1
|
Sun L, Wang F, Wang X, Zhang F, Ma S, Lv J. SATB1 mediated tumor colonization and β-catenin nuclear localization are associated with colorectal cancer progression. Cancer Biol Ther 2024; 25:2320307. [PMID: 38385627 PMCID: PMC10885174 DOI: 10.1080/15384047.2024.2320307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 02/14/2024] [Indexed: 02/23/2024] Open
Abstract
Colorectal cancer (CRC) is a malignancy with high incidence and poor prognosis. It is urgent to identify valuable biomarkers for early diagnosis and potent therapeutic targets. It has been reported that SATB1 is associated with the malignant progression in CRC. To explore the role of SATB1 in CRC progression and the underlying mechanism, we evaluated the expression of SATB1 in the paired CRC tissues with immunohistochemistry. The results showed that the expression of SATB1 in lymph node metastasis was higher than that in primary lesion, and that in distant organ metastasis was higher than that in primary lesion. The retrospective analysis showed that patients with high expression of SATB1 had a significantly worse prognosis than those with negative and moderate expression. In vitro experiments that employing SATB1 over-expressing and depleted CRC cell lines confirmed that SATB1 contributes to cell proliferation and colonization, while inhibiting cell motility. Furthermore, the tissue immunofluorescence assay, Co-IP and Western blot were conducted to reveal that SATB1 induced translocation of β-catenin and formed a protein complex with it in the nuclei. In conclusion, SATB1 mediated tumor colonization and β-catenin nuclear localization are associated with the malignant progression and poor prognosis of CRC.
Collapse
Affiliation(s)
- Luan Sun
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Feng Wang
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| | - Xufei Wang
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Feiying Zhang
- The second Clinical Medical School of Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Sujuan Ma
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, P.R. China
| | - Jinghuan Lv
- Department of Pathology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, P.R. China
| |
Collapse
|
2
|
Du Y, Hou Y, Shi Y, Liu J, Li T. Long Non-Coding RNA ELFN1-AS1 Promoted Colon Cancer Cell Growth and Migration via the miR-191-5p/Special AT-Rich Sequence-Binding Protein 1 Axis. Front Oncol 2021; 10:588360. [PMID: 33634016 PMCID: PMC7900510 DOI: 10.3389/fonc.2020.588360] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 11/09/2020] [Indexed: 12/24/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are reported to participate in tumor development. It has been manifested in previous researches that lncRNA ELFN1-AS1 is involved in early-stage colon adenocarcinoma with potential diagnostic value. However, no studies have revealed the specific mechanism of ELFN1-AS1 in colon cancer, and there are no other studies on whether ELFN1-AS1 is associated with tumorigenesis. In our study, ELFN1-AS1 with high expression in colon cancer was selected by TCGA analysis, and the survival analysis was carried out to verify it. Subsequently, qRT-PCR was adopted for validating the results in tissues and cell lines. Cell counting kit-8 (CCK8), 5-ethynyl-2'-deoxyuridine (EdU), cell colon, cell apoptosis, cell cycle, cell migration, and invasion assays were utilized to assess the role of ELFN1-AS1 in colon cancer. Results uncovered that ELFN1-AS1 expression was prominently raised in colon cancer cells and tissues. ELFN1-AS1 decrement restrained cells to grow through interfering with distribution of cell cycle and promoting apoptosis. Meanwhile, ELFN1-AS1 decrement weakened the capacity of cells to migrate and invade. What's more, ELFN1-AS1 was uncovered to act as a competing endogenous RNA (ceRNA) to decrease miR-191-5p expression, thus raising special AT-rich sequence-binding protein 1 (SATB1), a downstream target of ceRNA. To sum up, ELFN1-AS1 drives colon cancer cells to proliferate and invade through adjusting the miR-191-5p/SATB1 axis. The above results disclose that lncRNA ELFN1-AS1 is possibly a novel treatment target for colon cancer cases.
Collapse
Affiliation(s)
- Yongjun Du
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanmei Hou
- Department of Proctology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yongbo Shi
- Department of Proctology, Zigong City Hospital of Traditional Chinese Medicine, Zigong City, China
| | - Juan Liu
- Huai’an Second People’s Hospital and The Affiliated Huai’an Hospital of Xuzhou Medical University, Huai’an, China
| | - Tingxin Li
- Health Management Center, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
3
|
MicroRNA-100 functions as a tumor suppressor in cervical cancer via downregulating the SATB1 expression and regulating AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Oncol Lett 2020; 20:1336-1344. [PMID: 32724376 PMCID: PMC7377180 DOI: 10.3892/ol.2020.11686] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 03/03/2020] [Indexed: 12/13/2022] Open
Abstract
Cervical cancer (CC) is a common malignant tumor among women worldwide, remaining the fourth most frequent cause of cancer death in women. Currently, microRNA (miRNA) is a prevalent topic in tumor-related research. The present study focused on the mechanisms of miR-100 in CC progression. qRT-PCR analysis revealed that the miR-100 expression was notably decreased in CC tissues. In addition, miR-100 downregulation was confirmed to be significantly related to the malignant clinicopathologic features of CC patients. Furthermore, miR-100 overexpression was also verified to significantly repress CC cell proliferation, migration and invasion abilities through modulating the AKT/mTOR signaling pathway and epithelial-to-mesenchymal transition. Bioinformatics analysis and luciferase reporter assay identified that special AT-rich sequence-binding protein 1 was a functional target for miR-100 in CC cells. Moreover, miR-100 overexpression was found to markedly repress the CC tumor growth in vivo. In conclusion, the above results revealed that miR-100 functioned as a cancer suppressor in CC progression and may provide insights into the novel therapeutic target for CC treatment.
Collapse
|
4
|
SATB1 as oncogenic driver and potential therapeutic target in head & neck squamous cell carcinoma (HNSCC). Sci Rep 2020; 10:8615. [PMID: 32451408 PMCID: PMC7248088 DOI: 10.1038/s41598-020-65077-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Accepted: 04/26/2020] [Indexed: 01/05/2023] Open
Abstract
The Special AT-rich sequence binding protein 1 (SATB1) is a genome organizer protein that controls gene expression of numerous genes by regulating chromatin architecture and targeting chromatin-remodeling/-modifying enzymes onto specific chromatin regions. SATB1 is overexpressed in various tumors. In head and neck squamous cell carcinoma (HNSCC), SATB1 upregulation is correlated with TNM classification, metastasis, poor prognosis and reduced overall survival. In this paper, we comprehensively analyze cellular and molecular effects of SATB1 in a large set of primary cell lines from primary HNSCC or metastases, using RNAi-mediated knockdown in vitro and, therapeutically, in tumor xenograft mouse models in vivo. In a series of 15 cell lines, major differences in SATB1 levels are observed. In various 2-D and 3-D assays, growth inhibition upon efficient siRNA-mediated SATB1 knockdown depends on the cell line rather than initial SATB1 levels. Inhibitory effects are found to be based on cell cycle deceleration, apoptosis induction, decreased HER3 and Heregulin A&B expression, and effects on EMT genes. In vivo, systemic treatment of tumor xenograft-bearing mice with siRNAs formulated in polymeric nanoparticles inhibits tumor growth of two HNSCC xenograft models, resulting from therapeutic SATB1 reduction and concomitant decrease of proliferation and induction of apoptosis. In conclusion, SATB1 represents a promising target in HNSCC, affecting crucial cellular processes and molecular pathways.
Collapse
|
5
|
Molecular Mechanisms of p63-Mediated Squamous Cancer Pathogenesis. Int J Mol Sci 2019; 20:ijms20143590. [PMID: 31340447 PMCID: PMC6678256 DOI: 10.3390/ijms20143590] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 07/12/2019] [Accepted: 07/15/2019] [Indexed: 12/20/2022] Open
Abstract
The p63 gene is a member of the p53/p63/p73 family of transcription factors and plays a critical role in development and homeostasis of squamous epithelium. p63 is transcribed as multiple isoforms; ΔNp63α, the predominant p63 isoform in stratified squamous epithelium, is localized to the basal cells and is overexpressed in squamous cell cancers of multiple organ sites, including skin, head and neck, and lung. Further, p63 is considered a stem cell marker, and within the epidermis, ΔNp63α directs lineage commitment. ΔNp63α has been implicated in numerous processes of skin biology that impact normal epidermal homeostasis and can contribute to squamous cancer pathogenesis by supporting proliferation and survival with roles in blocking terminal differentiation, apoptosis, and senescence, and influencing adhesion and migration. ΔNp63α overexpression may also influence the tissue microenvironment through remodeling of the extracellular matrix and vasculature, as well as by enhancing cytokine and chemokine secretion to recruit pro-inflammatory infiltrate. This review focuses on the role of ΔNp63α in normal epidermal biology and how dysregulation can contribute to cutaneous squamous cancer development, drawing from knowledge also gained by squamous cancers from other organ sites that share p63 overexpression as a defining feature.
Collapse
|
6
|
Wei L, Ye H, Li G, Lu Y, Zhou Q, Zheng S, Lin Q, Liu Y, Li Z, Chen R. Cancer-associated fibroblasts promote progression and gemcitabine resistance via the SDF-1/SATB-1 pathway in pancreatic cancer. Cell Death Dis 2018; 9:1065. [PMID: 30337520 PMCID: PMC6194073 DOI: 10.1038/s41419-018-1104-x] [Citation(s) in RCA: 121] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2018] [Revised: 09/26/2018] [Accepted: 09/26/2018] [Indexed: 02/08/2023]
Abstract
Cancer-associated fibroblasts (CAFs), a dominant component of the pancreatic tumor microenvironment, are mainly considered as promotors of malignant progression, but the underlying molecular mechanism remains unclear. Here, we show that SDF-1 secreted by CAFs stimulates malignant progression and gemcitabine resistance in pancreatic cancer, partially owing to paracrine induction of SATB-1 in pancreatic cancer cells. CAF-secreted SDF-1 upregulated the expression of SATB-1 in pancreatic cancer cells, which contributed to the maintenance of CAF properties, forming a reciprocal feedback loop. SATB-1 was verified to be overexpressed in human pancreatic cancer tissues and cell lines by quantitative real-time PCR, western blot, and immunohistochemical staining, which correlated with tumor progression and clinical prognosis in pancreatic cancer patients. We found that SATB-1 knockdown inhibited proliferation, migration, and invasion in SW1990 and PANC-1 cells in vitro, whereas overexpression of SATB-1 in Capan-2 and BxPC-3 cells had the opposite effect. Immunofluorescence staining showed that conditioned medium from SW1990 cells expressing SATB-1 maintained the local supportive function of CAFs. Furthermore, downregulation of SATB-1 inhibited tumor growth in mouse xenograft models. In addition, we found that overexpression of SATB-1 in pancreatic cancer cells participated in the process of gemcitabine resistance. Finally, we investigated the clinical correlations between SDF-1 and SATB-1 in human pancreatic cancer specimens. In summary, these findings demonstrated that the SDF-1/CXCR4/SATB-1 axis may be a potential new target of clinical interventions for pancreatic cancer patients.
Collapse
Affiliation(s)
- Lusheng Wei
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huilin Ye
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Guolin Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yuanting Lu
- Department of Radiology, Guangzhou women and children's medical center, Guangzhou Medical University, Guangzhou, Guangdong Province, China
| | - Quanbo Zhou
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Shangyou Zheng
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Qing Lin
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Yimin Liu
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.,Department of Radiotherapy, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhihua Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China. .,Department of Medical Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Rufu Chen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China. .,Department of Pancreatobiliary Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
7
|
Bierbaumer L, Schwarze UY, Gruber R, Neuhaus W. Cell culture models of oral mucosal barriers: A review with a focus on applications, culture conditions and barrier properties. Tissue Barriers 2018; 6:1479568. [PMID: 30252599 PMCID: PMC6389128 DOI: 10.1080/21688370.2018.1479568] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Understanding the function of oral mucosal epithelial barriers is essential for a plethora of research fields such as tumor biology, inflammation and infection diseases, microbiomics, pharmacology, drug delivery, dental and biomarker research. The barrier properties are comprised by a physical, a transport and a metabolic barrier, and all these barrier components play pivotal roles in the communication between saliva and blood. The sum of all epithelia of the oral cavity and salivary glands is defined as the blood-saliva barrier. The functionality of the barrier is regulated by its microenvironment and often altered during diseases. A huge array of cell culture models have been developed to mimic specific parts of the blood-saliva barrier, but no ultimate standard in vitro models have been established. This review provides a comprehensive overview about developed in vitro models of oral mucosal barriers, their applications, various cultivation protocols and corresponding barrier properties.
Collapse
Affiliation(s)
- Lisa Bierbaumer
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| | - Uwe Yacine Schwarze
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria
| | - Reinhard Gruber
- b Department of Oral Biology , School of Dentistry, Medical University of Vienna , Vienna , Austria.,c Austrian Cluster for Tissue Regeneration , Vienna , Austria.,d Department of Periodontology , School of Dental Medicine, University of Bern , Bern , Switzerland
| | - Winfried Neuhaus
- a Competence Unit Molecular Diagnostics, Center Health and Bioresources, Austrian Institute of Technology (AIT) GmbH , Vienna , Austria
| |
Collapse
|
8
|
Hong Y, He H, Sui W, Zhang J, Zhang S, Yang D. Long non-coding RNA H1 promotes cell proliferation and invasion by acting as a ceRNA of miR‑138 and releasing EZH2 in oral squamous cell carcinoma. Int J Oncol 2018; 52:901-912. [PMID: 29344674 DOI: 10.3892/ijo.2018.4247] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 11/29/2017] [Indexed: 11/06/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) have been shown to play pivotal roles in various types of human cancer, including oral squamous cell carcinoma (OSCC). However, the potential mechanisms of action of lncRNAs in OSCC remain to be fully elucidated. The aim of the present study was to further explore the potential mechanisms of action of lncRNAs in OSCC. We first analyzed Gene Expression Omnibus (GEO) datasets to investigate aberrantly expressed lncRNAs which may be involved in the development of OSCC. Reverse transcription‑quantitative PCR (RT‑qPCR) was performed to analyze the expression levels of lncRNA H19. In addition, the correlation between H19 expression and the clinical characteristics and prognosis of patients with OSCC was statistically analyzed. The effects of H19 expression on OSCC cells were examined by using overexpression and RNA interference approaches in vitro and in vivo. To examine the competitive endogenous RNA (ceRNA) mechanisms, bioinformatics analysis and luciferase reporter assay were performed. In addition, the correlation between H19 and microRNA (miR)‑138 was detected. H19 was found to be upregulated in OSCC tissues and its high expression level was associated with the TNM stage and nodal invasion, and also correlated with a shorter overall survival of patients with OSCC. The knockdown of H19 significantly inhibited OSCC cell proliferation, migration, invasion and epithelial-mesenchymal transition (EMT), and induced apoptosis in vitro; it also suppressed subcutaneous tumor growth in vivo. In addition, H19 was found to regulate the expression of oncogene enhancer of zeste homolog 2 (EZH2) by competing with miR‑138; the inhibition of miR‑138 attenuated the inhibitory effects of H19 knockdown on OSCC cells. On the whole, our findings suggest that H19 functions as an oncogene by inhibiting miR‑138 and facilitating EZH2 expression in OSCC. Thus, lncRNA H1 may represent a potential therapeutic target for OSCC.
Collapse
Affiliation(s)
- Yonglong Hong
- Department of Oral and Maxillofacial Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Haitao He
- Department of Oral and Maxillofacial Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Wen Sui
- Department of Oral and Maxillofacial Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Jingge Zhang
- Department of Oral and Maxillofacial Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| | - Shenfu Zhang
- Department of Oral and Maxillofacial Surgery, Daping Hospital, The Third Military Medical University, Chongqing 400042, P.R. China
| | - Dajiang Yang
- Department of Oral and Maxillofacial Surgery, Shenzhen Hospital of Southern Medical University, Shenzhen, Guangdong 518100, P.R. China
| |
Collapse
|
9
|
LncSHRG promotes hepatocellular carcinoma progression by activating HES6. Oncotarget 2017; 8:70630-70641. [PMID: 29050307 PMCID: PMC5642582 DOI: 10.18632/oncotarget.19906] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Accepted: 07/12/2017] [Indexed: 12/19/2022] Open
Abstract
Hepatocellular carcinoma, one of the most common cancers, leads to mass mortality worldwide currently. However, the underlying mechanism of its oncogenesis remains to be elucidated. Here we identified that a long noncoding RNA, lncSHRG, was greatly upregulated in human hepatocellular carcinoma samples. We found that lncSHRG was essential for liver cancer cell proliferation and tumor propagation in mice. In mechanism, lncSHRG recruits SATB1 to bind to HES6 promoter and initiates HES6 expression. HES6, which is highly expressed in hepatocellular carcinoma, promotes tumor cell proliferation. High expression level of HES6 is positively correlated with clinical severity and poor prognosis of people with hepatocellular carcinoma. Altogether, our research provides a new insight on the mechanism of hepatocellular carcinoma progression.
Collapse
|
10
|
D'Arcangelo D, Tinaburri L, Dellambra E. The Role of p16 INK4a Pathway in Human Epidermal Stem Cell Self-Renewal, Aging and Cancer. Int J Mol Sci 2017; 18:ijms18071591. [PMID: 28737694 PMCID: PMC5536078 DOI: 10.3390/ijms18071591] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 07/13/2017] [Accepted: 07/19/2017] [Indexed: 12/31/2022] Open
Abstract
The epidermis is a self-renewing tissue. The balance between proliferation and differentiation processes is tightly regulated to ensure the maintenance of the stem cell (SC) population in the epidermis during life. Aging and cancer may be considered related endpoints of accumulating damages within epidermal self-renewing compartment. p16INK4a is a potent inhibitor of the G1/S-phase transition of the cell cycle. p16INK4a governs the processes of SC self-renewal in several tissues and its deregulation may result in aging or tumor development. Keratinocytes are equipped with several epigenetic enzymes and transcription factors that shape the gene expression signatures of different epidermal layers and allow dynamic and coordinated expression changes to finely balance keratinocyte self-renewal and differentiation. These factors converge their activity in the basal layer to repress p16INK4a expression, protecting cells from senescence, and preserving epidermal homeostasis and regeneration. Several stress stimuli may activate p16INK4a expression that orchestrates cell cycle exit and senescence response. In the present review, we discuss the role of p16INK4a regulators in human epidermal SC self-renewal, aging and cancer.
Collapse
Affiliation(s)
- Daniela D'Arcangelo
- Laboratory of Vascular Pathology, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Lavinia Tinaburri
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| | - Elena Dellambra
- Molecular and Cell Biology Laboratory, Istituto Dermopatico dell'Immacolata, Istituto di Ricovero e Cura a Carattere Scientifico (IDI-IRCCS), Fondazione Luigi Maria Monti (FLMM), via Monti di Creta 104, 00167 Rome, Italy.
| |
Collapse
|
11
|
Wang X, Yu X, Wang Q, Lu Y, Chen H. Expression and clinical significance of SATB1 and TLR4 in breast cancer. Oncol Lett 2017; 14:3611-3615. [PMID: 28927120 PMCID: PMC5587979 DOI: 10.3892/ol.2017.6571] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/04/2017] [Indexed: 12/11/2022] Open
Abstract
This study investigated the expression of special AT-rich sequence-binding protein 1 (SATB1) and toll-like receptor 4 (TLR4) protein in breast cancer and its clinical significance. We collected breast cancer tissues from 120 patients and adjacent non-cancerous tissue from 53 patients. SATB1 was expressed in 89 cases of breast cancer (74.17%) and in 7 cases of adjacent non-cancerous tissue (13.21%). TLR4 was expressed in 70 cases of breast cancer tissues (58.33%) and in 48 cases of adjacent non-cancerous tissue (90.57%). The differences of SATB and TLR4 in breast cancer and adjacent non-cancerous tissue were statistically significant. We found a negative correlation between the expression of SATB1 and TLR4 (r=−0.624, P<0.05). The expression of SATB1 and TLR4 were not significantly correlated with age, menopause, and PR and HER-2 protein expression, but were significantly correlated with tumor size, local lymphatic metastasis, histopathological grade, tumor stage, and ER protein expression (P<0.05). Overall, SATB1 and TLR4 proteins are involved in the development of breast cancer, a finding of great significance to identify therapeutic targets and prognosis markers for breast cancer.
Collapse
Affiliation(s)
- Xuebo Wang
- Department of Clinical Laboratory, Yuhuangding Hospital of Yantai, Yantai, Shandong 264000, P.R. China
| | - Xiumei Yu
- Department of Clinical Laboratory, Yuhuangding Hospital of Yantai, Yantai, Shandong 264000, P.R. China
| | - Qingli Wang
- Department of Cardiology, The People's Hospital of Zhangqiu, Zhangqiu, Shandong 250200, P.R. China
| | - Yingying Lu
- Department of Clinical Laboratory, People's Hospital of Rizhao, Rizhao, Shandong 276800, P.R. China
| | - Haixia Chen
- Department of Clinical Laboratory, Yeda Hospital of Yantai, Yantai, Shandong 264000, P.R. China
| |
Collapse
|