1
|
Maciel TF, Gonçalves MWA, Scarini JF, Vieira GDS, de Lima-Souza RA, Lavareze L, Kimura TDC, Egal ESA, Altemani A, Sperandio M, Mariano FV. A comparative analysis of DNA content and cell cycle phases in pleomorphic adenoma and carcinoma ex pleomorphic adenoma. Oral Surg Oral Med Oral Pathol Oral Radiol 2025; 139:709-718. [PMID: 39919935 DOI: 10.1016/j.oooo.2024.12.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/17/2024] [Accepted: 12/28/2024] [Indexed: 02/09/2025]
Abstract
OBJECTIVE This study aimed to analyze the DNA ploidy profile of pleomorphic adenoma (PA) using flow cytometry, with a particular focus on its malignant transformation. STUDY DESIGN Tissue samples were obtained from normal glands, primary and recurrent PA, and carcinoma ex PA (CXPA) (residual PA and malignant areas) for analysis. The data were analyzed using dedicated software and relevant increased literature resources. RESULTS The study revealed a decline in the number of cells in the G1 phase and an increase in those in the 5cER phase in CXPA compared to their benign counterparts. CONCLUSIONS DNA content by flow cytometry could be a valuable tool to aid in detecting CXPA early and to differentiate it from PA when routine histologic features are insufficient.
Collapse
Affiliation(s)
- Tayná Figueiredo Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | | | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Gustavo de Souza Vieira
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
| | - Erika Said Abu Egal
- Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah, Salt Lake City, Utah
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | | | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
2
|
Liu Y, Li F, Wu B, Huang L, Qi Y. The clathrin adaptor AP1-S1 is associated with immune infiltration and HLA loss, as a potential therapeutic target in lung adenocarcinoma. Int Immunopharmacol 2025; 152:114385. [PMID: 40049084 DOI: 10.1016/j.intimp.2025.114385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 02/21/2025] [Accepted: 02/26/2025] [Indexed: 03/24/2025]
Abstract
The clathrin adaptor protein 1 (AP1) plays a pivotal role in the endocytosis of cell surface proteins and transportation between the golgi apparatus and lysosomes. Despite its critical functions, the implications of AP1 dysregulation in human cancers have yet to be elucidated. The structural analysis of AP1 subunits was conducted utilizing data from the Protein Data Bank (PDB), which is composed of four subunits: AP1-S1, AP1-B1, AP1-G1, and AP1-M1. Notably, the expression levels of AP1 subunits exhibit significant variability between tumor and normal tissues across different cancer types using data from the CPTAC, GEO, and TCGA databases. Kaplan-Meier (K-M) curve analysis has revealed that certain AP1 subunits are correlated with patient prognosis in various cancers. For instance, the AP1-S1 subunit is related to poor survival outcomes in head and neck squamous carcinoma, clear cell renal cell carcinoma, and lung adenocarcinoma. Furthermore, the aberrant expression of AP1-S1 demonstrated a negative correlation with immune cells infiltration, particularly in lung adenocarcinoma. Concurrently, a significant negative relationship between AP1-S1 and HLA molecules was observed, indicating a potential mechanism for AP1-induced HLA degradation. In vitro experiments demonstrated that the knockdown of AP1-S1 led to an upregulation of HLA-B protein expression and inhibited the viability, migration, and invasion capabilities of tumor cells in lung adenocarcinoma cell lines, specifically A549 and H1299. Immunohistochemical staining further revealed the abnormal expression of AP1-S1 in lung adenocarcinoma specimens. Through a comprehensive pan-cancer multi-omics analysis and experimental validation, this study explored the prognostic significance of four AP1 subunits. Additionally, it examined the regulatory relationship between AP1-S1 and HLA-B, which may play a role in immune escape. Additionally, the research identified AP1-S1 as a valuable biomarker and a potential target for treatment of lung adenocarcinoma.
Collapse
Affiliation(s)
- Yafei Liu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Feng Li
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Bin Wu
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Lan Huang
- Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| | - Yu Qi
- Department of Thoracic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.
| |
Collapse
|
3
|
Gonçalves MT, Lavareze L, Egal ESA, Altemani A, Mariano FV. Cell culture in salivary gland tumor research: molecular insights of pathogenic targets and personalized medicine. Cytotechnology 2025; 77:70. [PMID: 40028370 PMCID: PMC11868036 DOI: 10.1007/s10616-025-00726-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/05/2025] [Indexed: 03/05/2025] Open
Abstract
Salivary gland tumors (SGT) are a diverse group of tumors with various subtypes and morphological characteristics. Cell culture is a low-cost technique used as a valuable tool for studying cancer behavior and molecular characteristics. In vitro studies may offer a controlled environment for initial investigations before conducting in vivo experiments, making them indispensable in cancer research, drug testing, and personalized medicine. SGT cell culture techniques have been utilized to establish cell lines that provide insight into the genetic and molecular alterations underlying these tumors, aiding in the identification of potential therapeutic targets. Here, we highlight the application of cell culture techniques in studying SGT, emphasizing their contribution to advancements in understanding tumor behavior and potential novel therapeutic strategies.
Collapse
Affiliation(s)
- Mayara Trevizol Gonçalves
- Department of Pathology, Medical Sciences School, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Pathology, Medical Sciences School, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Erika Said Abu Egal
- Department of Pathology, Medical Sciences School, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Department of Pathology, School of Medicine, University of Utah (UU), Salt Lake City, Utah USA
| | - Albina Altemani
- Department of Pathology, Medical Sciences School, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, Medical Sciences School, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
4
|
Zanella VG, Costa SFDS, Schuch LF, Pilar EFS, Paes Leme AF, dos Santos JN, Khurram SA, Elalawy F, Bingle L, Nunes FD, Fonseca FP, Vargas PA, Martins MD, Wagner VP. Pleomorphic adenoma and carcinoma ex-pleomorphic adenoma tumorigenesis: A proteomic analysis. Oral Dis 2025; 31:865-878. [PMID: 39155517 PMCID: PMC12021308 DOI: 10.1111/odi.15109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 06/27/2024] [Accepted: 08/06/2024] [Indexed: 08/20/2024]
Abstract
OBJECTIVES To conduct a comprehensive proteomic analysis of normal salivary gland tissue, pleomorphic adenoma (PA), and carcinoma ex-pleomorphic adenoma (CXPA), and validate the proteomic findings using immunohistochemistry. METHODS Six normal salivary gland tissues, seven PA and seven CXPA samples underwent laser microdissection followed by liquid chromatography coupled to mass spectrometry. Protein identification and quantification were performed using MaxQuant software. Statistical analysis and functional enrichment were conducted using the Perseus platform and STRING tool, respectively. Immunohistochemistry was used for validation. RESULTS Comparative proteomic analysis revealed 2680 proteins across the three tissue types, with 799 significantly altered between groups. Translocation protein SEC63 homolog, Annexin A6 and Biglycan were up-regulated in CXPA compared to PA. Decorin was markedly up-regulated in both PA and CXPA compared to normal salivary gland (log2 fold changes of 7.58 and 7.38, respectively). Validation confirmed elevated levels of Biglycan and Decorin in the extracellular matrix of CXPA compared to PA. CONCLUSIONS Proteomic analysis identified differential protein expression patterns associated with malignant transformation of PA into CXPA. Findings indicate a crucial role for extracellular matrix proteins, specifically Biglycan and Decorin, in the tumorigenic progression of PA and CXPA.
Collapse
Affiliation(s)
- Virgílio Gonzales Zanella
- Department of Pathology, School of DentistryFederal University of Rio Grande do SulPorto AlegreBrazil
- Head and Neck Surgery DepartmentSanta Rita Hospital, Santa Casa de Misericórdia de Porto AlegrePorto AlegreBrazil
| | | | - Lauren Frenzel Schuch
- Department of Oral Diagnosis, Piracicaba Dental SchoolUniversity of CampinasPiracicabaBrazil
| | | | | | - Jean Nunes dos Santos
- Postgraduation Program in Dentistry and HealthFederal University of BahiaSalvadorBrazil
| | - Syed Ali Khurram
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Fatima Elalawy
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Lynne Bingle
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical DentistryUniversity of SheffieldSheffieldUK
| | - Fabio Daumas Nunes
- Department of Oral and Maxillofacial Pathology, Dental SchoolUniversity of São Paulo (USP)São PauloBrazil
| | - Felipe Paiva Fonseca
- Department of Oral Surgery and Pathology, School of DentistryFederal University of Minas GeraisBelo HorizonteBrazil
- Department of Oral Diagnosis, Piracicaba Dental SchoolUniversity of CampinasPiracicabaBrazil
| | - Pablo Agustin Vargas
- Department of Oral Diagnosis, Piracicaba Dental SchoolUniversity of CampinasPiracicabaBrazil
| | - Manoela Domingues Martins
- Department of Pathology, School of DentistryFederal University of Rio Grande do SulPorto AlegreBrazil
- Department of Oral Diagnosis, Piracicaba Dental SchoolUniversity of CampinasPiracicabaBrazil
| | - Vivian Petersen Wagner
- Department of Oral Diagnosis, Piracicaba Dental SchoolUniversity of CampinasPiracicabaBrazil
- Academic Unit of Oral and Maxillofacial Medicine and Pathology, Department of Clinical DentistryUniversity of SheffieldSheffieldUK
- Department of Oral and Maxillofacial Pathology, Dental SchoolUniversity of São Paulo (USP)São PauloBrazil
| |
Collapse
|
5
|
de Lima-Souza RA, Bělohlávková K, Michal M, Altemani A, Mariano FV, Skálová A. Atypical and worrisome histological features in pleomorphic adenoma: challenging and potentially significant diagnostic pitfall. Virchows Arch 2025:10.1007/s00428-024-04015-z. [PMID: 39827206 DOI: 10.1007/s00428-024-04015-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 12/03/2024] [Accepted: 12/13/2024] [Indexed: 01/22/2025]
Abstract
Pleomorphic adenoma (PA), the most prevalent salivary gland tumor, exhibits a diverse histological spectrum characterized by epithelial, myoepithelial, and mesenchymal patterns, and secretory products. However, a subset of PAs presents microscopic features suggestive of malignancy, leading to challenging and potentially significant diagnostic pitfalls. A comprehensive retrospective analysis was conducted on the Salivary Gland Tumor Registry, compiled by the authors. A total of 104 cases diagnosed between 1960 and 2023 were retrieved. Clinical findings, pathological features, and molecular genetic results were analyzed. In the study of 104 PA cases, 23 (22.1%) presented features suggestive of pseudoinvasion, with satellite nodules being the most common (43.5%) along with capsular penetration, irregular growth, pseudopodia, lipomatous changes, and vascular permeation. Features of pseudomalignant cytomorphology were found in 97 cases (93.3%), characterized by increased cellularity, cellular atypia, heightened proliferative activity, oncocytic metaplasia, and necrosis. Additionally, 30 cases (28.8%) displayed features resembling other defined malignant salivary gland tumors, particularly myoepithelial carcinoma, adenoid cystic carcinoma, and polymorphous adenocarcinoma. Despite PA's generally straightforward diagnosis, cases with these features may be mistakenly interpreted as malignant tumors. The shared morphocytological features underscore the complexity of an accurate diagnosis, emphasizing the need for meticulous examination and a comprehensive assessment, incorporating morphological, molecular, and immunohistochemical analyses to differentiate between benign and malignant salivary gland tumors, in selected cases.
Collapse
Affiliation(s)
- Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, São Paulo, Brazil.
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Tessália Vieira de Camargo, 126-Barão Geraldo, Cidade Universitária, Campinas-SP, 13083-887, Brazil.
| | - Klára Bělohlávková
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Michal Michal
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Biopticka Laboratory, Ltd, Pilsen, Czech Republic
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Tessália Vieira de Camargo, 126-Barão Geraldo, Cidade Universitária, Campinas-SP, 13083-887, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Tessália Vieira de Camargo, 126-Barão Geraldo, Cidade Universitária, Campinas-SP, 13083-887, Brazil.
| | - Alena Skálová
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
- Biopticka Laboratory, Ltd, Pilsen, Czech Republic
| |
Collapse
|
6
|
de Lima-Souza RA, Vieira GDS, Kimura TDC, Scarini JF, Lavareze L, Maciel TF, Gonçalves MWA, Egal ESA, Altemani A, Mariano FV. Insights into the molecular alterations of PLAG1 and HMGA2 associated with malignant phenotype acquisition in pleomorphic adenoma. Crit Rev Oncol Hematol 2024; 204:104494. [PMID: 39278426 DOI: 10.1016/j.critrevonc.2024.104494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/14/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Pleomorphic adenoma (PA) is the most common neoplasm of the salivary gland, presenting with a variety of histological features. In some cases, PA can undergo malignant transformation to carcinoma ex pleomorphic adenoma (CXPA). The transition from PA to CXPA is associated with complex molecular alterations, particularly involving the pleomorphic adenoma gene 1 (PLAG1) and high mobility group protein gene (HMGA2). This review investigates the molecular alterations of PLAG1 and HMGA2 in all domains in the malignant transformation of PA. Our analysis highlights that these markers are key alterations in the etiopathogenesis of PA and CXPA, with gene fusion and amplification being frequently reported mechanisms. Although the exact role of PLAG1 and HMGA2 in the oncogenic process remains unclear, further studies on the HMGA2 and PLAG1, are needed particularly in HMGA2-PLAG1-IGF2 which is proving to be a potential pathway for the development of clinically applicable therapies, especially for CXPA management.
Collapse
Affiliation(s)
- Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| | - Gustavo de Souza Vieira
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Tayná Figueiredo Maciel
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Moisés Willian Aparecido Gonçalves
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Erika Said Abu Egal
- Department of Oral Diagnosis, Piracicaba Dental School, Universidade Estadual de Campinas (UNICAMP), Piracicaba, SP, Brazil; Biorepository and Molecular Pathology, Huntsman Cancer Institute, University of Utah (UU), Salt Lake City, UT, United States
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, Universidade Estadual de Campinas (UNICAMP), Campinas, SP, Brazil.
| |
Collapse
|
7
|
de Lima-Souza RA, Altemani A, Michal M, Mariano FV, Leivo I, Skálová A. Expanding the Molecular Spectrum of Carcinoma Ex Pleomorphic Adenoma: An Analysis of 84 Cases With a Novel HMGA2::LINC02389 Fusion. Am J Surg Pathol 2024:00000478-990000000-00418. [PMID: 39324957 DOI: 10.1097/pas.0000000000002307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Carcinoma ex pleomorphic adenoma (CXPA) is an aggressive epithelial and/or myoepithelial neoplasm that arises in association with a pleomorphic adenoma (PA). Its etiopathogenesis remains poorly understood, but it is believed that the development of this tumor is due to the accumulation of genetic, protein, metabolic, and epigenetic alterations in a PA. A retrospective review of the Salivary Gland Tumor Registry in Pilsen yielded 84 CXPA, namely 25/84 salivary duct carcinoma (SDC), 15/84 myoepithelial carcinoma (MC), 1/84 epithelial-myoepithelial carcinoma (EMC), and 1/84 adenoid cystic carcinoma (AdCC). All 84 CXPA cases were analyzed by next-generation sequencing (NGS) and/or fluorescence in situ hybridization (FISH). Forty-three tumors originally diagnosed as CXPA (43/84, 51.2%) showed some molecular alteration. Fusion transcripts were identified in 12/16 (75%) CXPA, including LIFR::PLAG1, CTNNB1::PLAG1, FGFR1::PLAG1, and a novel fusion, HMGA2::LINC02389. Most of the fusions were confirmed by FISH using PLAG1 (6/11) and HMGA2 (1/1) gene break probes. Split signals indicating gene break were identified by FISH for PLAG1 (12/17), HMGA2 (3/4), EWSR1 (7/22), and MYB (2/7). Concerning pathogenic mutations, only CXPA with epithelial differentiation (SDC) presented these alterations, including HRAS mutation (2/4), TP53 (1/4), PTEN (1/4), and ATK1 (1/4). In addition, amplifications in ERBB2 (17/35), MDM2 (1/4), and EWSR1 (1/7) were detected. A novel finding was the discovery of an HMGA2::LINC02389 fusion in 1 patient with EMC ex-PA. The present results indicate that molecular profiling of CXPA with myoepithelial differentiation (MC) tends to reveal chromosomal fusion events, whereas CXPA with epithelial differentiation (SDC) tends to have a higher frequency of pathogenic mutations and gene amplifications.
Collapse
Affiliation(s)
- Reydson Alcides de Lima-Souza
- Department of Oral Diagnosis, Piracicaba Dental School, University of Campinas (UNICAMP), Piracicaba
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Michal Michal
- Bioptic Laboratory Ltd
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Ilmo Leivo
- Department of Pathology, Institute of Biomedicine, University of Turku, Turku, Finland
| | - Alena Skálová
- Bioptic Laboratory Ltd
- Department of Pathology, Faculty of Medicine in Pilsen, Charles University, Pilsen, Czech Republic
| |
Collapse
|
8
|
Kimura TDC, Scarini JF, Lavareze L, Kowalski LP, Coutinho-Camillo CM, Krepischi ACV, Egal ESA, Altemani A, Mariano FV. MicroRNA copy number alterations in the malignant transformation of pleomorphic adenoma to carcinoma ex pleomorphic adenoma. Head Neck 2024; 46:985-1000. [PMID: 38482546 DOI: 10.1002/hed.27717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Accepted: 02/20/2024] [Indexed: 04/10/2024] Open
Abstract
OBJECTIVE This study used array comparative genomic hybridization to assess copy number alterations (CNAs) involving miRNA genes in pleomorphic adenoma (PA), recurrent pleomorphic adenoma (RPA), residual PA, and carcinoma ex pleomorphic adenoma (CXPA). MATERIALS AND METHODS We analyzed 13 PA, 4 RPA, 29 CXPA, and 14 residual PA using Nexus Copy Number Discovery software. The miRNAs genes affected by CNAs were evaluated based on their expression patterns and subjected to pathway enrichment analysis. RESULTS Across the groups, we found 216 CNAs affecting 2261 miRNA genes, with 117 in PA, 59 in RPA, 846 in residual PA, and 2555 in CXPA. The chromosome 8 showed higher involvement in altered miRNAs in PAs and CXPA patients. Six miRNA genes were shared among all groups. Additionally, miR-21, miR-455-3p, miR-140, miR-320a, miR-383, miR-598, and miR-486 were prominent CNAs found and is implicated in carcinogenesis of several malignant tumors. These miRNAs regulate critical signaling pathways such as aerobic glycolysis, fatty acid biosynthesis, and cancer-related pathways. CONCLUSION This study was the first to explore CNAs in miRNA-encoding genes in the PA-CXPA sequence. The findings suggest the involvement of numerous miRNA genes in CXPA development and progression by regulating oncogenic signaling pathways.
Collapse
Affiliation(s)
- Talita de Carvalho Kimura
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - João Figueira Scarini
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luccas Lavareze
- Department of Oral Diagnosis, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, São Paulo, Brazil
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Luiz Paulo Kowalski
- Department of Head and Neck Surgery and Otorhinolaryngology, A.C. Camargo Cancer Center, São Paulo, Brazil
| | | | | | - Erika Said Abu Egal
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
- Biorepository and Molecular Pathology, University of Utah (UU), Salt Lake City, Utah, USA
| | - Albina Altemani
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| | - Fernanda Viviane Mariano
- Department of Pathology, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, São Paulo, Brazil
| |
Collapse
|
9
|
de Lima-Souza RA, Scarini JF, Lavareze L, Domingues RR, Paes Leme AF, Egal ESA, Altemani A, Mariano FV. Malignant phenotype acquisition in pleomorphic adenoma: An exclusive proteins analysis. Oral Dis 2024; 30:784-787. [PMID: 36565445 DOI: 10.1111/odi.14481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/21/2022] [Indexed: 12/25/2022]
Affiliation(s)
- Reydson Alcides de Lima-Souza
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - João Figueira Scarini
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Luccas Lavareze
- Oral Diagnosis Department, Piracicaba Dental School, State University of Campinas (UNICAMP), Piracicaba, Brazil
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Romênia Ramos Domingues
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Adriana Franco Paes Leme
- Mass Spectrometry Laboratory, Brazilian Biosciences National Laboratory (LNBio), Brazilian Center for Research in Energy and Materials (CNPEM), Campinas, Brazil
| | - Erika Said Abu Egal
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
- Pathology Department, School of Medicine, University of Utah (UU), Salt Lake City, Utah, USA
| | - Albina Altemani
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| | - Fernanda Viviane Mariano
- Pathology Department, School of Medical Sciences, State University of Campinas (UNICAMP), Campinas, Brazil
| |
Collapse
|
10
|
Boys EL, Liu J, Robinson PJ, Reddel RR. Clinical applications of mass spectrometry-based proteomics in cancer: where are we? Proteomics 2022; 23:e2200238. [PMID: 35968695 DOI: 10.1002/pmic.202200238] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/07/2022] [Accepted: 08/09/2022] [Indexed: 11/12/2022]
Abstract
Tumor tissue processing methodologies in combination with data-independent acquisition mass spectrometry (DIA-MS) have emerged that can comprehensively analyze the proteome of multiple tumor samples accurately and reproducibly. Increasing recognition and adoption of these technologies has resulted in a tranche of studies providing novel insights into cancer classification systems, functional tumor biology, cancer biomarkers, treatment response and drug targets. Despite this, with some limited exceptions, MS-based proteomics has not yet been implemented in routine cancer clinical practice. Here, we summarize the use of DIA-MS in studies that may pave the way for future clinical cancer applications, and highlight the role of alternative MS technologies and multi-omic strategies. We discuss limitations and challenges of studies in this field to date and propose steps for integrating proteomic data into the cancer clinic. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Emma L Boys
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Jia Liu
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia.,The Kinghorn Cancer Centre, St Vincent's Hospital, Darlinghurst, NSW, Australia.,School of Clinical Medicine, St Vincent's Campus, University of New South Wales, Sydney, NSW, Australia
| | - Phillip J Robinson
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| | - Roger R Reddel
- ProCan®, Children's Medical Research Institute, Faculty of Medicine and Health, The University of Sydney, Westmead, NSW, Australia
| |
Collapse
|