1
|
Drumond VZ, de Arruda JAA, de Andrade BAB, Diniz-Freitas M, Mesquita RA, Abreu LG. Dento-Craniofacial Features of Tricho-Dento-Osseous Syndrome: A Systematic Review and Meta-Analysis. SPECIAL CARE IN DENTISTRY 2025; 45:e70058. [PMID: 40402097 DOI: 10.1111/scd.70058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Revised: 05/03/2025] [Accepted: 05/07/2025] [Indexed: 05/23/2025]
Abstract
AIMS Tricho-dento-osseous syndrome (TDOS), a rare autosomal dominant condition caused by mutations in DLX3, is characterized by abnormalities in teeth, bone, and hair. This systematic review and meta-analysis summarized the most frequently reported dento-craniofacial features of TDOS. METHODS Searches were undertaken in five databases supplemented by manual scrutiny and a gray literature search. Observational and descriptive studies were included. Risk of bias was appraised using the Joanna Briggs Institute tools. Meta-analyses of continuous, binary, and proportion data were performed, with results reported as odds ratio (OR) and 95% confidence intervals (CI). RESULTS Twenty-seven studies describing 297 individuals with TDOS were included. Most studies demonstrated a low risk of bias. Taurodontism (70.5%), enamel hypoplasia (34.5%), and dental infections (28.7%) were the most prevalent dental findings. Increased bone density/thickness (43.8%) was the primary skeletal manifestation, and sparse hair (27.2%) was the most common hair abnormality. Meta-analyses revealed high odds for taurodontism (OR = 42.71; 95% CI = 7.45-244.75) and consistent prevalence estimates for taurodontism (73%; 95% CI = 0.52-0.97) and enamel hypoplasia (71%; 95% CI = 0.52-0.97). CONCLUSION Data confirm that TDOS predominantly affects dental, skeletal, and hair structures, highlighting the need for early diagnosis, multidisciplinary care, and tailored treatment approaches.
Collapse
Affiliation(s)
- Victor Zanetti Drumond
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - José Alcides Almeida de Arruda
- Department of Oral Diagnosis and Pathology, School of Dentistry, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Márcio Diniz-Freitas
- Special Care Dentistry Unit, Medicine and Dental School, University of Santiago de Compostela, Santiago de Compostela, Spain
- Medical-Surgical Dentistry Research Group (OMEQUI), Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela (USC), Santiago de Compostela, Spain
| | - Ricardo Alves Mesquita
- Department of Oral Surgery, Pathology and Clinical Dentistry, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Lucas Guimarães Abreu
- Department of Child and Adolescent Oral Health, School of Dentistry, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
2
|
Patni AP, Mout R, Moore R, Alghadeer A, Daley GQ, Baker D, Mathieu J, Ruohola-Baker H. Designed Soluble Notch Agonist Drives Human Ameloblast Maturation for Tooth Regeneration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.03.646929. [PMID: 40236031 PMCID: PMC11996494 DOI: 10.1101/2025.04.03.646929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Enamel, the hardest material in the human body, is required to protect our living organ, tooth. However, over 90% of adults have lost or damaged enamel and cannot regenerate the protective structure due to lack of enamel producing cells, ameloblasts. iPSC derived mature Ameloblasts (iAM) have promise in future regenerative dentistry. Today it is not known why iAM maturation requires intimate contact with the dentin producing cell type, odontoblast. Here we reveal that one of the critical signaling ligands emanating from odontoblasts for ameloblast maturation is Delta, the ligand for Notch receptor. We showed that our designed, soluble Notch agonist can induce iAM organoid maturation in an unprecedented manner, without interactions with odontoblast layer. This novel maturation procedure enables us to analyze the specific requirements of DLX3 function in ameloblasts, independent of its known function in odontoblasts. We now show that DLX3, the gene associated with Amelogenesis Imperfecta, is required on a cell-autonomous manner in ameloblasts for the expression of Enamelin and MMP20.
Collapse
|
3
|
Batkovskyte D, Swolin-Eide D, Hammarsjö A, Sæther KB, Thunström S, Lundin J, Eisfeldt J, Lindstrand A, Nordgren A, Åström E, Grigelioniene G. Structural Variants in COL1A1 and COL1A2 in Osteogenesis Imperfecta. Am J Med Genet A 2025; 197:e63935. [PMID: 39513464 DOI: 10.1002/ajmg.a.63935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/15/2024] [Accepted: 10/26/2024] [Indexed: 11/15/2024]
Abstract
Osteogenesis Imperfecta (OI) is a heterogeneous skeletal dysplasia characterized by bone fragility, skeletal deformities, and short stature. Most commonly, it is caused by autosomal dominant variants in the type I collagen genes, COL1A1 or COL1A2. Type I collagen is the main protein of the extracellular matrix in the skeleton and changes in its structure or quantity may lead to OI. 85%-90% of OI cases occur due to sequence variants in type I collagen genes, while OI caused by structural abnormalities in type I collagen genes is less common. In most cases, haploinsufficiency of type I collagen is associated with a milder OI phenotype. Large genomic deletions often involve several genes within the same chromosomal region, leading to microdeletion syndromes with OI features. Here, we report eight Swedish patients from five unrelated families with OI due to structural variants in the COL1A1 and COL1A2 genes. One patient with OI type III had a complex rearrangement with a deletion and duplication event in COL1A2, leading to reduced COL1A2 expression. Three other patients from two different families with OI type I had whole gene deletions involving COL1A1. In one family, three affected individuals with OI type I had a small intragenic deletion of exons 11-12 in COL1A2. One patient had a 2.1 Mb de novo deletion encompassing COL1A1 and DLX3 genes and features of OI and tricho-dento-osseous syndrome. Overall, this study highlights the importance of investigating gene dosage abnormalities in patients with OI and further delineates clinical and genetic variability of OI caused by structural variants in type I collagen genes.
Collapse
Affiliation(s)
- Dominyka Batkovskyte
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Diana Swolin-Eide
- Department of Pediatrics, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Pediatrics, Region Västra Götaland, Sahlgrenska University Hospital, Queen Silvia Children's Hospital, Gothenburg, Sweden
| | - Anna Hammarsjö
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Kristine Bilgrav Sæther
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Sofia Thunström
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institution of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Johanna Lundin
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Jesper Eisfeldt
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Lindstrand
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| | - Ann Nordgren
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Laboratory Medicine, Institute of Biomedicine, University of Gothenburg, Gothenburg, Sweden
| | - Eva Åström
- Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Department of Pediatric Neurology, Karolinska University Hospital, Stockholm, Sweden
| | - Giedre Grigelioniene
- Department of Molecular Medicine and Surgery and Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Department of Clinical Genetics and Genomics, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
4
|
Li S, Min Z, Wang T, Hou B, Su Z, Zhang C. Prevalence and root canal morphology of taurodontism analyzed by cone-beam computed tomography in Northern China. BMC Oral Health 2025; 25:5. [PMID: 39748390 PMCID: PMC11697681 DOI: 10.1186/s12903-024-05294-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 12/03/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND To evaluate the prevalence and characteristics of taurodontism in northern China by using cone-beam computed tomography (CBCT) and assisting the treatment. METHODS The study involved CBCT scans of 8112 teeth from 507 participants of northern China, comprising 217 males and 290 females aged 18 to 60. Analysis was conducted using Shifman and Chanannel's criteria to assess the prevalence and attributes of taurodontism, examining differences based on tooth position (maxilla and mandible) as well as gender (P < 0.05). Specific morphology including C-shaped canal was recorded. The curvature of the canals was measured using a modified Schneider method. Moreover, we reported two failure cases with taurodontism referred to a retreatment. RESULTS Taurodontism was observed in 113 participants, affecting 23.50% of the males and 21.38% of the females in at least one tooth (P > 0.05). The prevalence was significant higher in maxilla (P < 0.05). The highest incidence of taurodontism was detected in premolars, 9.86% in the maxillary first premolars, and in molars, with 3.94% in the maxillary first molars. Regarding canal curvature, a higher incidence of curved canal could be found in maxillary and mandibular molars of taurodontism (47.50-66.67%), alongside an elevated prevalence of C-shaped taurodontism in mandibular second molars (71.43%). After follow-up, the healing response was satisfactory in both cases. CONCLUSION The study highlighted a higher incidence of taurodontism in maxilla, indicating a significant association between taurodontism, C-shaped characteristics, and canal curvature. Dentists are advised to carefully consider the presence of special morphologies during taurodontism treatment.
Collapse
Affiliation(s)
- Shaorong Li
- Department of Endodontics, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China
- Salivary Gland Disease Center, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Beijing Laboratory of Oral Health and Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China
| | - Ziheng Min
- Department of Endodontics, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China
| | - Tianhao Wang
- Department of Endodontics, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China
| | - Benxiang Hou
- Center for Microscope Enhanced Dentistry, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Zheng Su
- Department of VIP Dental Service, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China.
| | - Chen Zhang
- Department of Endodontics, Beijing Stomatological Hospital, Capital Medical University, Tian Tan Xi Li No.4, Beijing, 100050, China.
| |
Collapse
|
5
|
Yang Y, Wang Y, Qin M, Zhao Y, Has C, Wang X. An intronic variant in LAMB3 contributes to junctional epidermolysis bullosa and enamel hypoplasia via translational attenuation. Arch Oral Biol 2025; 169:106101. [PMID: 39357391 DOI: 10.1016/j.archoralbio.2024.106101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/22/2024] [Accepted: 09/26/2024] [Indexed: 10/04/2024]
Abstract
OBJECTIVES This study aimed to investigate the genetic etiology of a family affected by junctional epidermolysis bullosa (JEB) and generalized enamel hypoplasia, and to explore how an intronic variant influenced the 5' untranslated region (5'UTR), thereby affecting LAMB3 expression and contributing to the pathogenesis of the disease. DESIGN Whole-exome and whole-genome sequencing were used to screen for genetic defects in the patient. Mutational consequences were characterized through luciferase assays, splice assay, in silico analyses, and verification using the patient's gingival sample. RESULTS A nonsense variant (c.2983 C>T; p.Gln995*) and an intronic variant (c.-38+2 T>C) of LAMB3 were identified. In vitro assays demonstrated that the intronic variant activated a cryptic splice site, resulting in a 120 bp intronic inclusion. This splicing alteration significantly reduced the translation efficiency of the downstream coding sequence, while overall mRNA expression remained unaffected. Bioinformatic analysis unveiled the creation of three upstream AUG codons, leading to the presence of two upstream open reading frames (uORFs) and one overlapping ORF. The longer uORF's AUG exhibited a moderate Kozak strength similar to that of the main ORF's AUG. Structural analysis of the mutant 5'UTR sequence revealed a more complex secondary structure, characterized by a large branch loop and a stem-loop preceding the coding sequence's start codon. CONCLUSION This study suggests that variants affecting the 5'UTR may contribute to the genetic etiology of JEB. These findings could help enhance the diagnostic accuracy and efficiency in JEB patients.
Collapse
Affiliation(s)
- Yi Yang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Yao Wang
- Department of Dermatology, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany
| | - Man Qin
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Cristina Has
- Department of Dermatology, Medical Faculty and Medical Center, University of Freiburg, Freiburg, Germany
| | - Xin Wang
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| |
Collapse
|
6
|
Chatzi D, Kyriakoudi SA, Dermitzakis I, Manthou ME, Meditskou S, Theotokis P. Clinical and Genetic Correlation in Neurocristopathies: Bridging a Precision Medicine Gap. J Clin Med 2024; 13:2223. [PMID: 38673496 PMCID: PMC11050951 DOI: 10.3390/jcm13082223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/09/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Neurocristopathies (NCPs) encompass a spectrum of disorders arising from issues during the formation and migration of neural crest cells (NCCs). NCCs undergo epithelial-mesenchymal transition (EMT) and upon key developmental gene deregulation, fetuses and neonates are prone to exhibit diverse manifestations depending on the affected area. These conditions are generally rare and often have a genetic basis, with many following Mendelian inheritance patterns, thus making them perfect candidates for precision medicine. Examples include cranial NCPs, like Goldenhar syndrome and Axenfeld-Rieger syndrome; cardiac-vagal NCPs, such as DiGeorge syndrome; truncal NCPs, like congenital central hypoventilation syndrome and Waardenburg syndrome; and enteric NCPs, such as Hirschsprung disease. Additionally, NCCs' migratory and differentiating nature makes their derivatives prone to tumors, with various cancer types categorized based on their NCC origin. Representative examples include schwannomas and pheochromocytomas. This review summarizes current knowledge of diseases arising from defects in NCCs' specification and highlights the potential of precision medicine to remedy a clinical phenotype by targeting the genotype, particularly important given that those affected are primarily infants and young children.
Collapse
Affiliation(s)
| | | | | | | | | | - Paschalis Theotokis
- Department of Histology-Embryology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (D.C.); (S.A.K.); (I.D.); (M.E.M.); (S.M.)
| |
Collapse
|
7
|
Quan J, Liu Y, Ji L, Zhao Y, Zheng S. A novel DLX3 mutation causes tricho-dento-osseous syndrome with abnormal enamel structure and formation. Arch Oral Biol 2024; 157:105849. [PMID: 38006713 DOI: 10.1016/j.archoralbio.2023.105849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/27/2023]
Abstract
OBJECTIVE This study aimed to identify a DLX3 gene mutation in a family with atypical clinical manifestations of tricho-dento-osseous syndrome (TDO) and its impact on tooth enamel thickness, microhardness, structure and formation. DESIGN Whole-exome sequencing detected DLX3 mutations in the family. Micro-CT, Vickers hardness tester, energy dispersive spectrometer and scanning electron microscopy were performed on the deciduous teeth of the proband and controls. In vitro experiments preliminarily verified the effect of this mutation on ameloblast differentiation and suggested possible molecular mechanisms. RESULTS We found a new DLX3 frame-shift mutation (NM_005220.3: c.604_605del: p. S202 *) in this family. Compared with control teeth, the mutant enamel showed a significant decrease in thickness, hardness and calcium content and an increase in magnesium content. The enamel structure appeared disordered. In an immortalized ameloblast-lineage cell (ALC) line, this mutation affected ameloblast differentiation and downregulated the expression levels of enamel matrix protein (EMP) genes (Amelx, Tuft1, Klk4, Ambn, Odam). A luciferase reporter assay demonstrated that this mutation significantly reduced the transactivation activity of DLX3 on Amelx/Odam/Klk4. CONCLUSION We found a new DLX3 mutation in a Chinese family with enamel dysplasia and that this mutation may affect ameloblast differentiation by inhibiting the transcriptional activity of Amelx/Odam/Klk4, thereby interfering with enamel formation. Our findings further expand the variation spectrum and enrich the evidence of molecular genetics of DLX3 mutations.
Collapse
Affiliation(s)
- Junkang Quan
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Yang Liu
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - LingLi Ji
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China
| | - Yuming Zhao
- Department of Pediatric Dentistry, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| | - Shuguo Zheng
- Department of Preventive Dentistry, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, PR China.
| |
Collapse
|
8
|
Saboori-Darabi S, Carrera P, Akbari A, Amiri-Yekta A, Almadani N, Battista Pipitone G, Shahrokh-Tehraninejad E, Lotfi M, Mazaheri M, Totonchi M. A heterozygous missense variant in DLX3 leads to uterine leiomyomas and pregnancy losses in a consanguineous Iranian family. Gene 2023; 865:147292. [PMID: 36854347 DOI: 10.1016/j.gene.2023.147292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 03/01/2023]
Abstract
Uterine leiomyomas (ULs) are benign solid tumors arising from the uterine myometrium. They are the most common pelvic tumors among females of reproductive age. Despite the universal prevalence of ULs and its huge impact on women's lives, the exact etiology and pathophysiologic mechanisms have not been fully understood. Numerous studies indicate that genetic factors play a crucial role in ULs development. This study aims to identify the probable genetic causes of ULs in a consanguineous Iranian family. Whole-exome sequencing (WES) on five family members with ULs revealed a likely pathogenic missense variant encoding for Y88C in the transactivation (TA) domain of DLX3 gene (c.263A > G; p.Y88C). Sanger sequencing of a total of 9 affected and non-affected family members indicated a segregation with disease with autosomal dominant inheritance. Moreover, targeted Sanger sequencing on 32 additional non-related patients with ULs showed none was heterozygous for this variant. MutPred2 predicted the pathogenicity of candidate variant by both phosphorylation and sulfation loss as actionable hypotheses. Project HOPE revealed that the identified variant residue is smaller and more hydrophobic comparing to the wild-type residue. I-TASSER and UCSF Chimera were also used for modeling and visualizing the predicted variant, respectively. This WES analysis is the first to report a variant in DLX3 variation associated with ULs pathogenicity in Iranian population highlighting the effectiveness of WES as a strong diagnostic method. However, further functional studies on this variant are needed to confirm the potential pathogenicity of this mutation.
Collapse
Affiliation(s)
- Samaneh Saboori-Darabi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Paola Carrera
- Laboratory of Clinical Molecular Biology and Cytogenetics, IRCCS San Raffaele Hospital, Milan, Italy
| | - Arvand Akbari
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Amir Amiri-Yekta
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Navid Almadani
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | | | - Ensieh Shahrokh-Tehraninejad
- Department of Endocrinology and Female Infertility, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran
| | - Marzieh Lotfi
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahta Mazaheri
- Department of Medical Genetics, School of Medicine, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Mother & Newborn Health Research Center, Shahid Sadoughi University of Medical Sciences, Yazd, Iran.
| | - Mehdi Totonchi
- Department of Genetics, Reproductive Biomedicine Research Center, Royan Institute for Reproductive Biomedicine, ACECR, Tehran, Iran; School of Biological Science, Institute for Research in Fundamental Sciences (IPM), Tehran, Iran.
| |
Collapse
|
9
|
Bloch-Zupan A, Rey T, Jimenez-Armijo A, Kawczynski M, Kharouf N, O-Rare consortium, Dure-Molla MDL, Noirrit E, Hernandez M, Joseph-Beaudin C, Lopez S, Tardieu C, Thivichon-Prince B, ERN Cranio Consortium, Dostalova T, Macek M, International Consortium, Alloussi ME, Qebibo L, Morkmued S, Pungchanchaikul P, Orellana BU, Manière MC, Gérard B, Bugueno IM, Laugel-Haushalter V. Amelogenesis imperfecta: Next-generation sequencing sheds light on Witkop's classification. Front Physiol 2023; 14:1130175. [PMID: 37228816 PMCID: PMC10205041 DOI: 10.3389/fphys.2023.1130175] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/06/2023] [Indexed: 05/27/2023] Open
Abstract
Amelogenesis imperfecta (AI) is a heterogeneous group of genetic rare diseases disrupting enamel development (Smith et al., Front Physiol, 2017a, 8, 333). The clinical enamel phenotypes can be described as hypoplastic, hypomineralized or hypomature and serve as a basis, together with the mode of inheritance, to Witkop's classification (Witkop, J Oral Pathol, 1988, 17, 547-553). AI can be described in isolation or associated with others symptoms in syndromes. Its occurrence was estimated to range from 1/700 to 1/14,000. More than 70 genes have currently been identified as causative. Objectives: We analyzed using next-generation sequencing (NGS) a heterogeneous cohort of AI patients in order to determine the molecular etiology of AI and to improve diagnosis and disease management. Methods: Individuals presenting with so called "isolated" or syndromic AI were enrolled and examined at the Reference Centre for Rare Oral and Dental Diseases (O-Rares) using D4/phenodent protocol (www.phenodent.org). Families gave written informed consents for both phenotyping and molecular analysis and diagnosis using a dedicated NGS panel named GenoDENT. This panel explores currently simultaneously 567 genes. The study is registered under NCT01746121 and NCT02397824 (https://clinicaltrials.gov/). Results: GenoDENT obtained a 60% diagnostic rate. We reported genetics results for 221 persons divided between 115 AI index cases and their 106 associated relatives from a total of 111 families. From this index cohort, 73% were diagnosed with non-syndromic amelogenesis imperfecta and 27% with syndromic amelogenesis imperfecta. Each individual was classified according to the AI phenotype. Type I hypoplastic AI represented 61 individuals (53%), Type II hypomature AI affected 31 individuals (27%), Type III hypomineralized AI was diagnosed in 18 individuals (16%) and Type IV hypoplastic-hypomature AI with taurodontism concerned 5 individuals (4%). We validated the genetic diagnosis, with class 4 (likely pathogenic) or class 5 (pathogenic) variants, for 81% of the cohort, and identified candidate variants (variant of uncertain significance or VUS) for 19% of index cases. Among the 151 sequenced variants, 47 are newly reported and classified as class 4 or 5. The most frequently discovered genotypes were associated with MMP20 and FAM83H for isolated AI. FAM20A and LTBP3 genes were the most frequent genes identified for syndromic AI. Patients negative to the panel were resolved with exome sequencing elucidating for example the gene involved ie ACP4 or digenic inheritance. Conclusion: NGS GenoDENT panel is a validated and cost-efficient technique offering new perspectives to understand underlying molecular mechanisms of AI. Discovering variants in genes involved in syndromic AI (CNNM4, WDR72, FAM20A … ) transformed patient overall care. Unravelling the genetic basis of AI sheds light on Witkop's AI classification.
Collapse
Affiliation(s)
- Agnes Bloch-Zupan
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut d’études avancées (USIAS), Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Eastman Dental Institute, University College London, London, United Kingdom
| | - Tristan Rey
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Alexandra Jimenez-Armijo
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Marzena Kawczynski
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Naji Kharouf
- Université de Strasbourg, Laboratoire de Biomatériaux et Bioingénierie, Inserm UMR_S 1121, Strasbourg, France
| | | | - Muriel de La Dure-Molla
- Rothschild Hospital, Public Assistance-Paris Hospitals (AP-HP), Reference Center for Rare Oral and Den-tal Diseases (O-Rares), Paris, France
| | - Emmanuelle Noirrit
- Centre Hospitalier Universitaire (CHU) Rangueil, Toulouse, Competence Center for Rare Oral and Den-tal Diseases, Toulouse, France
| | - Magali Hernandez
- Centre Hospitalier Régional Universitaire de Nancy, Université de Lorraine, Competence Center for Rare Oral and Dental Diseases, Nancy, France
| | - Clara Joseph-Beaudin
- Centre Hospitalier Universitaire de Nice, Competence Center for Rare Oral and Dental Diseases, Nice, France
| | - Serena Lopez
- Centre Hospitalier Universitaire de Nantes, Competence Center for Rare Oral and Dental Diseases, Nantes, France
| | - Corinne Tardieu
- APHM, Hôpitaux Universitaires de Marseille, Hôpital Timone, Competence Center for Rare Oral and Dental Diseases, Marseille, France
| | - Béatrice Thivichon-Prince
- Centre Hospitalier Universitaire de Lyon, Competence Center for Rare Oral and Dental Diseases, Lyon, France
| | | | - Tatjana Dostalova
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | - Milan Macek
- Department of Stomatology (TD) and Department of Biology and Medical Genetics (MM) Charles University 2nd Faculty of Medicine and Motol University Hospital, Prague, Czechia
| | | | - Mustapha El Alloussi
- Faculty of Dentistry, International University of Rabat, CReSS Centre de recherche en Sciences de la Santé, Rabat, Morocco
| | - Leila Qebibo
- Unité de génétique médicale et d’oncogénétique, CHU Hassan II, Fes, Morocco
| | | | | | - Blanca Urzúa Orellana
- Instituto de Investigación en Ciencias Odontológicas, Facultad de Odontología, Universidad de Chile, Santiago, Chile
| | - Marie-Cécile Manière
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
| | - Bénédicte Gérard
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| | - Isaac Maximiliano Bugueno
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Hôpitaux Universitaires de Strasbourg (HUS), Pôle de Médecine et Chirurgie Bucco-dentaires, Hôpital Civil, Centre de référence des maladies rares orales et dentaires, O-Rares, Filiére Santé Maladies rares TETE COU, European Reference Network ERN CRANIO, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
| | - Virginie Laugel-Haushalter
- Université de Strasbourg, Faculté de Chirurgie Dentaire, Strasbourg, France
- Université de Strasbourg, Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), IN-SERM U1258, CNRS- UMR7104, Illkirch, France
- Hôpitaux Universitaires de Strasbourg, Laboratoires de diagnostic génétique, Institut de Génétique Médicale d’Alsace, Strasbourg, France
| |
Collapse
|
10
|
Li Y, Qian F, Wang D, Wang Y, Wang W, Tian Y. Prevalence of taurodontism in individuals in Northwest China determined by cone-beam computed tomography images. Heliyon 2023; 9:e15531. [PMID: 37128323 PMCID: PMC10148092 DOI: 10.1016/j.heliyon.2023.e15531] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 04/05/2023] [Accepted: 04/13/2023] [Indexed: 05/03/2023] Open
Abstract
Objective The aim of this retrospective study was to evaluate the prevalence of taurodontism in a group of adult dental patients in Northwest China with the aid of cone-beam computed tomography (CBCT). Methods This study used Shifman and Chanannel's criteria to statistically analyze the prevalence of taurodontism in the premolars and molars of the Chinese population. CBCT images of 5488 teeth from 580 subjects of Chinese origin were evaluated. The measured data were statistically analyzed and the chi-square test was also used to compare the prevalence of taurodontism between male and female subjects and between the upper and lower jaws (P < 0.05). Results Taurodontism was detected in 169 patients, with a prevalence of 29.14%, of which 27.24% were males and 30.65% were females. The chi-square test showed that there was no significant difference between males and females (P > 0.05). Taurodontism was found in 7.45% of all teeth examined. Taurodonts were significantly more common in the maxilla (9.06%) than in the mandible (5.15%) (P < 0.001), and the maxillary second molar (25.18%) was the most common tooth affected. According to morphology, hypotaurodonts were the most common (60.39%) among taurodontic teeth. Conclusions Taurodontism was relatively common in the Chinese population and was almost equally distributed between males and females. The maxillary second molar was the most common tooth of all taurodonts measured, and taurodonts were significantly more common in the maxilla than in the mandible. Hypotaurodontism was the most common form of taurodontism. Our study provides a reference for dental deformities in the Chinese population and the diagnosis and treatment of taurodontism.
Collapse
Affiliation(s)
- Yujiao Li
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Fei Qian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Prosthodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Dan Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Yirong Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
| | - Wei Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Corresponding author. Department of Operative Dentistry and Endodontics, School of Stomatology, the Fourth Military Medical University, NO.145, Changle Xi Road, Xi'an, Shaanxi 710032, China.
| | - Yu Tian
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases & Shaanxi Key Laboratory of Stomatology, Department of Operative Dentistry and Endodontics, School of Stomatology, The Fourth Military Medical University, Xi’an, Shaanxi 710032, China
- Corresponding author. Department of Operative Dentistry and Endodontics, School of Stomatology, the Fourth Military Medical University, NO.145, Changle Xi Road, Xi'an, Shaanxi 710032, China.
| |
Collapse
|
11
|
High prevalence of taurodontism in North China and its relevant factors: a retrospective cohort study. Oral Radiol 2023; 39:266-274. [PMID: 35771318 DOI: 10.1007/s11282-022-00630-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 05/23/2022] [Indexed: 10/17/2022]
Abstract
OBJECTIVE The purpose of this study was to investigate the prevalence and relevant factors of taurodontism in North China. METHODS We retrospectively analysed the cone beam computed tomography (CBCT) of 1025 patients (496 male and 529 female) aged between 10 and 59 years. The crown-body/root (CB/R) ratios of the maxillary and mandibular molars were measured. The prevalence of hypotaurodontism, mesotaurodontism, and hypertaurodontism was then calculated and the incidence of taurodontism along with its relevant factors, was evaluated. RESULTS The overall rate of taurodontism in North China was as high as 78.9%. If the third molars (opsigenes) were excluded, which have a big morphological variation from each other, the rate was 52.4%. The mean CB/R ratio of taurodontism differs from tooth position: maxillary mandibular third molars > maxillary third molars > maxillary second molars > maxillary first molars > mandibular second molars > mandibular first molars (P < 0.05). In addition, the 1025 patients were divided into different age groups, and it was found that the mean CB/R ratio decreased with age (P < 0.05). Moreover, the CB/R ratio of the mandibular first and second molars in female patients was higher than males (P < 0.05). CONCLUSION This study revealed that taurodontism is widely prevalent in North China. The incidence of taurodontism increases the closer the tooth is to the back end of the dental arch, and quite a few of the maxillary and mandibular third molars teeth have tapered roots. And the taurodontism is decreased by age, as there were more affected female than male patients.
Collapse
|
12
|
Liu H, Wang Y, Liu H, Yu M, Zheng J, Feng H, Liu Y, Han D. Novel DLX3 variant identified in a family with tricho-dento-osseous syndrome. Arch Oral Biol 2022; 141:105479. [PMID: 35714441 DOI: 10.1016/j.archoralbio.2022.105479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Revised: 05/25/2022] [Accepted: 06/07/2022] [Indexed: 11/02/2022]
Abstract
OBJECTIVES To identify DLX3 variants in a Chinese family with typical clinical manifestations of tricho-dento-osseous syndrome (TDO). DESIGN Sanger sequencing was performed to detect DLX3 variants in the TDO family. Three-dimensional laser scanning microscopy, bioinformatic and conformational analyses were employed to explore the phenotypic characterization and the functional impact. RESULTS We identified a novel heterozygous variant in the DLX3 gene (c.534G>C; p.Gln178His). Familial co-segregation verified an autosomal dominant inheritance pattern. Bioinformatic prediction demonstrated the deleterious effects of the variant, and DLX3 structure changes suggested the corresponding functional impairments. CONCLUSIONS We identified a variant in the DLX3 gene in an integrated family of Han nationality for the first time. This study expands the variant spectrum of DLX3 and phenotype spectrum of TDO syndrome.
Collapse
Affiliation(s)
- Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yue Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China; Department of Prosthodontics, School and Hospital of Stomatology, China Medical University, Liaoning Provincial Key Laboratory of Oral Diseases, Shenyang, China
| | - Hangbo Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Jinglei Zheng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center of Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices & Beijing Key Laboratory of Digital Stomatology & Research Center of Engineering and Technology for Computerized Dentistry Ministry of Health & NMPA Key Laboratory for Dental Materials, Beijing, China.
| |
Collapse
|
13
|
Morsczeck C. Mechanisms during Osteogenic Differentiation in Human Dental Follicle Cells. Int J Mol Sci 2022; 23:5945. [PMID: 35682637 PMCID: PMC9180518 DOI: 10.3390/ijms23115945] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 05/19/2022] [Accepted: 05/23/2022] [Indexed: 12/22/2022] Open
Abstract
Human dental follicle cells (DFCs) as periodontal progenitor cells are used for studies and research in regenerative medicine and not only in dentistry. Even if innovative regenerative therapies in medicine are often considered the main research area for dental stem cells, these cells are also very useful in basic research and here, for example, for the elucidation of molecular processes in the differentiation into mineralizing cells. This article summarizes the molecular mechanisms driving osteogenic differentiation of DFCs. The positive feedback loop of bone morphogenetic protein (BMP) 2 and homeobox protein DLX3 and a signaling pathway associated with protein kinase B (AKT) and protein kinase C (PKC) are presented and further insights related to other signaling pathways such as the WNT signaling pathway are explained. Subsequently, some works are presented that have investigated epigenetic modifications and non-coding ncRNAs and their connection with the osteogenic differentiation of DFCs. In addition, studies are presented that have shown the influence of extracellular matrix molecules or fundamental biological processes such as cellular senescence on osteogenic differentiation. The putative role of factors associated with inflammatory processes, such as interleukin 8, in osteogenic differentiation is also briefly discussed. This article summarizes the most important insights into the mechanisms of osteogenic differentiation in DFCs and is intended to be a small help in the direction of new research projects in this area.
Collapse
Affiliation(s)
- Christian Morsczeck
- Department of Oral and Maxillofacial Surgery, University Hospital Regensburg, Franz-Josef-Strauss-Allee 11, 93053 Regensburg, Germany
| |
Collapse
|
14
|
Khan MI, Ahmed N, Neela PK, Unnisa N. The Human Genetics of Dental Anomalies. Glob Med Genet 2022; 9:76-81. [PMID: 35707781 PMCID: PMC9192175 DOI: 10.1055/s-0042-1743572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 12/29/2021] [Indexed: 11/17/2022] Open
Abstract
The development of tooth is a highly complex procedure and mastered by specific genetic programs. Genetic alterations, environmental factors, and developmental timing can disturb the execution of these programs, and result in various dental anomalies like hypodontia/oligodontia, and supernumerary teeth, which are commonly seen in our clinical practice. Advances in molecular research enabled the identification of various genes involved in the pathogenesis of dental anomalies. In the near future, it will help provide a more accurate diagnosis and biological-based treatment for these anomalies. In this article, we present the molecular phenomenon of tooth development and the genetics of various dental anomalies.
Collapse
Affiliation(s)
- Mahamad Irfanulla Khan
- Department of Orthodontics & Dentofacial Orthopedics, The Oxford Dental College, Bangalore, Karnataka, India
| | - Nadeem Ahmed
- General Dental Practitioner, Max Dental Specialties, Bangalore, Karnataka, India
| | - Praveen Kumar Neela
- Department of Orthodontics & Dentofacial Orthopedics, Kamineni Institute of Dental Sciences, Narketpally, Andhra Pradesh, India
| | - Nayeem Unnisa
- General Dental Practitioner, The Dental Clinic, Bangalore, Karnataka, India
| |
Collapse
|
15
|
Fazel M, Afshari E, Jarrahi N. Dental management of tricho-dento-osseous syndrome in adolescent patients: Literature review and case presentation. Dent Res J (Isfahan) 2022; 18:98. [PMID: 35003563 PMCID: PMC8672132 DOI: 10.4103/1735-3327.330879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 02/22/2021] [Accepted: 04/19/2021] [Indexed: 11/04/2022] Open
Abstract
Tricho-dento-osseous syndrome (TDO) is a rare autosomal dominant disorder with complete penetrance. Common clinical features include abnormalities of hair, teeth, and skull. Dental management of TDO patients is quite challenging in terms of existing dental and skeletal problems. The current article presents a 12-year-old girl suffering TDO, followed by a review on the published literature pertaining to the dental management of TDO patients. Patient history included, rejected corneal transplantation, stone-forming kidneys, and several previous dental treatments. She was noted to have signs of mandibular prognatia, frontal bossing of the skull, mild bilateral tibial bowing, microstomia, and labial fissures. Dental findings included severe generalized enamel defects, discolored teeth, microdontia, anterior open-bite, posterior cross-bite, deep periodontal pockets, hyperplastic inflamed gingiva, taurodontism of permanent molars, dental periapical radiolucencies, and missing teeth. She was the only child of healthy, nonconsanguineous parents with no familial history of similar congenital syndrome or dental abnormalities. A treatment plan was established based on medical/dental history and findings, using a team-based approach. This article emphasizes the importance of a multidisciplinary approach for the dental management of patients suffering TDO.
Collapse
Affiliation(s)
- Mojtaba Fazel
- Department of Emergency Medicine, School of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Elham Afshari
- Department of Pediatric Dentistry, School of Dentistry, Golestan university of Medical Sciences, Gorgan, Iran
| | - Neda Jarrahi
- Department of Prosthodontics, School of Dentistry, North Khorasan University of Medical Sciences, Bojnord, Iran
| |
Collapse
|
16
|
Chetty M, Roomaney IA, Beighton P. Taurodontism in dental genetics. BDJ Open 2021; 7:25. [PMID: 34244468 PMCID: PMC8270984 DOI: 10.1038/s41405-021-00081-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 05/19/2021] [Accepted: 06/03/2021] [Indexed: 02/06/2023] Open
Abstract
Taurodontism is a dental anomaly defined by enlargement of the pulp chamber of multirooted teeth with apical displacement of the pulp floor and bifurcation of the roots. Taurodontism can be an isolated trait or part of a syndrome. A study was conducted to document the dental and craniofacial aspects of genetic thin bone disorders in South Africa. Sixty-four individuals with Osteogenesis imperfecta (OI), one individual with Pyle disease and one with Torg-Winchester syndrome respectively, were assessed clinically, radiographically and at a molecular level. Ten patients with OI XI and those with Pyle disease and Torg-Winchester syndrome had taurodontism. Taurodontism has been identified in several genetic disorders necessitating cognizance of the possible existence and implications of this characteristic when managing patients in the dental environment. Further studies should be directed toward identifying the incidence, etiology, and molecular pathways leading to taurodontism and its relationship to genetic syndromes.
Collapse
Affiliation(s)
- Manogari Chetty
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa.
- University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa.
| | - Imaan A Roomaney
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
- University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa
| | - Peter Beighton
- Department of Craniofacial Biology, Faculty of Dentistry, University of the Western Cape, Cape Town, South Africa
- University of the Western Cape/University of Cape Town Combined Dental Genetics Clinic, Red Cross Childrens' Hospital, Cape Town, South Africa
- Division of Human Genetics, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
17
|
Li J, Lee MO, Davis BW, Wu P, Hsieh Li SM, Chuong CM, Andersson L. The crest phenotype in domestic chicken is caused by a 197 bp duplication in the intron of HOXC10. G3-GENES GENOMES GENETICS 2021; 11:6062401. [PMID: 33704432 PMCID: PMC8022956 DOI: 10.1093/g3journal/jkaa048] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Accepted: 11/01/2020] [Indexed: 11/12/2022]
Abstract
The Crest mutation in chicken shows incomplete dominance and causes a spectacular phenotype in which the small feathers normally present on the head are replaced by much larger feathers normally present only in dorsal skin. Using whole-genome sequencing, we show that the crest phenotype is caused by a 197 bp duplication of an evolutionarily conserved sequence located in the intron of HOXC10 on chromosome 33. A diagnostic test showed that the duplication was present in all 54 crested chickens representing eight breeds and absent from all 433 non-crested chickens representing 214 populations. The mutation causes ectopic expression of at least five closely linked HOXC genes, including HOXC10, in cranial skin of crested chickens. The result is consistent with the interpretation that the crest feathers are caused by an altered body region identity. The upregulated HOXC gene expression is expanded to skull tissue of Polish chickens showing a large crest often associated with cerebral hernia, but not in Silkie chickens characterized by a small crest, both homozygous for the duplication. Thus, the 197 bp duplication is required for the development of a large crest and susceptibility to cerebral hernia because only crested chicken show this malformation. However, this mutation is not sufficient to cause herniation because this malformation is not present in breeds with a small crest, like Silkie chickens.
Collapse
Affiliation(s)
- Jingyi Li
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.,Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, College of Animal Science and Technology, Huazhong Agricultural University, 430070 Wuhan, Hubei, China
| | - Mi-Ok Lee
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Brian W Davis
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Ping Wu
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Shu-Man Hsieh Li
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA.,Center for Craniofacial Molecular Biology, Ostrow School of Dentistry, University of Southern California, Los Angeles, CA 90033, USA.,Department of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Cheng-Ming Chuong
- Department of Pathology, University of Southern California, Los Angeles, CA 90033, USA
| | - Leif Andersson
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA.,Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden.,Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-750 07 Uppsala, Sweden
| |
Collapse
|
18
|
Haghighat A, Pourarz S, Ghazizadeh M, Talebzadeh Z. An unusual case of tricho-dento-osseous syndrome. Dent Res J (Isfahan) 2020; 17:480-483. [PMID: 33889355 PMCID: PMC8045528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Tricho-dento-osseous (TDO) syndrome is a multisystem congenital disorder that is known by bone, skin, and hair abnormalities. Primitive studies show different varieties of manifestations related to this disorder, which involve sclerotic bones, nail involvement, enamel hypoplasia, mandibular prognathism, and taurodontism. Although exploring different TDO cases revealed genetic mutations in all of them, they have many variations in phenotypic view. In this study, we report a case whose primary diagnosis was alopecia and came for extraction of her third molars, but after clinical and radiographic examination, it was found that the cause of her disease was something different.
Collapse
Affiliation(s)
- Abbas Haghighat
- Department of Oral and Maxillofacial Surgery, Dental Implants Research Center, School of Dentistry, Isfahan University of Medical Sciences, Kermanshah, Iran
| | - Sobhan Pourarz
- Department of Oral and Maxillofacial Surgery, School of Dentistry, Isfahan University of Medical Sciences, Kermanshah, Iran
| | - Maryam Ghazizadeh
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran,Address for correspondence: Dr. Maryam Ghazizadeh, 22 Bahman Street, Behzisti Square, Razi Building, Kermanshah, Iran. E-mail:
| | - Zahra Talebzadeh
- Department of Dermatology, Skin Diseases and Leishmaniasis Research Center, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
19
|
"Isolated" Amelogenesis Imperfecta Associated with DLX3 Mutation: A Clinical Case. Case Rep Genet 2020; 2020:8217919. [PMID: 32832172 PMCID: PMC7424401 DOI: 10.1155/2020/8217919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 01/08/2023] Open
Abstract
Amelogenesis imperfecta (AI) represents rare tooth anomalies that affect the quality and/or quantity of the enamel. Clinical phenotypes display a wide spectrum, ranging from mild color changes to severe structural alterations with daily pain. However, all affect the quality of life because of mechanical, psychological, esthetic, and/or social repercussions. Several gene mutations have been linked to AI as a nonsyndromic (isolated) phenotype or a wider syndrome. This case report aimed to present a family with dental structure anomalies followed up in the dental department of the Louis Mourier Hospital (APHP, France) for their extremely poor dental condition. The proband and his mother were clinically diagnosed with AI, and genetic analysis revealed an already described variant in DLX3. Then, the family was further examined for tricho-dento-osseous syndrome. This report illustrates the challenge of diagnosing dental structure anomalies, specifically AI, in adults and highlights the need for an accurate and accessible molecular diagnosis for those anomalies to discriminate between isolated and syndromic pathologies.
Collapse
|
20
|
Pang L, Zhang Z, Shen Y, Cheng Z, Gao X, Zhang B, Wang X, Tian H. Mutant dlx3b disturbs normal tooth mineralization and bone formation in zebrafish. PeerJ 2020; 8:e8515. [PMID: 32117623 PMCID: PMC7035872 DOI: 10.7717/peerj.8515] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 01/05/2020] [Indexed: 12/22/2022] Open
Abstract
Background Tricho-dento-osseous (TDO) syndrome is an autosomal dominant disorder characterized by anomalies in hair, teeth and bone (OMIM190320). Various mutations of Distal-Less 3 (DLX3) gene are found to be responsible for human TDO. The aim of this study was to investigate effects of DLX3 on tooth and bone development using a zebrafish model. Methods The dlx3b mutant zebrafish lines were established using the gene targeting tool transcription activator-like effector nuclease (TALEN). Micro-computed tomography was used to render the three-dimensional skeletal structures of mutant fishes. The pharyngeal bone along with connected teeth was isolated and stained by Alizarine Red S, then observed under stereomicroscope. Scanning electron microscopy (SEM) and energy dispersive spectrometer (EDS) were used to examine the tooth surface morphology and mineral composition. Quantitative real-time PCR was used to analyze gene expression. Results A moderate curvature of the spine toward the dorsal side was found at the early larval stages, appearing in 86 out of 100 larvae in dlx3b-/- group as compared to 3 out of 99 in the dlx3b+/+ group. At the adult stage, three of the thirty dlx3b-/- homozygotes exhibited prominent abnormal curvature in the spine. SEM revealed morphological surface changes in pharyngeal teeth enameloid, accompanied by a decrease in the mineral content detected by EDS. Furthermore, specific secretory calcium-binding phosphoprotein (SCPP) genes, including odam, scpp9, spp1, scpp1, and scpp5 were significantly downregulated in dlx3b mutants. Conclusion The findings of this study suggest that dlx3b is critical for enamel mineralization and bone formation in zebrafish. Moreover, the discovery of the downregulation of SCPP genes in dlx3b mutants sheds new light on the molecular mechanisms underlying TDO syndrome.
Collapse
Affiliation(s)
- Liping Pang
- Department of Cariology and Endodontology & National Clinical Research Center for Oral Disease & Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Zhichun Zhang
- Department of Cariology and Endodontology & National Clinical Research Center for Oral Disease & Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Yan Shen
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking Universiy, Beijing, PR China
| | - Zhenchao Cheng
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking Universiy, Beijing, PR China
| | - Xuejun Gao
- Department of Cariology and Endodontology & National Clinical Research Center for Oral Disease & Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Bo Zhang
- Key Laboratory of Cell Proliferation and Differentiation of the Ministry of Education, College of Life Sciences, Peking Universiy, Beijing, PR China
| | - Xiaoyan Wang
- Department of Cariology and Endodontology & National Clinical Research Center for Oral Disease & Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| | - Hua Tian
- Department of Cariology and Endodontology & National Clinical Research Center for Oral Disease & Beijing Key Laboratory of Digital Stomatology, School and Hospital of Stomatology, Peking University, Beijing, PR China
| |
Collapse
|
21
|
Ghazizadeh M, Haghighat A, Pourarz S, Talebzadeh Z. An unusual case of tricho–dento–osseous syndrome. Dent Res J (Isfahan) 2020. [DOI: 10.4103/1735-3327.302892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
22
|
Whitehouse LLE, Smith CEL, Poulter JA, Brown CJ, Patel A, Lamb T, Brown LR, O’Sullivan EA, Mitchell RE, Berry IR, Charlton R, Inglehearn CF, Mighell AJ. Novel DLX3 variants in amelogenesis imperfecta with attenuated tricho-dento-osseous syndrome. Oral Dis 2019; 25:182-191. [PMID: 30095208 PMCID: PMC6334507 DOI: 10.1111/odi.12955] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Revised: 07/12/2018] [Accepted: 08/03/2018] [Indexed: 12/20/2022]
Abstract
OBJECTIVES Variants in DLX3 cause tricho-dento-osseous syndrome (TDO, MIM #190320), a systemic condition with hair, nail and bony changes, taurodontism and amelogenesis imperfecta (AI), inherited in an autosomal dominant fashion. Different variants found within this gene are associated with different phenotypic presentations. To date, six different DLX3 variants have been reported in TDO. The aim of this paper was to explore and discuss three recently uncovered new variants in DLX3. SUBJECTS AND METHODS Whole-exome sequencing identified a new DLX3 variant in one family, recruited as part of an ongoing study of genetic variants associated with AI. Targeted clinical exome sequencing of two further families revealed another new variant of DLX3 and complete heterozygous deletion of DLX3. For all three families, the phenotypes were shown to consist of AI and taurodontism, together with other attenuated features of TDO. RESULTS c.574delG p.(E192Rfs*66), c.476G>T (p.R159L) and a heterozygous deletion of the entire DLX3 coding region were identified in our families. CONCLUSION These previously unreported variants add to the growing literature surrounding AI, allowing for more accurate genetic testing and better understanding of the associated clinical consequences.
Collapse
Affiliation(s)
| | - Claire E. L. Smith
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical SciencesUniversity of LeedsLeedsUK
| | | | | | - Anesha Patel
- Birmingham Dental Hospital and School of DentistryBirminghamUK
| | - Teresa Lamb
- Oxford University Hospitals NHS Foundation TrustOxfordUK
| | | | | | | | - Ian R. Berry
- Leeds Genetics LaboratorySt James’s University HospitalLeedsUK
| | - Ruth Charlton
- Leeds Genetics LaboratorySt James’s University HospitalLeedsUK
| | - Chris F. Inglehearn
- Section of Ophthalmology and Neuroscience, Leeds Institute of Biomedical and Clinical SciencesUniversity of LeedsLeedsUK
| | | |
Collapse
|