NGF and BDNF were found to be significantly upregulated in symptomatic irreversible pulpitis (SIP), whereas no significant difference was observed in the expression of TrkA and TrkB. Expression of Nedd4-2, USP36, and TrkA was found positively correlated with the NGF in healthy pulp tissues. However, in SIP, positive correlation was only observed between the expression of USP36 and NGF. Among the ligands, BDNF expression was found positively correlated with NGF in healthy pulp but not with NT4/5. In the case of SIP, no correlation was observed between any neurotrophic factors. CONCLUSIONS Upregulation of NGF, BDNF, USP36 and Nedd4-2 in SIP indicates dysregulation in the molecular events underlying the disease biology and could be exploited as potential markers for the disease diagnosis.
Collapse
Affiliation(s)
- Fatima Israr
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Syed Masood Ul Hasan
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan; Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan
| | - Mushtaq Hussain
- Bioinformatics and Molecular Medicine Research Group, Dow Research Institute of Biotechnology and Biomedical Sciences, Dow College of Biotechnology, Dow University of Health Sciences, Karachi, Pakistan.
| | - Fazal Ur Rehman Qazi
- Dr Ishrat ul Ebad Khan Institute of Oral Health Sciences, Dow University of Health Sciences, Karachi, Pakistan
| | - Arshad Hasan
- Dow Dental College, Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
12
|
Xiao Z, Zhang Y, She Y, Yuan G, Yang G. IPO7 promotes lipopolysaccharide-induced inflammatory responses in human dental pulp cells via p38 MAPK and NF-κB signaling pathways. Mol Immunol 2023; 163:116-126. [PMID: 37769576 DOI: 10.1016/j.molimm.2023.09.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/19/2023] [Accepted: 09/14/2023] [Indexed: 10/03/2023]
Abstract
Pulpitis is a chronic inflammatory process that greatly affects the physical, mental health and life quality of patients. Human dental pulp cells (hDPCs) are essential components of dental pulp tissue and play a significant role in pulpitis. Lipopolysaccharide (LPS) is an initiator of pulpitis and can induce the production of inflammatory cytokines in hDPCs by activating p38 MAPK and NF-κB signaling pathways. Importin7 (IPO7), a member of the importin-β family, is widely expressed in many tissues. Previous studies have shown that IPO7 mediated nuclear translocation of p-p38 after stimulation, and IPO7 homologous protein IPO8 participated in human dental pulp inflammation. This research aims to investigate whether IPO7 is involved in pulpitis and explore its underlying mechanisms. In the current study, we found the expression of IPO7 was increased in pulpitis tissue. In vitro, hDPCs treated with LPS to mimic the inflammatory environment, the expression of IPO7 was increased. Knockdown of IPO7 significantly inhibited the production of inflammatory cytokines and suppressed the p38 MAPK and NF-κB signaling pathways. Activating the p38 MAPK and NF-κB signaling pathways by the p38 activator and p65 activator reversed the inflammatory responses. IPO7 interacted with p-p38 under LPS stimulation in hDPCs. In addition, the increased binding between IPO7 and p-p38 is associated with the decreased binding ability of IPO7 to Sirt2. In conclusion, we found that IPO7 was highly expressed in pulpitis and played a vital role in modulating human dental pulp inflammation.
Collapse
Affiliation(s)
- Ziqiu Xiao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Yue Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Yawei She
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Guohua Yuan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University
| | - Guobin Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University.
| |
Collapse
|
13
|
Dai Y, Xuan G, Yin M. DUXAP8 Promotes LPS-Induced Cell Injury in Pulpitis by Regulating miR-18b-5p/HIF3A. Int Dent J 2023; 73:636-644. [PMID: 36522211 PMCID: PMC10509439 DOI: 10.1016/j.identj.2022.11.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/07/2022] [Accepted: 11/20/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND The dysregulated long noncoding RNAs (lncRNAs) are implicated in progression of various diseases, including pulpitis. Double homeobox A pseudogene 8 (DUXAP8) has been found to be upregulated in pulpitis. Herein, the functional mechanism of DUXAP8 in lipopolysaccharide (LPS)-induced pulpitis was explored. MATERIAL AND METHODS DUXAP8, microRNA-18b-5p (miR-18b-5p), or hypoxia-inducible factor 3A (HIF3A) levels were examined through reverse transcription-quantitative polymerase chain reaction assay. Cell behaviours were determined by Cell Counting Kit-8 assay for cell viability, Ethynyl-2'-deoxyuridine (EdU) assay for cell proliferation, and flow cytometry for cell apoptosis. Protein levels were measured using western blot. Inflammatory reaction was analysed via enzyme-linked immunosorbent assay. Oxidative stress was assessed by commercial kits. Dual-luciferase reporter assay, RNA immunoprecipitation assay, and pull-down assay were used for validation of interaction between targets. RESULTS Cell apoptosis, inflammatory reaction, and oxidative stress were induced by LPS in human dental pulp cells (HDPCs). DUXAP8 upregulation and miR-18b-5p downregulation were found in pulpitis. LPS-induced cell injury was relieved after downregulation of DUXAP8. DUXAP8 interacted with miR-18b-5p. The regulation of DUXAP8 was related to miR-18b-5p sponging function in LPS-treated HDPCs. HIF3A served as a target of miR-18b-5p. MiR-18b-5p protected against LPS-induced cell injury through targeting HIF3A. DUXAP8 targeted miR-18b-5p to regulate HIF3A level. CONCLUSIONS Results demonstrated that LPS-induced cell injury in pulpitis was promoted by DUXAP8 through mediating miR-18b-5p/HIF3A axis.
Collapse
Affiliation(s)
- Ying Dai
- Department of Stomatology, Shaoxing People's Hospital, Shaoxing, China
| | - Guihong Xuan
- Department of Stomatology, Shaoxing People's Hospital, Shaoxing, China
| | - Min Yin
- Department of Stomatology, Shaoxing People's Hospital, Shaoxing, China.
| |
Collapse
|
14
|
Palideh A, Vaghari-Tabari M, Nosrati Andevari A, Qujeq D, Asemi Z, Alemi F, Rouhani Otaghsara H, Rafieyan S, Yousefi B. MicroRNAs and Periodontal Disease: Helpful Therapeutic Targets? Adv Pharm Bull 2023; 13:423-434. [PMID: 37646047 PMCID: PMC10460817 DOI: 10.34172/apb.2023.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 05/07/2022] [Accepted: 07/01/2022] [Indexed: 09/01/2023] Open
Abstract
Periodontal disease is the most common oral disease. This disease can be considered as an inflammatory disease. The immune response to bacteria accumulated in the gum line plays a key role in the pathogenesis of periodontal disease. In addition to immune cells, periodontal ligament cells and gingival epithelial cells are also involved in the pathogenesis of this disease. miRNAs which are small RNA molecules with around 22 nucleotides have a considerable relationship with the immune system affecting a wide range of immunological events. These small molecules are also in relation with periodontium tissues especially periodontal ligament cells. Extensive studies have been performed in recent years on the role of miRNAs in the pathogenesis of periodontal disease. In this review paper, we have reviewed the results of these studies and discussed the role of miRNAs in the immunopathogenesis of periodontal disease comprehensively. miRNAs play an important role in the pathogenesis of periodontal disease and maybe helpful therapeutic targets for the treatment of periodontal disease.
Collapse
Affiliation(s)
| | - Mostafa Vaghari-Tabari
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ali Nosrati Andevari
- Department of Biochemistry, Faculty of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Durdi Qujeq
- Cellular and Molecular Biology Research Center (CMBRC), Health Research Institute, Babol University of Medical Sciences, Babol, Iran
- Department of Clinical Biochemistry, School of Medicine, Babol University of Medical Sciences, Babol, Iran
| | - Zatollah Asemi
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Kashan University of Medical Sciences, Kashan, Iran
| | - Forough Alemi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sona Rafieyan
- Department of Oral and Maxillofacial Pathology, School of Dentistry, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Bahman Yousefi
- Department of Clinical Biochemistry and Laboratory Medicine, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
The paradigm of miRNA and siRNA influence in Oral-biome. Biomed Pharmacother 2023; 159:114269. [PMID: 36682246 DOI: 10.1016/j.biopha.2023.114269] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/12/2023] [Accepted: 01/16/2023] [Indexed: 01/22/2023] Open
Abstract
Short nucleotide sequences like miRNA and siRNA have attracted a lot of interest in Oral-biome investigations. miRNA is a small class of non-coding RNA that regulates gene expression to provide effective regulation of post-transcription. On contrary, siRNA is 21-25 nucleotide dsRNA impairing gene function post-transcriptionally through inhibition of mRNA for homologous dependent gene silencing. This review highlights the application of miRNA in oral biome including oral cancer, dental implants, periodontal diseases, gingival fibroblasts, oral submucous fibrosis, radiation-induced oral mucositis, dental Pulp, and oral lichenoid disease. Moreover, we have also discussed the application of siRNA against the aforementioned disease along with the impact of miRNA and siRNA to the various pathways and molecular effectors pertaining to the dental diseases. The influence of upregulation and downregulation of molecular effector post-treatment with miRNA and siRNA and their impact on the clinical setting has been elucidated. Thus, the mentioned details on application of miRNA and siRNA will provide a novel gateway to the scholars to not only mitigate the long-lasting issue in dentistry but also develop new theragnostic approaches.
Collapse
|
16
|
Liang C, Wu W, He X, Xue F, Feng D. Circ_0138960 knockdown alleviates lipopolysaccharide-induced inflammatory response and injury in human dental pulp cells by targeting miR-545-5p/MYD88 axis in pulpitis. J Dent Sci 2023; 18:191-202. [PMID: 36643232 PMCID: PMC9831794 DOI: 10.1016/j.jds.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/17/2022] [Indexed: 01/18/2023] Open
Abstract
Background/purpose Circular RNAs (circRNAs) have been shown to play important regulatory roles in many human diseases, yet their functions in pulpitis remain to be clarified. This study was designed to investigate the function of circ_0138960 in pulpitis progression and its underlying mechanism. Material and methods Cell viability and proliferation were analyzed by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and 5-Ethynyl-2'-deoxyuridine (EdU) assay. Flow cytometry and enzyme-linked immunosorbent assay (ELISA) were conducted to analyze cell apoptosis rate and the release of inflammatory cytokines. The activity of superoxide dismutase (SOD) was analyzed using a SOD assay kit. Dual-luciferase reporter and RNA-pull down assays were performed to verify the interaction between microRNA-545-5p (miR-545-5p) and circ_0138960 or myeloid differentiation primary response gene 88 (MYD88). Results Lipopolysaccharide (LPS) treatment restrained the proliferation and promoted the apoptosis, inflammation, and oxidative stress of human dental pulp cells (hDPCs). LPS treatment dose-dependently up-regulated circ_0138960 expression in hDPCs. Circ_0138960 knockdown overturned LPS-induced inflammation and injury in hDPCs. Circ_0138960 could act as a molecular sponge for miR-545-5p, and circ_0138960 knockdown protected hDPCs from LPS-induced effects by up-regulating miR-545-5p. miR-545-5p directly interacted with the 3' untranslated region (3'UTR) of MYD88, and MYD88 overexpression reversed miR-545-5p-mediated effects in LPS-treated hDPCs. Circ_0138960 positively regulated MYD88 expression by sponging miR-545-5p in hDPCs. LPS could activate nuclear factor kappa-B (NF-κB) signaling by targeting circ_0138960/miR-545-5p/MYD88 axis in hDPCs. Conclusion Circ_0138960 knockdown attenuated LPS-induced inflammatory response and injury in hDPCs by targeting the miR-545-5p/MYD88/NF-κB axis.
Collapse
Affiliation(s)
| | | | | | | | - Daxing Feng
- Corresponding author. Department of Stomatology, The Second Affiliated Hospital of Hainan Medical University, No. 10, Haifu Road, Haikou 570100, China.
| |
Collapse
|
17
|
MicroRNA and their implications in dental pulp inflammation: current trends and future perspectives. Odontology 2022:10.1007/s10266-022-00762-0. [DOI: 10.1007/s10266-022-00762-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2022]
|
18
|
Wang X, Sun Y, Fu Y, Wu H, Chen Y, Ye Y, Zhou Q, He L, Zhou E, Wang J, Yang Z. Lysine specific demethylase 1 inhibitor alleviated lipopolysaccharide/D-galactosamine-induced acute liver injury. Eur J Pharmacol 2022; 932:175227. [PMID: 36007605 DOI: 10.1016/j.ejphar.2022.175227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 08/08/2022] [Accepted: 08/17/2022] [Indexed: 11/19/2022]
Abstract
Acute liver injury is a severe clinical syndrome with markedly high mortality and poor prognosis. An accumulating body of evidence has demonstrated that epigenetic mechanisms have essential roles in the pathogenesis of acute liver injury. Lysine-specific demethylase 1 (LSD1) belongs to the amine oxidase superfamily of flavin adenine dinucleotide (FAD)-dependent enzymes, specifically demethylates H3 lysine 4. In the study, we investigated the effects and mechanisms of LSD1 in lipopolysaccharide (LPS)/D-Galactosamine (D-Gal)-induced acute liver injury in mice. Western blot analysis showed that LSD1 phosphorylation and di-methylated histone H3 on lysine 4 (H3K4me2) protein expression were significantly increased after LPS/D-Gal treatment (2.3 and 2.4 times higher than control respectively). GSK-LSD1 2HCl is an irreversible and selective LSD1 inhibitor. Pre-treatment with LSD1 inhibitor alleviated LPS/D-Gal-induced liver damage, decreased serum levels of alanine transaminase and aspartate aminotransferase in mice. Moreover, the LSD1 phosphorylation level in low, medium, and high LSD1 inhibitor groups was lower by a factor of 1.6, 1.9, and 2.0 from the LPS/D-Gal group, respectively. Mechanistically, LSD1 inhibitor further inhibited NF-κB signaling cascades and subsequently inhibited the production of pro-inflammatory cytokine TNF-α, IL-6, and IL-1β induced by LPS/D-Gal in liver tissues. Furthermore, LSD1 inhibitor upregulated the protein expression of Nrf2/HO-1 signaling pathways, and the activities of related antioxidant enzymes were enhanced. Collectively, our data demonstrated that LSD1 inhibitor protected against the LPS/D-Gal-induced acute liver injury via inhibiting inflammation and oxidative stress, and targeting the epigenetic marker may be a potent therapeutic strategy for acute liver injury.
Collapse
Affiliation(s)
- Xia Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Youpeng Sun
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Yiwu Fu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Hanpeng Wu
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Yichun Chen
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Yingrong Ye
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Qingqing Zhou
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Li He
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Ershun Zhou
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China
| | - Jingjing Wang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
| | - Zhengtao Yang
- College of Life Science and Engineering, Foshan University, Foshan, Guangdong, 528231, People's Republic of China.
| |
Collapse
|
19
|
MicroRNA-155 expression is associated with pulpitis progression by targeting SHIP1. Mol Biol Rep 2022; 49:8575-8586. [PMID: 35834034 DOI: 10.1007/s11033-022-07690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/08/2022] [Indexed: 10/17/2022]
Abstract
BACKGROUND Pulpitis is a commonly seen oral inflammation condition in clinical practice, it can cause much pain for the patient and may induce infections in other systems. Much is still unknown for the pathogenic mechanism of pulpitis. In this work, we discovered that the expression of miR-155 was associated with dental pulpal inflammation both in vivo and in vitro. METHODS AND RESULTS Our experiments of LPS stimulated odontoblast cell line MDPC-23 showed miR-155 could act as a positive regulator by increasing the production of pro-inflammatory cytokines IL-1β and IL-6 during inflammatory responses, whereas knockdown of miR-155 can reverse the effects. Bioinformatics analysis demonstrated that SHIP1 is a direct target of miR-155 in odontoblasts, this result was further verified at both mRNA and protein level. Inhibition of miR-155 resulted in the downregulation of inflammation factors, while co-transfection of si-SHIP1 and miR-155 inhibitor promoted the inflammatory responses. Treatment with miR-155 mimic or si-SHIP1 up-regulated the protein level of p-PI3K and p-AKT. By contrast, miR-155 inhibitor exerted the opposite effects. miR-155 mimics could upregulate the gene expression of IL-1β and IL-6. Co-transfection of LY294002 and miR-155 mimic attenuated the inflammatory responses. Consistent with in vitro results, miR-155-/- mice could alleviate inflammatory response, as well as decrease the activation of p-PI3K and p-AKT, whereas increase the activation of SHIP1. CONCLUSIONS Our data revealed a novel role for miR-155 in regulation of dental pulpal inflammatory response by targeting SHIP1 through PI3K/AKT signaling pathway.
Collapse
|
20
|
Li J, Wang Z. A novel NUTM2A-AS1/miR-769–5p axis regulates LPS-evoked damage in human dental pulp cells via the TLR4/MYD88/NF-κB signaling. J Dent Sci 2022. [DOI: 10.1016/j.jds.2022.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
21
|
Li WJ, Shen J. Antagonism of G protein-coupled receptor 55 prevents lipopolysaccharide-induced damages in human dental pulp cells. Hum Exp Toxicol 2022; 41:9603271221099598. [PMID: 35608548 DOI: 10.1177/09603271221099598] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Pulpitis is a common oral inflammatory disease in dental pulp commonly associated with bacterial infection. G protein-coupled receptor 55 (GPR55) is a member of the G protein-coupled receptors family that has been found to regulate inflammatory response. However, its roles in dental pulp inflammation have not been investigated. In this study, we used lipopolysaccharide (LPS) to induce inflammation in human dental pulp cells (hDPCs) to simulate an in vitro model of pulpitis. We found that LPS markedly induced the GPR55 expression in hDPCs. Treatment with the GPR55 antagonist ML-193 ameliorated the LPS-caused decrease in cell viability and increase in lactate dehydrogenase release. The upregulated inflammatory cytokines, interleukin-6 (IL-6) and tumour necrosis factor α, in LPS-challenged hDPCs were also attenuated by ML-193. Treatment with ML-193 ameliorated LPS-induced production of the inflammatory mediators cyclooxygenase-2/prostaglandin E2 (COX-2/PGE2), and inducible nitric oxide synthase/nitric oxide (iNOS/NO) in hDPCs. ML-193 also inhibited the activation of Toll-like receptor 4-myeloid differentiation primary response 88-nuclear factor-κB (TLR4-Myd88-NF-κB) signaling in LPS-induced hDPCs via decreased expressions of TLR4, Myd88, and p-NF-κB 65. Our study provides evidence that the GPR55 antagonist ML-193 exhibited anti-inflammatory activity in LPS-stimulated hDPCs through inhibiting TLR4-Myd88-NF-κB signaling. The results imply that ML-193 might be a novel agent for pulpitis.
Collapse
Affiliation(s)
- Wei-Jie Li
- Department of Stomatology, Huashan Hospital, Fudan University, Shanghai, China
| | - Jie Shen
- Department of Stomatology, 74753Jiading District Central Hospital Affiliated Shanghai University of Medicine & Health Sciences, Shanghai, China
| |
Collapse
|
22
|
Zhang P, Cui Z, Li S. The protective effects of S14G-humanin (HNG) against lipopolysaccharide (LPS)- induced inflammatory response in human dental pulp cells (hDPCs) mediated by the TLR4/MyD88/NF-κB pathway. Bioengineered 2021; 12:7552-7562. [PMID: 34605740 PMCID: PMC8806744 DOI: 10.1080/21655979.2021.1979914] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Pulpitis is reported in large populations of patients and significantly impacts their normal life quality. It is reported that the lipopolysaccharide (LPS) in Gram-negative bacteria induces severe inflammation in dental pulp tissues. S14G-humanin is a derivative of humanin and has been recently confirmed to possess promising anti-inflammatory properties. The current study aims to explore the possibility of treating pulpitis with S14G-humanin. LPS-stimulated dental pulp cells (DPCs) were utilized to simulate an inflammatory state in the progression of pulpitis. We found the elevated expressions and production of interleukin- 6 (IL-6), tumor necrosis factor-α (TNF-α), macrophage chemoattractant protein-1 (MCP-1), matrix metalloproteinase-2 (MMP-2), and matrix metalloproteinase-9 (MMP-9), upregulated Pentraxin 3 (PTX3) and activated oxidative stress in LPS-treated DPCs were all reversed by treatment with 50 and 100 μM S14G-humanin. In addition, the LPS-induced elevated expression levels of toll-like receptor 4 (TLR4) and myeloid differentiation primary response 88 (Myd88), and activation of the IκBα/NF-κB signaling pathway in hDPCs were significantly repressed by treatment with S14G-humanin. Conclusively, we found that S14G-humanin protected LPS-treated hDPCs by inhibiting the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Ping Zhang
- Department of Stomatology, Heji Hospital Affiliated of Changzhi Medical College, Changzhi, Shanxi, China
| | - Zhiqiang Cui
- Department of Stomatology, Heji Hospital Affiliated of Changzhi Medical College, Changzhi, Shanxi, China
| | - Shuai Li
- Department of Stomatology, Heji Hospital Affiliated of Changzhi Medical College, Changzhi, Shanxi, China
| |
Collapse
|
23
|
The Role of microRNAs in Pulp Inflammation. Cells 2021; 10:cells10082142. [PMID: 34440911 PMCID: PMC8391605 DOI: 10.3390/cells10082142] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 08/17/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
The dental pulp can be affected by thermal, physical, chemical, and bacterial phenomena that stimulate the inflammatory response. The pulp tissue produces an immunological, cellular, and vascular reaction in an attempt to defend itself and resolve the affected tissue. The expression of different microRNAs during pulp inflammation has been previously documented. MicroRNAs (miRNAs) are endogenous small molecules involved in the transcription of genes that regulate the immune system and the inflammatory response. They are present in cellular and physiological functions, as well as in the pathogenesis of human diseases, becoming potential biomarkers for diagnosis, prognosis, monitoring, and safety. Previous studies have evidenced the different roles played by miRNAs in proinflammatory, anti-inflammatory, and immunological phenomena in the dental pulp, highlighting specific key functions of pulp pathology. This systematized review aims to provide an understanding of the role of the different microRNAs detected in the pulp and their effects on the expression of the different target genes that are involved during pulp inflammation.
Collapse
|
24
|
Emfietzoglou R, Pachymanolis E, Piperi C. Impact of Epigenetic Alterations in the Development of Oral Diseases. Curr Med Chem 2021; 28:1091-1103. [PMID: 31942842 DOI: 10.2174/0929867327666200114114802] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/12/2019] [Accepted: 11/24/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Epigenetic mechanisms alter gene expression and regulate vital cellular processes that contribute to the onset and progression of major dental diseases. Their reversible character may prove beneficial for therapeutic targeting. This review aims to provide an update on the main epigenetic changes that contribute to the pathogenesis of Oral Squamous Cell Carcinoma (OSCC), pulpitis and periodontitis as well as dental caries and congenital orofacial malformations, in an effort to identify potential therapeutic targets. METHODS We undertook a structured search of bibliographic databases (PubMed and MEDLINE) for peer-reviewed epigenetic research studies focused on oral diseases in the last ten years. A qualitative content analysis was performed in screened papers and a critical discussion of main findings is provided. RESULTS Several epigenetic modifications have been associated with OSCC pathogenesis, including promoter methylation of genes involved in DNA repair, cell cycle regulation and proliferation leading to malignant transformation. Additionally, epigenetic inactivation of tumor suppressor genes, overexpression of histone chaperones and several microRNAs are implicated in OSCC aggressiveness. Changes in the methylation patterns of IFN-γ and trimethylation of histone Η3Κ27 have been detected in pulpitis, along with an aberrant expression of several microRNAs, mainly affecting cytokine production. Chronic periodontal disease has been associated with modifications in the methylation patterns of Toll-Like Receptor 2, Prostaglandin synthase 2, E-cadherin and some inflammatory cytokines, along with the overexpression of miR-146a and miR155. Furthermore, DNA methylation was found to regulate amelogenesis and has been implicated in the pathogenesis of dental caries as well as in several congenital orofacial malformations. CONCLUSION Strong evidence indicates that epigenetic changes participate in the pathogenesis of oral diseases and epigenetic targeting may be considered as a complementary therapeutic scheme to the current management of oral health.
Collapse
Affiliation(s)
- Rodopi Emfietzoglou
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Evangelos Pachymanolis
- School of Dentistry, National and Kapodistrian University of Athens, 2 Thivon Str, Goudi, 115 27 Athens, Greece
| | - Christina Piperi
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias street, 115 27 Athens, Greece
| |
Collapse
|
25
|
Wu Y, Zhou C, Tong X, Li S, Liu J. Histochemical localization of putative stem cells in irreversible pulpitis. Oral Dis 2021; 28:1207-1214. [PMID: 33728761 DOI: 10.1111/odi.13850] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 01/14/2021] [Accepted: 03/11/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES Our study aimed to observe the distribution of putative stem cells in irreversible pulpitis and to investigate the expression of specific molecules. SUBJECTS AND METHODS Extracted third molar teeth were collected and divided into two groups: the normal pulp group and inflamed pulp group. Real-time PCR was applied to detect the expression of several embryonic and dentinogenic genes. The expression of mesenchymal cell markers (STRO-1, CD90, and CD146) and stromal cell-derived factor 1α (SDF-1α)/CXC chemokine receptor 4 (CXCR4) proteins was examined by immunohistochemical analysis. RESULTS The expression levels of most embryonic and dentinogenic genes were not statistically different between the two groups. Immunohistochemical analysis revealed that in inflamed pulp, cells with positive expression for STRO-1, CD90, and CD146 mainly resided in two specific niches, both adjacent to inflammatory sites: one in the pulp core and another in the odontoblast layer. SDF-1α- and CXCR4-positive cells were significantly correlated with STRO-1-positive cells. Double immunofluorescence analysis indicated that STRO-1-positive cells overlapped with SDF-1α- and CXCR4-positive cells near the inflammatory site. CONCLUSIONS This study gave a direct observation of putative stem cells distributed in irreversible pulpitis and implied a role of SDF-1α/CXCR4 signaling in stem cell-based therapies for reparative dentinogenesis.
Collapse
Affiliation(s)
- Yan Wu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Caixia Zhou
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Xueying Tong
- Department of Geriatrics, Taihe Hospital, Hubei University of Chinese Medicine, Shiyan, China
| | - Shue Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Jiarong Liu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
26
|
Zhou M, Li C. Clinical Value and Potential Target of miR-27a-3p in Pulpitis. Neuroimmunomodulation 2021; 28:158-165. [PMID: 34237753 DOI: 10.1159/000516136] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 03/23/2021] [Indexed: 11/19/2022] Open
Abstract
INTRODUCTION This study investigated the clinical values of miR-27a-3p for pulpitis patients, and its association with TLR4. METHODS Sixty-six patients with pulpitis and 34 cases without pulpitis were recruited; the pulp tissue and serum samples were collected from each participant. Real-time polymerase chain reaction was used for measurement of gene expression levels. The diagnosis values were assessed by the receiver operating characteristic curve. The target gene of miR-27a-3p was confirmed by the luciferase reporter assay. RESULTS MiR-27a-3p was downregulated in both serum and pulp tissue of pulpitis patients. MiR-27a-3p could distinguish pulpitis patients from healthy controls and might be a predictor for the development of irreversible pulpitis. A high level of TLR4 was also detected in both peripheral blood monocytes and pulp tissues from pulpitis patients and showed a negative association with the miR-27a-3p level. TLR4 was a direct target gene of miR-27a-3p. DISCUSSION/CONCLUSION MiR-27a-3p might be a promising biomarker for the diagnosis of pulpitis and predict the development of irreversible pulpitis. MiR-27a-3p might be involved in the pathogenesis of pulpitis via targeting TLR4.
Collapse
Affiliation(s)
- Ming Zhou
- Department of Endodontics, Stomatology Hospital of Wuhan University Qingshan Branch, Wuhan, China
| | - Chaohong Li
- Department of Prosthodontics, Stomatology Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
27
|
Francis M, Gopinathan G, Foyle D, Fallah P, Gonzalez M, Luan X, Diekwisch T. Histone Methylation: Achilles Heel and Powerful Mediator of Periodontal Homeostasis. J Dent Res 2020; 99:1332-1340. [PMID: 32762486 PMCID: PMC7580172 DOI: 10.1177/0022034520932491] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The packaging of DNA around nucleosomes exerts dynamic control over eukaryotic gene expression either by granting access to the transcriptional machinery in an open chromatin state or by silencing transcription via chromatin compaction. Histone methylation modification affects chromatin through the addition of methyl groups to lysine or arginine residues of histones H3 and H4 by means of histone methyl transferases or histone demethylases. Changes in histone methylation state modulate periodontal gene expression and have profound effects on periodontal development, health, and therapy. At the onset of periodontal development, progenitor cell populations such as dental follicle cells are characterized by an open H3K4me3 chromatin mark on RUNX2, MSX2, and DLX5 gene promoters. During further development, periodontal progenitor differentiation undergoes a global switch from the H3K4me3 active methyl mark to the H3K27me3 repressive mark. When compared with dental pulp cells, periodontal neural crest lineage differentiation is characterized by repressive H3K9me3 and H3K27me3 marks on typical dentinogenesis-related genes. Inflammatory conditions as they occur during periodontal disease result in unique histone methylation signatures in affected cell populations, including repressive H3K9me3 and H3K27me3 histone marks on extracellular matrix gene promoters and active H3K4me3 marks on interleukin, defensin, and chemokine gene promoters, facilitating a rapid inflammatory response to microbial pathogens. The inflammation-induced repression of chromatin on extracellular matrix gene promoters presents a therapeutic opportunity for the application of histone methylation inhibitors capable of inhibiting suppressive trimethylation marks. Furthermore, inhibition of chromatin coregulators through interference with key inflammatory mediators such as NF-kB by means of methyltransferase inhibitors provides another avenue to halt the exacerbation of the inflammatory response in periodontal tissues. In conclusion, histone methylation dynamics play an intricate role in the fine-tuning of chromatin states during periodontal development and harbor yet-to-be-realized potential for the treatment of periodontal disease.
Collapse
Affiliation(s)
- M. Francis
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
| | - G. Gopinathan
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - D. Foyle
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - P. Fallah
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - M. Gonzalez
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - X. Luan
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| | - T.G.H. Diekwisch
- Department of Oral Biology, College of Dentistry, University of Illinois at Chicago, Chicago, IL, USA
- Department of Periodontics and Center for Craniofacial Research and Diagnosis, Texas A&M University College of Dentistry, Dallas, TX, USA
| |
Collapse
|
28
|
Barbato-Ferreira DA, Costa SFDS, Gomez RS, Bastos JV. DNA Methylation patterns of immune response-related genes in inflammatory external root resorption. Braz Oral Res 2020; 34:e087. [PMID: 32785479 DOI: 10.1590/1807-3107bor-2020.vol34.0087] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Accepted: 04/28/2020] [Indexed: 11/22/2022] Open
Abstract
Inflammatory external root resorption (IERR) is a pathological process defined by the progressive loss of dental hard tissue, dentin, and cementum, resulting from the combination of the loss of external root protective apparatus and root canal infection. It has been suggested that healing patterns after tooth replantation may be influenced by the genetic and immunological profiles of the patients. The purpose of the present investigation was to evaluate the DNA methylation patterns of 22 immune response-related genes in extracted human teeth presenting with IERR. Methylation assays were performed on samples of root fragments showing IERR and compared with healthy bone tissue collected during the surgical extraction of impacted teeth. The methylation patterns were quantified using EpiTect Methyl II Signature Human Cytokine Production PCR Array. The results revealed significantly higher hypermethylation of the FOXP3 gene promoter in IERR (65.95%) than in the bone group (23.43%) (p < 0.001). The ELANE gene was also highly methylated in the pooled IERR sample, although the difference was not statistically significant (p= 0.054). Our study suggests that the differential methylation patterns of immune response-related genes, such as FOXP3 and ELANE, may be involved in IERR modulation, and this could be related to the presence of root canal infection. However, further studies are needed to corroborate these findings to determine the functional relevance of these alterations and their role in the pathogenesis of IERR.
Collapse
Affiliation(s)
| | - Sara Ferreira Dos Santos Costa
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ricardo Santiago Gomez
- Department of Oral Surgery and Pathology, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Juliana Vilela Bastos
- Department of Restorative Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| |
Collapse
|
29
|
Zhang K, Qiu W, Wu B, Fang F. Long non‑coding RNAs are novel players in oral inflammatory disorders, potentially premalignant oral epithelial lesions and oral squamous cell carcinoma (Review). Int J Mol Med 2020; 46:535-545. [PMID: 32626947 PMCID: PMC7307862 DOI: 10.3892/ijmm.2020.4628] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Accepted: 05/15/2020] [Indexed: 12/14/2022] Open
Abstract
In recent years, a large number of studies have shown that the abnormal expression of long non‑coding (lnc)RNAs can lead to a variety of different diseases, including inflammatory disorders, cardiovascular disease, nervous system diseases, and cancers. Recent research has demonstrated the biological characteristics of lncRNAs and the important functions of lncRNAs in oral inflammation, precancerous lesions and cancers. The present review aims to explore and discuss the potential roles of candidate lncRNAs in oral diseases by summarizing multiple lncRNA profiles in diseased and healthy oral tissues to determine the altered lncRNA signatures. In addition, to highlight the exact regulatory mechanism of lncRNAs in oral inflammatory disorders, potentially premalignant oral epithelial lesions and oral squamous cell carcinoma. The detection of lncRNAs in oral samples has the potential to be used as a diagnostic and an early detection tool for oral diseases. Furthermore, lncRNAs are promising future therapeutic targets in oral diseases, and research in this field may expand in the future.
Collapse
Affiliation(s)
- Kaiying Zhang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Wei Qiu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Buling Wu
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| | - Fuchun Fang
- Department of Stomatology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China
| |
Collapse
|
30
|
An S. Nitric Oxide in Dental Pulp Tissue: From Molecular Understanding to Clinical Application in Regenerative Endodontic Procedures. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:327-347. [PMID: 32131706 DOI: 10.1089/ten.teb.2019.0316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Nitric oxide (NO), which is synthesized by the enzyme NO synthase (NOS), is a versatile endogenous molecule with multiple biological effects on many tissues and organs. In dental pulp tissue, NO has been found to play multifaceted roles in regulating physiological activities, inflammation processes, and tissue repair events, such as cell proliferation, neuronal degeneration, angiogenesis, and odontoblastic differentiation. However, there is a deficiency of detailed discussion on the NO-mediated interactions between inflammation and reparative/regenerative responses in wounded dental pulp tissue, which is a central determinant of ultimate clinical outcomes. Thus, the purpose of this review is to outline the current molecular understanding on the roles of Janus-faced molecule NO in dental pulp physiology, inflammation, and reparative activities. Based on this knowledge, advanced physicochemical techniques designed to manipulate the therapeutic potential of NOS and NO production in endodontic regeneration procedures are further discussed. Impact statement The interaction between inflammation and reparative/regenerative responses is very important for regenerative endodontic procedures, which are biologically based approaches intended to replace damaged tissues. Inside dental pulp tissue, endogenous nitric oxide (NO) is generated mainly by immunocompetent cells and dental pulp cells and mediates not only inflammatory/immune activities but also signaling cascades that regulate tissue repair and reconstruction, indicating its involvement in both tissue destruction and regeneration. Thus, it is feasible that NO acts as one of the indicators and modulators in dental pulp repair or regeneration under physiological and pathological conditions.
Collapse
Affiliation(s)
- Shaofeng An
- Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Sun Yat-sen University, Guangzhou, P.R. China.,Guangdong Province Key Laboratory of Stomatology, Sun Yat-Sen University, Guangzhou, P.R. China
| |
Collapse
|
31
|
Zaccara IM, Mestieri LB, Pilar EFS, Moreira MS, Grecca FS, Martins MD, Kopper PMP. Photobiomodulation therapy improves human dental pulp stem cell viability and migration in vitro associated to upregulation of histone acetylation. Lasers Med Sci 2020; 35:741-749. [PMID: 32095920 DOI: 10.1007/s10103-019-02931-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/27/2019] [Indexed: 12/17/2022]
Abstract
This in vitro study evaluated the role of photobiomodulation therapy (PBMT) on viability and migration of human dental pulp stem cells (hDPSCs) and its association to epigenetic mechanisms such as histone acetylation. The hDPSCs were characterized and assigned into control and PBMT groups. For the PBMT, five laser irradiations at 6-h intervals were performed using a continuous-wave InGaAlP diode laser. Viability (MTT), migration (scratch), and histone acetylation H3 (H3K9ac immunofluorescence) were evaluated immediately after the last irradiation. PBMT significantly increased the viability (P = 0.004). Also, PBMT group showed significantly increased migration of cells in the wound compared to the control in 6 h (P = 0.002), 12 h (P = 0.014) and 18 h (P = 0.083) being faster than the control, which only finished the process at 24 h. PBMT induced epigenetic modifications in hDPSC due to increased histone acetylation (P = 0.001). PBMT increased viability and migration of hDPSCs, which are related with the upregulation of histone acetylation and could be considered a promising adjuvant therapy for regenerative endodontic treatment.
Collapse
Affiliation(s)
- Ivana M Zaccara
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Letícia B Mestieri
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Emily F S Pilar
- Department of Experimental Pathology, Clinics Hospital of Porto Alegre, Federal University of Rio Grande do Sul - UFRGS, Porto Alegre, Rio Grande do Sul, Brazil
| | - Maria S Moreira
- Department of Dentistry, School of Dentistry, University of Sao Paulo, Sao Paulo, Brazil.,Ibirapuera University, Sao Paulo, Brazil
| | - Fabiana S Grecca
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Manoela D Martins
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil
| | - Patrícia Maria Poli Kopper
- Dentistry Graduate Program, Department of Conservative Dentistry, School of Dentistry, Federal University of Rio Grande do Sul - UFRGS, Rua Ramiro Barcelos, 2492, Porto Alegre, Rio Grande do Sul, 90035-003, Brazil.
| |
Collapse
|
32
|
Cai L, Zhan M, Li Q, Li D, Xu Q. DNA methyltransferase DNMT1 inhibits lipopolysaccharide‑induced inflammatory response in human dental pulp cells involving the methylation changes of IL‑6 and TRAF6. Mol Med Rep 2019; 21:959-968. [PMID: 31974603 DOI: 10.3892/mmr.2019.10860] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 11/05/2019] [Indexed: 11/05/2022] Open
Abstract
Dental pulp inflammation is a pathological process characterized by local lesions in dental pulp and the accumulation of inflammatory mediators. DNA methylation of cytosine residues is a key epigenetic modification that is essential for gene transcription, and plays pivotal roles in inflammatory reactions and immune responses. However, the function of cytosine DNA methylation in the innate immune defense against the inflammation of dental pulp is poorly understood. To investigate the effect of DNA methylation in inflamed dental pulp upon innate immune responses, expression levels of the DNA methyltransferases (DNMT1, DNMT3a and DNMT3b) in human dental pulp cells (hDPCs) after lipopolysaccharide (LPS) stimulation were evaluated by western blotting and reverse transcription‑quantitative (RT‑q) PCR. Only DNMT1 expression was decreased, while the transcription of inflammatory cytokines was increased. In the immune responses of LPS‑induced hDPCs, the results of RT‑qPCR and ELISA showed that DNMT1 knockdown promoted the production of the pro‑inflammatory cytokines, interleukin (IL)‑6 and IL‑8. Western blotting demonstrated that DNMT1 knockdown increased the phosphorylation levels of IKKα/β and p38 in the NF‑κB and MAPK signaling pathways, respectively. Furthermore, MeDIP and RT‑qPCR analysis demonstrated that the 5‑methylcytosine levels of the IL‑6 and TNF receptor‑associated factor 6 (TRAF6) promoters were significantly decreased in DNMT1‑deficient hDPCs. Taken together, these results indicated that the expression of DNMT1 was decreased after LPS stimulation in hDPCs. DNMT1 depletion increased LPS‑induced cytokine secretion, and activated NF‑κB and MAPK signaling; these mechanisms may involve the decreased methylation levels of the IL‑6 and TRAF6 gene promoters. This study emphasized the role of DNMT1‑dependent DNA methylation on the inflammation of LPS‑infected dental pulp and provides a new rationale for the investigation of the molecular mechanisms of inflamed dental pulps.
Collapse
Affiliation(s)
- Luhui Cai
- Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Minkang Zhan
- Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Qimeng Li
- Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Di Li
- Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| | - Qiong Xu
- Guanghua School of Stomatology and Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
| |
Collapse
|
33
|
Rajan S, Ljunggren A, Manton DJ, Björkner AE, McCullough M. Post-mitotic odontoblasts in health, disease, and regeneration. Arch Oral Biol 2019; 109:104591. [PMID: 31710968 DOI: 10.1016/j.archoralbio.2019.104591] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 10/09/2019] [Accepted: 10/20/2019] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Description of the odontoblast lifecycle, an overview of the known complex molecular interactions that occur when the health of the dental pulp is challenged and the current and future management strategies on vital and non-vital teeth. METHODS A literature search of the electronic databases included MEDLINE (1966-April 2019), CINAHL (1982-April 2019), EMBASE and EMBASE Classic (1947-April 2019), and hand searches of references retrieved were undertaken using the following MESH terms 'odontoblast*', 'inflammation', 'dental pulp*', 'wound healing' and 'regenerative medicine'. RESULTS Odontoblasts have a sensory and mechano-transduction role so as to detect external stimuli that challenge the dental pulp. On detection, odontoblasts stimulate the innate immunity by activating defence mechanisms key in the healing and repair mechanisms of the tooth. A better understanding of the role of odontoblasts within the dental pulp complex will allow an opportunity for biological management to remove the cause of the insult to the dental pulp, modulate the inflammatory process, and promote the healing and repair capabilities of the tooth. Current strategies include use of conventional dental pulp medicaments while newer methods include bioactive molecules, epigenetic modifications and tissue engineering. CONCLUSION Regenerative medicine methods are in their infancy and experimental stages at best. This review highlights the future direction of dental caries management and consequently research.
Collapse
Affiliation(s)
- S Rajan
- The University of Melbourne, Australia.
| | | | - D J Manton
- The University of Melbourne, Australia; Centrum voor Tandheelkunde en Mondzorgkunde, UMCG, University of Groningen, the Netherlands
| | | | | |
Collapse
|
34
|
Brodzikowska A, Gondek A, Rak B, Paskal W, Pełka K, Cudnoch-Jędrzejewska A, Włodarski P. Metalloproteinase 14 (MMP-14) and hsa-miR-410-3p expression in human inflamed dental pulp and odontoblasts. Histochem Cell Biol 2019; 152:345-353. [PMID: 31486923 PMCID: PMC6842353 DOI: 10.1007/s00418-019-01811-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2019] [Indexed: 11/30/2022]
Abstract
The objective of this study is to evaluate MMP-14 expression in odontoblasts and in the bulk of dental pulp of teeth with pulpitis; to determine the expression of microRNA-410 (miR-410) in pulp tissue, since sequence analysis suggests that miR-410 has potential binding site on MMP-14’s 3′UTR, and hence, can regulate expression of the latter one. Tissue samples of dental pulp from teeth with pulpitis and healthy (control) were formalin fixed and paraffin embedded (FFPE). Samples were examined using immunohistochemical staining for MMP-14 and the expression of miR-410 was evaluated using qRT-PCR. In both, healthy and inflamed pulp odontoblasts stained more intensively than remaining pulp tissue, but this difference was not statistically significant. More positive staining was observed in inflamed pulps compared to healthy pulps. Expression of miR-410 was found significantly lower in inflamed pulps than in healthy ones. In the two examined zones, odontoblasts and remaining pulp, miR-410 was expressed on a similar level. No statistically significant correlation of miR-410 and MMP-14 expression was found. We showed that inflammation changes the MMP-14 expression in pulp tissue and odontoblasts. This study demonstrates for the first time miR-410 expression in human dental pulp and that expression of this microRNA was downregulated in inflamed dental pulp and odontoblasts.
Collapse
Affiliation(s)
- Aniela Brodzikowska
- The Department of Conservative Dentistry, Medical University of Warsaw, Miodowa 18, 00-246, Warsaw, Poland.
| | - Agata Gondek
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Beata Rak
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warsaw, Poland.,Department of Internal Medicine and Endocrinology, Medical University of Warsaw, Banacha 1a, Warsaw, Poland
| | - Wiktor Paskal
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Kacper Pełka
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Agnieszka Cudnoch-Jędrzejewska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| | - Paweł Włodarski
- Laboratory of Centre for Preclinical Research, Department of Methodology, Medical University of Warsaw, Banacha 1b, 02-097, Warsaw, Poland
| |
Collapse
|
35
|
Qiao W, Huang Y, Bian Z, Sun X, Wang X, Gao Q, Peng Y, Meng L. Lipopolysaccharide-induced DNA damage response activates nuclear factor κB signalling pathway via GATA4 in dental pulp cells. Int Endod J 2019; 52:1704-1715. [PMID: 31260564 DOI: 10.1111/iej.13180] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Accepted: 06/27/2019] [Indexed: 12/12/2022]
Abstract
AIM To investigate the role of GATA-binding protein 4 (GATA4) in the inflammatory response induced by DNA double-strand breaks (DSBs) in human dental pulp cells (hDPCs). METHODOLOGY Lipopolysaccharide (LPS) was used for stimulating inflammation in dental pulp tissue in vivo and hDPCs in vitro. Expression levels of GATA4 and γ-H2A.X (a marker for DSBs) were detected at different stages of pulpitis in a rat model and human pulp tissues by immunohistochemistry. Real-time quantitative polymerase chain reaction and Western blot were performed to assess expression of GATA4 and γ-H2A.X and the activation of nuclear factor κB (NF-κB) in hDPCs stimulated by LPS. The comet assay was used for detecting the extent of DSBs in hDPCs. Immunocytochemistry and Western blot were utilized to evaluate expression of γ-H2A.X and GATA4 and activation of NF-κB in hDPCs pre-treated with inhibitors of DNA damage response or transfected with GATA4 small interfering RNA before the treatment of LPS. Data were analysed statistically using one-way anova or Kruskal-Wallis tests. RESULTS The expression of GATA4 and activation of DNA damage response and NF-κB in inflamed pulp tissue and LPS-treated hDPCs were identified. Significantly decreased expression of GATA4 and significantly decreased inflammatory processes in hDPCs were demonstrated via suppression of DNA damage response (P < 0.05). In GATA4-knockdown cells, the expression of γ-H2A.X did not change, but nuclear translocation of p65 was significantly suppressed (P < 0.05) upon induction by LPS. CONCLUSIONS Lipopolysaccharide-induced DSBs activated the NF-κB signalling pathway in hDPCs, and GATA4 acts as a positive moderator of the progress. The involvement of GATA4 in this pathology may serve as a therapeutic target in pulpitis.
Collapse
Affiliation(s)
- W Qiao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y Huang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China.,Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu, China
| | - Z Bian
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - X Sun
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - X Wang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Q Gao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - Y Peng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| | - L Meng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
36
|
Mo Z, Li Q, Cai L, Zhan M, Xu Q. The effect of DNA methylation on the miRNA expression pattern in lipopolysaccharide-induced inflammatory responses in human dental pulp cells. Mol Immunol 2019; 111:11-18. [PMID: 30952010 DOI: 10.1016/j.molimm.2019.03.012] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 02/07/2019] [Accepted: 03/26/2019] [Indexed: 02/06/2023]
Abstract
Endodontic infection is a widespread oral problem. DNA methylation is a key epigenetic modification that plays important roles in various inflammatory responses, but its role in dental pulp inflammation is poorly understood. In this study, we assessed the expression of DNA methyltransferases (DNMTs) in human dental pulp cells (hDPCs) during lipopolysaccharide (LPS)-induced inflammation and found that DNMT3B mRNA expression was reduced and DNMT1 mRNA and protein levels decreased significantly. Pretreatment with the DNMT inhibitor 5-Aza-2'-deoxycytidine (5-Aza-CdR) significantly enhanced the expression of the inflammatory cytokines IL-6 and IL-8 in LPS-stimulated hDPCs, indicating that DNA methylation may play a role in hDPC inflammation. Studies have reported that some microRNAs (miRNAs) are involved in dental pulp infection. DNA methylation can modulate the inflammatory response by regulating miRNA expression, but this phenomenon has not yet been reported in pulp inflammation. The present study used next-generation sequencing to examine the effect of 5-Aza-CdR on the miRNA expression profile of LPS-treated hDPCs, and the results showed that 5-Aza-CdR pretreatment changed the miRNA expression pattern in hDPCs during inflammation. Among the changed miRNAs, miR-146a-5p, which is a pulp inflammation-related miRNA, demonstrated the most noticeably altered expression. miR-146a-5p could be induced by LPS in hDPCs, and 5-Aza-CdR preincubation or DNMT1 knockdown markedly increased its expression level. However, no significant difference was found in the methylation pattern of the MIR146A promoter with 5-Aza-CdR pretreatment or DNMT1 knockdown in LPS-stimulated hDPCs. These results indicate that DNA methylation may regulate the LPS-induced inflammatory response by changing the miRNA expression in hDPCs.
Collapse
Affiliation(s)
- Zehuan Mo
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Qimeng Li
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Luhui Cai
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Minkang Zhan
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| | - Qiong Xu
- Guanghua School of Stomatology & Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, 510055, Guangdong, People's Republic of China.
| |
Collapse
|
37
|
Zhang N, Zhang Q, Yang W, Miao L, Wang N, Wei S, Ge J, Li X, Wu J. Decreased expression of microRNA-30b promotes the development of pulpitis by upregulating the expression of interleukin-6 receptor. Exp Ther Med 2019; 17:3233-3238. [PMID: 30936998 DOI: 10.3892/etm.2019.7280] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2018] [Accepted: 05/11/2018] [Indexed: 02/07/2023] Open
Abstract
The present study aimed to examine the expression of interleukin-6 receptor (IL-6R) mRNA and protein in pulp tissues, blood and saliva from patients with pulpitis. It also investigated the association between IL-6R and microRNA (miR)-30b, as well as their effects on pulpitis. A total of 28 patients with pulpitis were recruited into the experimental group and 16 subjects with no pulpitis who also underwent tooth extraction were recruited into the control group. Pulp tissues, plasma and saliva were collected from all participants. Reverse transcription-quantitative polymerase chain reaction was used to determine the expression of IL-6R mRNA and miR-30b in all sample types. Western blot analysis was performed to examine the protein expression of IL-6R in pulp tissues, while ELISA was used to determine the contents of IL-6R protein in the plasma and saliva samples. A dual luciferase reporter assay was performed to verify the interactions between IL-6R and miR-30b. The expression of IL-6R mRNA in the pulp tissues, plasma and saliva was significantly increased in patients with pulpitis compared with the control group. Similarly, the IL-6R protein expression in the samples from patients with pulpitis were also significantly increased compared with the control group. Conversely, the expression of miR-30b was significantly reduced in the samples from patients with pulpitis compared with the control group. The dual luciferase reporter assay revealed that miR-30b may bind with the 3'-untranslated seed region of IL-6R mRNA to regulate its expression. The present study demonstrated that the upregulated expression of IL-6R in pulp tissues, plasma and saliva from patients with pulpitis was associated with the downregulation of miR-30b expression. In addition, miR-30b may affect the progression of pulpitis via IL-6R and may be a potential genetic marker for the diagnosis of pulpitis.
Collapse
Affiliation(s)
- Ning Zhang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Qingwei Zhang
- Department of Anesthesiology, Jiangsu Province Hospital, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, P.R. China
| | - Weidong Yang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Leiying Miao
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Nannan Wang
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Shanjing Wei
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Jiuyu Ge
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Xin Li
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| | - Juan Wu
- Department of Endodontics, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, Jiangsu 210000, P.R. China
| |
Collapse
|
38
|
Zhang L, Chen Z. Autophagy in the dentin-pulp complex against inflammation. Oral Dis 2018; 24:11-13. [PMID: 29480617 DOI: 10.1111/odi.12749] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 08/20/2017] [Accepted: 08/22/2017] [Indexed: 11/28/2022]
Abstract
The dentin-pulp complex is a highly specialized tissue for protecting the dental pulp. Odontoblasts are long-lived, hard-tissue-forming cells in the dentin-pulp complex and critically involved in inflammatory responses against invading pathogens. Autophagy is a highly conserved homeostasis mechanism of living cells under various stress conditions. Growing evidence in the literature addresses the role of autophagy in odontoblast differentiation and aging. This review summarizes the current knowledge about autophagy for the dentin-pulp complex in resisting inflammation.
Collapse
Affiliation(s)
- L Zhang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOS and Key Laboratory for Oral Biomedicine of Ministry of Education [KLOBM]), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Cariology & Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Z Chen
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOS and Key Laboratory for Oral Biomedicine of Ministry of Education [KLOBM]), School and Hospital of Stomatology, Wuhan University, Wuhan, China.,Department of Cariology & Endodontics, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| |
Collapse
|
39
|
Luo H, Wang C, Liu M, Yin B, A P, Huang D, Ye L. Inhibition of SOX9 Promotes Inflammatory and Immune Responses of Dental Pulp. J Endod 2018; 44:792-799. [PMID: 29571909 DOI: 10.1016/j.joen.2018.02.004] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 02/05/2023]
Abstract
INTRODUCTION The process of pulpitis is characterized by extracellular matrix imbalance and inflammatory cell infiltration. As an essential transcription factor, sex-determining region Y-box 9 (SOX9) is significantly inhibited by tumor necrosis factor alpha in inflammatory joint diseases. The aim of this study was to explore the role of SOX9 in extracellular matrix balance, cytokine expression, and the immune response in dental pulp. METHODS The expression of SOX9 in normal and inflamed pulp tissue/human dental pulp cells (HDPCs) was detected by immunohistochemistry, Western blot, and quantitative polymerase chain reaction (qPCR). SOX9 small interfering RNA was used to knock down SOX9 expression of dental cells in vitro; extracellular matrix imbalance was analyzed by qPCR, Western blot, and gelatin/collagen zymography, and the secretion of cytokines was scanned by antibody arrays. The immune response of THP-1 was investigated by cell migration assay, cell attachment assay, phagocytosis assay, and enzyme-linked immunosorbent assay. The interaction of SOX9 with target genes was explored by chromatin immunoprecipitation (ChIP). RESULTS SOX9 was strongly expressed in normal dental pulp tissue and HDPCs and reduced in inflamed pulp. SOX9 knockdown could inhibit the production of type I collagen, stimulate the enzymatic activities of MMP2 and MMP13, and regulate the production of interleukin (IL) 8 of HDPCs. SOX9 knockdown also effectively suppressed the differentiation and functional activities of THP-1. ChIP showed that the binding of the SOX9 protein with matrix metalloproteinase (MMP)-1, MMP-13, and IL-8 gene promoters was reduced after being treated with recombinant human tumor necrosis factor alpha. CONCLUSIONS SOX9 was inhibited in inflamed dental pulp and may participate in the regulation of extracellular matrix balance, the inflammatory process, and the immune response.
Collapse
Affiliation(s)
- Haiyun Luo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chenglin Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Mengyu Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bei Yin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Peng A
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Dingming Huang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.
| |
Collapse
|
40
|
EZH2 regulates dental pulp inflammation by direct effect on inflammatory factors. Arch Oral Biol 2017; 85:16-22. [PMID: 29028630 DOI: 10.1016/j.archoralbio.2017.10.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 09/22/2017] [Accepted: 10/07/2017] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Pulpitis is a multi-factorial disease that could be caused by complex interactions between genetics, epigenetics and environmental factors. We aimed to evaluate the role of Enhancer of Zeste Homolog 2 (EZH2) in the inflammatory response of human dental pulp cells (HDPCs) and dental pulp tissues. METHODS The expressions of inflammatory cytokines in HDPCs treated by EZH2 complex or EZH2 siRNA with or without rhTNF-α were examined by quantitative real-time polymerase chain reaction (q-PCR). The levels of secreted inflammatory cytokines including IL-6, IL-8, IL-15, CCL2 and CXCL12 in culture supernatants were measured by Luminex assay. In rat pulpitis model, the effects of EZH2 on dental pulp tissues were verified by histology. We invested the mechanisms of the effect of EZH2 on the inflammatory factors by ChIP assay. RESULTS EZH2 down-regulation inhibited the expression of inflammatory factors, including IL-6, IL-8, IL-15, CCL2 and CXCL12 in HDPCs. EZH2 complex promoted the expression and secretion of these inflammatory factors in HDPCs, while EZH2 silencing could attenuate the promotion of inflammatory factors that were induced by rhTNF-α. In pulpitis models of rats, EZH2 down-regulation inhibited the inflammatory process of dental pulp while EZH2 complex showed no significant facilitation of pulpal inflammation. In addition, EZH2 could bind on the promoters of IL-6, IL-8 and CCL2, but not IL-15 and CXCL12, to affect the transcription of these proinflammatory cytokines. CONCLUSIONS In HDPCs, EZH2 could induce inflammation, while EZH2 down-regulation could attenuate the inflammatory responses. EZH2 plays an important role in this inflammatory process of dental pulp.
Collapse
|
41
|
Corrigendum. Oral Dis 2017; 23:683. [DOI: 10.1111/odi.12671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|