1
|
Srinivasan M, Curado TFF, Kamnoedboon P, Srisanoi K, Leles CR, Papi P, Romeo U. Peri-implantitis and peri-implant oral malignancies: a systematic review and meta-analysis of diagnostic challenges and potential associations. J Dent 2025:105773. [PMID: 40300690 DOI: 10.1016/j.jdent.2025.105773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/04/2025] [Accepted: 04/20/2025] [Indexed: 05/01/2025] Open
Abstract
OBJECTIVE This systematic review and meta-analysis aimed to investigate the potential association between peri-implantitis (PI) and peri-implant oral malignancies (PIOM). DATA AND SOURCES Systematic searches were conducted in Medline (PubMed), Embase, CENTRAL, and Web of Science up to December 10, 2024. Gray literature and reference lists were also searched. The protocol was registered in PROSPERO (CRD42024622566). Data synthesis involved descriptive analyses, Kaplan-Meier survival estimates, and a meta-analysis of proportion. STUDY SELECTION Studies were eligible if they reported PIOM cases. Animal studies, in vitro studies, reviews, and conference proceedings were excluded. A meta-analysis included retrospective studies reporting more than five PIOM cases. Inter-investigator reliability was assessed using Cohen's kappa statistic. CONCLUSIONS Fifty-seven studies (51 case reports/case series, 6 retrospective studies) involving 161 patients were included. Although the current evidence, limited to retrospective analyses and case reports, was insufficient to establish a definitive link, this review synthesized available data to provide preliminary insights and highlight directions for future research. The meta-analysis revealed that 50% of PIOM cases were initially misdiagnosed as PI, with squamous cell carcinoma being the most common final diagnosis (81% in case reports and 97% in retrospective studies). The median time from implant placement to PIOM diagnosis was 5 years, irrespective of traditional risk factors such as smoking, alcohol consumption, or previous cancer history. Although the evidence suggests a potential link between chronic peri-implant inflammation and malignant transformation, the limited nature of the available data highlights the need for prospective studies to establish causality and improve diagnostic protocols. CLINICAL SIGNIFICANCE PIOM can mimic peri-implantitis, leading to misdiagnosis and delayed treatment. Clinicians should maintain a high index of suspicion for malignancy in persistent peri-implant lesions unresponsive to conventional therapy, emphasizing the need for timely biopsy and histopathological evaluation, even in patients without traditional risk factors.
Collapse
Affiliation(s)
- Murali Srinivasan
- Clinic of General-, Special Care-, and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Thalita Fernandes Fleury Curado
- Clinic of General-, Special Care-, and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland; School of Dentistry, Federal University of Goias, Goiania, Brazil
| | - Porawit Kamnoedboon
- Clinic of General-, Special Care-, and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland; Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Kittipit Srisanoi
- Clinic of General-, Special Care-, and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland; Faculty of Dentistry, Khon Kaen University, Khon Kaen, Thailand
| | - Cláudio Rodrigues Leles
- Clinic of General-, Special Care-, and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland; School of Dentistry, Federal University of Goias, Goiania, Brazil
| | - Piero Papi
- Clinic of General-, Special Care-, and Geriatric Dentistry, Center for Dental Medicine, University of Zurich, Zurich, Switzerland; Department of Oral and Maxillo-Facial Sciences, "Sapienza" University of Rome, Rome, Italy.
| | - Umberto Romeo
- Department of Oral and Maxillo-Facial Sciences, "Sapienza" University of Rome, Rome, Italy
| |
Collapse
|
2
|
Domingo MG, Kurtz M, Maglione G, Martin M, Brites F, Tasat DR, Olmedo DG. Chronic exposure to TiO 2 micro- and nano particles: A biochemical and histopathological experimental study. J Biomed Mater Res B Appl Biomater 2024; 112:e35443. [PMID: 38968028 DOI: 10.1002/jbm.b.35443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 04/08/2024] [Accepted: 06/09/2024] [Indexed: 07/07/2024]
Abstract
The aim of this work was to analyze the effects of long-term exposure to titanium dioxide (TiO2) micro- (MPs) and nanoparticles (NPs) (six and 12 months) on the biochemical and histopathological response of target organs using a murine model. Male Wistar rats were intraperitoneally injected with a suspension of TiO2 NPs (5 nm; TiO2-NP5 group) or MPs (45 μm; TiO2-NP5 group); the control group was injected with saline solution. Six and 12 months post-injection, titanium (Ti) concentration in plasma and target organs was determined spectrometrically (ICP-MS). Blood smears and organ tissue samples were evaluated by light microscopy. Liver and kidney function was evaluated using serum biochemical parameters. Oxidative metabolism was assessed 6 months post-injection (determination of superoxide anion by nitroblue tetrazolium (NBT) test, superoxide dismutase (SOD) and catalase (CAT), lipid peroxidation, and paraoxonase 1). Titanium (Ti) concentration in target organs and plasma was significantly higher in the TiO2-exposed groups than in the control group. Histological evaluation showed the presence of titanium-based particles in the target organs, which displayed no structural alterations, and in blood monocytes. Oxidative metabolism analysis showed that TiO2 NPs were more reactive over time than MPs (p < .05) and mobilization of antioxidant enzymes and membrane damage varied among the studied organs. Clearance of TiO2 micro and nanoparticles differed among the target organs, and lung clearance was more rapid than clearance from the lungs and kidneys (p < .05). Conversely, Ti concentration in plasma increased with time (p < .05). In conclusion, neither serum biochemical parameters nor oxidative metabolism markers appear to be useful as biomarkers of tissue damage in response to TiO2 micro- and nanoparticle deposits at chronic time points.
Collapse
Affiliation(s)
- Mariela Gisele Domingo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
- Becario de Investigación de la Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Melisa Kurtz
- CONICET, Buenos Aires, Argentina
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
| | - Guillermo Maglione
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina
| | | | - Fernando Brites
- CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Lipoproteínas, Buenos Aires, Argentina
| | - Deborah Ruth Tasat
- Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA), Escuela de Ciencia y Tecnología, Universidad Nacional de San Martín-CONICET, Buenos Aires, Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología, Buenos Aires, Argentina
| | - Daniel Gustavo Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica, Buenos Aires, Argentina
- CONICET, Buenos Aires, Argentina
| |
Collapse
|
3
|
Schnurr E, Volz KU, Mosetter K, Ghanaati S, Hueber R, Preussler C. Interaction of Telomere Length and Inflammatory Biomarkers Following Zirconia Implant Placement: A Case Series. J ORAL IMPLANTOL 2023; 49:524-531. [PMID: 38349660 DOI: 10.1563/aaid-joi-d-22-00236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
Zirconia implants have gained popularity for their aesthetic appeal and biocompatibility, making them a preferred choice for anterior teeth replacement. This study explores the interaction between telomere length and inflammatory biomarkers in seven cases of zirconia implant placement to gain insights into postoperative cellular aging, inflammatory responses, and long-term outcomes. Zirconia implants offer advantages over titanium implants, as they do not corrode or release metal ions, leading to potential inflammation and implant failure. Monitoring immune and inflammatory biomarkers is essential to assess inflammation initiation, severity, and progression. C-reactive protein (CRP) and pro-inflammatory cytokines, like interleukin-6 (IL-6) and tumor necrosis factor-alpha (TNF-α), play crucial roles in host immune responses, while anti-inflammatory cytokines, including interleukin-10 (IL-10), regulate and dampen immune responses. Achieving a delicate balance between pro- and anti-inflammatory cytokines is vital for maintaining a healthy immune response and preventing chronic inflammatory conditions. Telomeres, protective structures present at chromosome ends, influence cellular aging and mitochondrial function. Shorter telomeres are associated with impaired mitochondrial function, increased oxidative stress, and cellular senescence, while longer telomeres are linked to reduced inflammation and improved immune function. Understanding these mechanisms is essential for addressing age-related conditions and promoting overall well-being. In this case series, we investigated the interaction between telomere length and inflammatory biomarkers in patients who received zirconia dental implants. The study aims to improve our understanding of postoperative cellular aging, inflammatory responses, and the biocompatibility of zirconia implants, potentially leading to improved treatment protocols and patient outcomes. This innovative assessment of telomere length and inflammatory biomarkers in the context of zirconia implants provides novel insights into the field of dental implantology. By exploring the effects of zirconia implants on cellular health and inflammation, this study contributes to advancements in implant technology and patient care.
Collapse
Affiliation(s)
| | | | - Kurt Mosetter
- SDS: Swiss Dental Solutions, Kreuzlingen, Switzerland
| | | | | | | |
Collapse
|
4
|
Weller J, Vasudevan P, Kreikemeyer B, Ekat K, Jackszis M, Springer A, Chatzivasileiou K, Lang H. The role of bacterial corrosion on recolonization of titanium implant surfaces: An in vitro study. Clin Implant Dent Relat Res 2022; 24:664-675. [PMID: 35709098 DOI: 10.1111/cid.13114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 05/27/2022] [Accepted: 05/28/2022] [Indexed: 11/28/2022]
Abstract
BACKGROUND Inflammation triggered by bacterial biofilms in the surrounding tissue is a major etiological factor for peri-implantitis and subsequent implant failure. However, little is known about the direct effects of bacterial corrosion and recolonization on implant failure PURPOSE: To investigate the influence of oral commensals on bacterial corrosion and recolonization of titanium surfaces. MATERIALS AND METHODS Streptococcus sanguinis (S. sanguinis) and Porphyromonas gingivalis (P. gingivalis), which are key bacteria in oral biofilm formation, were cultured on commercially pure titanium and titanium-aluminum-vanadium (Ti6Al4V) plates in artificial saliva/brain heart infusion medium under aerobic or anaerobic conditions. Biofilm formation was examined after 7 and 21 days by crystal violet and live/dead staining. Titanium ions released into culture supernatants were analyzed over a period of 21 days by atomic absorption spectrometry. Visual changes in surface morphology were investigated using scanning electron microscopy. Biofilm formation on sterilized, biocorroded, and recolonized implant surfaces was determined by crystal violet staining. RESULTS S. sanguinis and P. gingivalis formed stable biofilms on the titanium samples. Bacterial corrosion led to a significant increase in titanium ion release from these titanium plates (p < 0.01), which was significantly higher under aerobic conditions on pure titanium (p ≤ 0.001). No obvious morphological surface changes, such as pitting and discoloration, were detected in the titanium samples. During early biofilm formation, the addition of titanium ions significantly decreased the number of live cells. In contrast, a significant effect on biofilm mass was only detected with P. gingivalis. Bacterial corrosion had no influence on bacterial recolonization following sterilization of titanium and Ti6Al4V surfaces. CONCLUSION Bacterial corrosion differs between oral commensal bacteria and leads to increased titanium ion release from titanium plates. The titanium ion release did not influence biofilm formation or bacterial recolonization under in vitro conditions.
Collapse
Affiliation(s)
- Julia Weller
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Praveen Vasudevan
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Katharina Ekat
- Institute of Medical Microbiology, Virology and Hygiene, University Medical Center Rostock, Rostock, Germany
| | - Mario Jackszis
- Biomechanics and Implant Technology Research Laboratory, Department of Orthopaedics, University Medical Center Rostock, Rostock, Germany
| | - Armin Springer
- Medical Biology and Electron Microscopy Centre, Medical Faculty, University of Rostock, Rostock, Germany
| | - Kyriaki Chatzivasileiou
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| | - Hermann Lang
- Department of Operative Dentistry and Periodontology, University Medical Center Rostock, Rostock, Germany
| |
Collapse
|
5
|
A Biocompatible Ultrananocrystalline Diamond (UNCD) Coating for a New Generation of Dental Implants. NANOMATERIALS 2022; 12:nano12050782. [PMID: 35269268 PMCID: PMC8911871 DOI: 10.3390/nano12050782] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 02/09/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023]
Abstract
Implant therapy using osseointegratable titanium (Ti) dental implants has revolutionized clinical dental practice and has shown a high rate of success. However, because a metallic implant is in contact with body tissues and fluids in vivo, ions/particles can be released into the biological milieu as a result of corrosion or biotribocorrosion. Ultrananocrystalline diamond (UNCD) coatings possess a synergistic combination of mechanical, tribological, and chemical properties, which makes UNCD highly biocompatible. In addition, because the UNCD coating is made of carbon (C), a component of human DNA, cells, and molecules, it is potentially a highly biocompatible coating for medical implant devices. The aim of the present research was to evaluate tissue response to UNCD-coated titanium micro-implants using a murine model designed to evaluate biocompatibility. Non-coated (n = 10) and UNCD-coated (n = 10) orthodontic Ti micro-implants were placed in the hematopoietic bone marrow of the tibia of male Wistar rats. The animals were euthanized 30 days post implantation. The tibiae were resected, and ground histologic sections were obtained and stained with toluidine blue. Histologically, both groups showed lamellar bone tissue in contact with the implants (osseointegration). No inflammatory or multinucleated giant cells were observed. Histomorphometric evaluation showed no statistically significant differences in the percentage of BIC between groups (C: 53.40 ± 13% vs. UNCD: 58.82 ± 9%, p > 0.05). UNCD showed good biocompatibility properties. Although the percentage of BIC (osseointegration) was similar in UNCD-coated and control Ti micro-implants, the documented tribological properties of UNCD make it a superior implant coating material. Given the current surge in the use of nano-coatings, nanofilms, and nanostructured surfaces to enhance the biocompatibility of biomedical implants, the results of the present study contribute valuable data for the manufacture of UNCD coatings as a new generation of superior dental implants.
Collapse
|
6
|
Domingo MG, Kurtz M, Maglione G, Martin M, Brites F, Tasat DR, Olmedo DG. Systemic effect of
TiO
2
micro‐ and nanoparticles after acute exposure in a murine model. J Biomed Mater Res B Appl Biomater 2022; 110:1563-1572. [DOI: 10.1002/jbm.b.35017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Mariela Gisele Domingo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica Buenos Aires Argentina
- Becario de Investigación de la Universidad de Buenos Aires Buenos Aires Argentina
| | - Melisa Kurtz
- CONICET Buenos Aires Argentina
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología Buenos Aires Argentina
- CONICET ‐ Universidad Nacional de San Martín, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA) San Martín, Buenos Aires Argentina
| | - Guillermo Maglione
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología Buenos Aires Argentina
- CONICET ‐ Universidad Nacional de San Martín, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA) San Martín, Buenos Aires Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología Buenos Aires Argentina
| | | | - Fernando Brites
- CONICET Buenos Aires Argentina
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Bioquímica Clínica, Laboratorio de Lípidos y Lipoproteínas Buenos Aires Argentina
| | - Deborah Ruth Tasat
- Universidad Nacional de San Martín, Escuela de Ciencia y Tecnología Buenos Aires Argentina
- CONICET ‐ Universidad Nacional de San Martín, Instituto de Tecnologías Emergentes y Ciencias Aplicadas (ITECA) San Martín, Buenos Aires Argentina
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Histología y Embriología Buenos Aires Argentina
| | - Daniel Gustavo Olmedo
- Universidad de Buenos Aires, Facultad de Odontología, Cátedra de Anatomía Patológica Buenos Aires Argentina
- CONICET Buenos Aires Argentina
| |
Collapse
|