1
|
Jiang H, Zhou L, Zhang H, Gong S, Yu Z. Prognostic and therapeutic insights from lactate metabolism and tumor immune microenvironment in head and neck squamous cell carcinoma. Discov Oncol 2025; 16:909. [PMID: 40411665 PMCID: PMC12103450 DOI: 10.1007/s12672-025-02706-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 05/13/2025] [Indexed: 05/26/2025] Open
Abstract
Head and neck squamous cell carcinoma (HNSCC) exhibits a poor prognosis, particularly in advanced stages characterized by high recurrence and metastasis rates. This study investigates the role of lactate metabolism in HNSCC, aiming to develop a prognostic model to predict immunotherapy outcomes. Genomic and clinical data from The Cancer Genome Atlas and Gene Expression Omnibus databases were analyzed, focusing on 233 lactate metabolism-related genes (LMGs). Differential expression and Cox regression analyses identified two significant prognostic genes: glycogen phosphorylase L (PYGL) and solute carrier family 16 member 3 (SLC16 A3, encoding MCT4). A lactate risk score (LRS) model constructed from these genes demonstrated robust predictive accuracy across multiple validation datasets. Multivariate analysis validated LRS as an independent prognostic factor, and a nomogram integrating LRS with clinical parameters further improved survival prediction accuracy. Immune infiltration analyses revealed distinct immune landscapes between high- and low-risk groups. Elevated levels of CD4 naïve T cells, resting NK cells, M0 macrophages, and activated mast cells characterized the high-risk group, whereas naive B cells, plasma cells, CD8 T cells, T follicular helper cells, regulatory T cells, gamma delta T cells, resting dendritic cells, resting mast cells, and eosinophils predominated in the low-risk group. Additionally, molecular docking suggested valproic acid as a potential inhibitor of MCT4. Immunohistochemical analyses showed increased PYGL and MCT4 expression correlated with advanced tumor stage, alongside decreased expression of CXCL9 and CXCL10. These findings highlight the critical role of lactate metabolism in HNSCC progression and immunotherapy resistance, identifying PYGL and MCT4 as promising therapeutic targets.
Collapse
Affiliation(s)
- Huanyu Jiang
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Lijuan Zhou
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Haidong Zhang
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Shanchun Gong
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China
| | - Zhenkun Yu
- School of Medicine, Southeast University, 87 Dingjiaqiao, Hunan Road, Nanjing, 210009, Jiangsu, China.
- Department of Otolaryngology Head and Neck Surgery, The Affiliated BenQ Hospital of Nanjing Medical University, Nanjing, 210019, Jiangsu, China.
| |
Collapse
|
2
|
Allam AA, Rudayni HA, Ahmed NA, Aba Alkhayl FF, Lamsabhi AM, Kamel EM. Multidimensional insights into squalene epoxidase drug development: in vitro mechanisms, in silico modeling, and in vivo implications. Expert Opin Ther Targets 2025:1-19. [PMID: 40304285 DOI: 10.1080/14728222.2025.2500420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 03/17/2025] [Accepted: 04/17/2025] [Indexed: 05/02/2025]
Abstract
INTRODUCTION Squalene epoxidase (SQLE) is a pivotal enzyme in sterol biosynthesis, catalyzing the conversion of squalene to 2,3-oxidosqualene. Beyond its core role in cholesterol homeostasis, SQLE is implicated in cancer, hypercholesterolemia, and fungal infections, positioning it as a valuable therapeutic target. AREAS COVERED We conducted a comprehensive literature search across primary databases to gather in vitro, in silico, and in vivo evidence on SQLE. This review explores the enzyme's structural and functional features, including substrate specificity and catalytic mechanisms, and examines inhibitor interactions. Computational methods predict enzyme - inhibitor dynamics, guiding drug design, while in vivo investigations clarify SQLE's role in metabolic disorders and tumorigenesis. Challenges include drug resistance and study discrepancies, but emerging technologies, such as cryo-electron microscopy and CRISPR editing, offer new avenues for deeper exploration. EXPERT OPINION SQLE is an underexplored yet promising therapeutic target, with particular relevance to oxidative stress, ferroptosis, and gut microbiota research. Overcoming current barriers through advanced technologies and multidisciplinary strategies could propel SQLE-targeted treatments into clinical practice, supporting precision medicine and broader translational applications.
Collapse
Affiliation(s)
- Ahmed A Allam
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Hassan A Rudayni
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, Saudi Arabia
| | - Noha A Ahmed
- Physiology Division, Zoology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Faris F Aba Alkhayl
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Saudi Arabia
| | - Al Mokhtar Lamsabhi
- Departamento de Química and Institute for advanced research in chemical Science (IAdChem), Facultad de Ciencias, Madrid, Spain
| | - Emadeldin M Kamel
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|
3
|
Tang Y, Pan X, Shang FF, Li Y, Zhang C, Ma H, Zhang A, Wang X, Ding C, Chen W. Synthesis and pharmacological evaluation of natural product diphyllin derivatives against head and neck squamous cell carcinoma. Eur J Med Chem 2025; 285:117215. [PMID: 39788063 DOI: 10.1016/j.ejmech.2024.117215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/24/2024] [Accepted: 12/25/2024] [Indexed: 01/12/2025]
Abstract
Head and neck squamous cell carcinoma (HNSCC) is one of the most common malignant tumors, but clinical drug treatments are limited. The natural product diphyllin was identified as a lead compound suppressing the proliferation of HNSCC cells through phenotypic screening of natural product library. However, further developments of diphyllin as an anti-HNSCC agent were restricted by the weak bioactivity and poor metabolic stability. Herein, we designed and synthesized two series of novel diphyllin derivatives that were achieved by introducing various pyranose rings or hydrophilic groups to block the easily metabolic C-4 site with the aim to improve antitumor activity and drug-like properties. Among these compounds, compound A3 showed the most potent inhibitory effects against HNSCC cells with IC50 values ranging from 4.37 to 77.81 nM and much less potent cytotoxicity against normal cells (IC50 > 10 μM). Mechanistically, it effectively inhibited cell proliferation and migration and induced the cell cycle arrest and apoptosis in a concentration-dependent manner. Besides, A3 possessed greatly improved pharmacokinetic properties including over 10-fold higher plasma exposure (AUC0-t: 541 vs 43.6 h∗ng/mL) and better oral bioavailability (F: 20.85 % vs 2.70 %), lower systemic plasma clearance (CL:1897 vs 24523 mL/h/kg), as well as longer half-life (T1/2: 0.530 vs 0.108 h) when compared to diphyllin. In a tumor cell xenograft model, A3 significantly suppressed the CAL27 tumor growth with a TGI of 42.2 % without obvious safety concern, which is superior to that of diphyllin (TGI = 23.3 %), suggesting great potential for treatment of HNSCC.
Collapse
Affiliation(s)
- Yuqi Tang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xinhua Pan
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Fan-Fan Shang
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yang Li
- Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chaojun Zhang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hexin Ma
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Ao Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Xu Wang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Chunyong Ding
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China; Shanghai Frontiers Science Center of Drug Target Identification and Delivery, School of Pharmaceutical Sciences, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Wantao Chen
- Department of Oral and Maxillofacial-Head and Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, College of Stomatology, Shanghai Jiao Tong University, National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, 200011, China; Digital Diagnosis and Treatment Innovation Center for Cancer, Institute of Translational Medicine, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
4
|
Soumik Saha P, Yan J, Zhu C. Portable multi-parametric microscopy for noninvasive metabolic and vascular imaging of orthotopic tongue cancer models in vivo. JOURNAL OF BIOMEDICAL OPTICS 2025; 30:S23905. [PMID: 40270786 PMCID: PMC12017805 DOI: 10.1117/1.jbo.30.s2.s23905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 03/12/2025] [Accepted: 03/31/2025] [Indexed: 04/25/2025]
Abstract
Significance Precise imaging of tumor metabolism with its vascular microenvironment becomes emerging critical for cancer research because increasing evidence shows that the key attribute that allows a tumor to survive therapies is metabolic and vascular reprogramming. However, there are surprisingly few imaging techniques available to provide a systems-level view of tumor metabolism and vasculature in vivo on small animals for cancer discoveries. Aim We aim to develop a new multi-parametric microscope that can faithfully recapitulate in vivo metabolic and vascular changes with a wide field of view and microscope-level resolution to advance cancer-related investigations. To maximize the ease and accessibility of obtaining in vivo tissue metabolism and vasculature measurements, we aim to develop our new metabolic imaging tool with minimal cost and size, allowing one to easily quantify tissue metabolic and vascular endpoints together in vivo, advancing many critical biomedical inquiries. Approach We have combined fluorescence microscopy and dark-field microscopy in a re-emission geometry into one portable microscope to image the key metabolic and vascular endpoints on the same tissue site. The portable microscope was first characterized by tissue-mimicking phantoms. Then the multi-parametric system was demonstrated on small animals to image glucose uptake (using 2-NBDG) and mitochondrial membrane potential (using TMRE) along with vascular parameters (oxygen saturation and hemoglobin contents) of orthotopic tongue tumors in vivo. Results Our phantom studies demonstrated the capability of the portable microscope for effective measurements of several key vascular and metabolic parameters with a comparable accuracy compared with our former reported benchtop spectroscopy and imaging systems. Our in vivo animal studies revealed increased glucose uptake and mitochondrial membrane potential along with reduced vascular oxygenation in tongue tumors compared with normal tongue tissues. The spatial analysis of metabolic and vascular images showed a more heterogeneous metabolic and oxygenation profile in tongue tumors compared with normal tongue tissues. Conclusions Our in vivo animal studies demonstrated the capability of our portable multi-parametric microscope for imaging the key metabolic and vascular parameters at the same tissue site with about one hour delay using an orthotopic tongue tumor model in vivo. Our study showed the potential of a portable functional microscope to noninvasively evaluate tumor biology using orthotopic tongue cancer models for future head and neck cancer research.
Collapse
Affiliation(s)
- Pranto Soumik Saha
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Jing Yan
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| | - Caigang Zhu
- University of Kentucky, Department of Biomedical Engineering, Lexington, Kentucky, United States
| |
Collapse
|
5
|
Wu Z, Chen Y, Jiang D, Pan Y, Tang T, Ma Y, Shapaer T. Mitochondrial-related drug resistance lncRNAs as prognostic biomarkers in laryngeal squamous cell carcinoma. Discov Oncol 2024; 15:785. [PMID: 39692950 PMCID: PMC11655928 DOI: 10.1007/s12672-024-01690-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/09/2024] [Indexed: 12/19/2024] Open
Abstract
Laryngeal squamous cell carcinoma (LSCC) is a common malignant tumor of the head and neck that significantly impacts patients' quality of life, with chemotherapy resistance notably affecting prognosis. This study aims to identify prognostic biomarkers to optimize treatment strategies for LSCC. Using data from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO), combined with mitochondrial gene database analysis, we identified mitochondrial lncRNAs associated with drug resistance genes. Key long non-coding RNAs (lncRNAs) were selected through univariate Cox regression and Lasso regression, and a multivariate Cox regression model was constructed to predict prognosis. We further analyzed the differences in immune function and biological pathway enrichment between high- and low-risk groups, developed a nomogram, and compared drug sensitivity. Results showed that the prognostic model based on seven mitochondrial lncRNAs could serve as an independent prognostic factor, with Area Under the Curve (AUC) values of 0.746, 0.827, and 0.771 at 1, 3, and 5 years, respectively, outperforming some existing models, demonstrating high predictive performance. Significant differences were observed in immune function and drug sensitivity between the high- and low-risk groups. The risk prediction model incorporating seven drug resistance-related mitochondrial lncRNAs can accurately and independently predict the prognosis of LSCC patients.
Collapse
Affiliation(s)
- Zhimin Wu
- Department of Otorhinolaryngology Head and Neck Surgery, The Maternal and Child Health Care Hospital of Guizhou Medical University, Guiyang, 550000, Guizhou, China
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550003, Guizhou, China
| | - Yi Chen
- Department of Breast and Thyroid Surgery, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China
| | - Dizhi Jiang
- Department of Radiation Oncology, Cheeloo College of Medicine, Qilu Hospital of Shandong University, Shandong University, Jinan, 250012, Shandong, China
| | - Yipeng Pan
- Department of Gastroenterology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310020, Zhejiang, China
| | - Tuoxian Tang
- Department of Biology, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Yifei Ma
- Department of Otorhinolaryngology Head and Neck Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, 550003, Guizhou, China.
| | - Tiannake Shapaer
- Department of Gastrointestinal Surgery, the Affiliated Cancer Hospital of Xinjiang Medical University, Urumqi, 830011, Xinjiang Uygur Autonomous Region, China.
| |
Collapse
|
6
|
Bugajova M, Raudenska M, Hanelova K, Navratil J, Gumulec J, Petrlak F, Vicar T, Hrachovinova S, Masarik M, Kalfert D, Grega M, Plzak J, Betka J, Balvan J. Glutamine and serum starvation alters the ATP production, oxidative stress, and abundance of mitochondrial RNAs in extracellular vesicles produced by cancer cells. Sci Rep 2024; 14:25815. [PMID: 39468126 PMCID: PMC11519472 DOI: 10.1038/s41598-024-73943-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 09/23/2024] [Indexed: 10/30/2024] Open
Abstract
Induction of autophagy represents an effective survival strategy for nutrient-deprived or stressed cancer cells. Autophagy contributes to the modulation of communication within the tumor microenvironment. Here, we conducted a study of the metabolic and signaling implications associated with autophagy induced by glutamine (Gln) and serum starvation and PI3K/mTOR inhibitor and autophagy inducer NVP-BEZ235 (BEZ) in the head and neck squamous cell carcinoma (HNSCC) cell line FaDu. We compared the effect of these different types of autophagy induction on ATP production, lipid peroxidation, mitophagy, RNA cargo of extracellular vesicles (EVs), and EVs-associated cytokine secretome of cancer cells. Both BEZ and starvation resulted in a decline in ATP production. Simultaneously, Gln starvation enhanced oxidative damage of cancer cells by lipid peroxidation. In starved cells, there was a discernible fragmentation of the mitochondrial network coupled with an increase in the presence of tumor susceptibility gene 101 (TSG101) on the mitochondrial membrane, indicative of the sorting of mitochondrial cargo into EVs. Consequently, the abundance of mitochondrial RNAs (mtRNAs) in EVs released by FaDu cells was enhanced. Notably, mtRNAs were also detectable in EVs isolated from the serum of both HNSCC patients and healthy controls. Starvation and BEZ reduced the production of EVs by cancer cells, yet the characteristic molecular profile of these EVs remained unchanged. We also found that alterations in the release of inflammatory cytokines constitute a principal response to autophagy induction. Importantly, the specific mechanism driving autophagy induction significantly influenced the composition of the EVs-associated cytokine secretome.
Collapse
Affiliation(s)
- Maria Bugajova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Martina Raudenska
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Klara Hanelova
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Jiri Navratil
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Jaromir Gumulec
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Frantisek Petrlak
- Department of Chemistry and Biochemistry, Mendel University in Brno, Zemedelska 1, Brno, CZ-613 00, Czech Republic
| | - Tomas Vicar
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
| | - Sarka Hrachovinova
- Department of Experimental Biology, Faculty of Science, Masaryk University, Kamenice 5, Brno, CZ- 625 00, Czech Republic
| | - Michal Masarik
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- Department of Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic
- First Faculty of Medicine, BIOCEV, Charles University, Prumyslova 595, Vestec, CZ-252 50, Czech Republic
| | - David Kalfert
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, Prague, CZ-15006, Czech Republic
| | - Marek Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University, University Hospital Motol/ V Uvalu 84, Prague 5, CZ-15006, Czech Republic
| | - Jan Plzak
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, Prague, CZ-15006, Czech Republic
| | - Jan Betka
- Department of Otorhinolaryngology and Head and Neck Surgery, First Faculty of Medicine, University Hospital Motol, Charles University, V Uvalu 84, Prague, CZ-15006, Czech Republic
| | - Jan Balvan
- Department of Pathological Physiology, Faculty of Medicine, Masaryk University, Kamenice 5, Brno, CZ-625 00, Czech Republic.
| |
Collapse
|
7
|
Luo G, Wang S, Lu W, Ju W, Li J, Tan X, Zhao H, Han W, Yang X. Application of metabolomics in oral squamous cell carcinoma. Oral Dis 2024; 30:3719-3731. [PMID: 38376209 DOI: 10.1111/odi.14895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/17/2024] [Accepted: 02/02/2024] [Indexed: 02/21/2024]
Abstract
BACKGROUND Oral squamous cell carcinoma (OSCC) is a prevalent malignancy affecting the head and neck region. The prognosis for OSCC patients remains unfavorable due to the absence of precise and efficient early diagnostic techniques. Metabolomics offers a promising approach for identifying distinct metabolites, thereby facilitating early detection and treatment of OSCC. OBJECTIVE This review aims to provide a comprehensive overview of recent advancements in metabolic marker identification for early OSCC diagnosis. Additionally, the clinical significance and potential applications of metabolic markers for the management of OSCC are discussed. RESULTS This review summarizes metabolic changes during the occurrence and development of oral squamous cell carcinoma and reviews prospects for the clinical application of characteristic, differential metabolites in saliva, serum, and OSCC tissue. In this review, the application of metabolomic technology in OSCC research was summarized, and future research directions were proposed. CONCLUSION Metabolomics, detection technology that is the closest to phenotype, can efficiently identify differential metabolites. Combined with statistical data analyses and artificial intelligence technology, it can rapidly screen characteristic biomarkers for early diagnosis, treatment, and prognosis evaluations.
Collapse
Affiliation(s)
- Guanfa Luo
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Shuai Wang
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Wen Lu
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Ju
- Department of Burn and Plastic Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jianhong Li
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Tan
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Huiting Zhao
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Wei Han
- Department of Oral and Maxillofacial Surgery, Nanjing Stomatological Hospital, Medical School of Nanjing University, Nanjing, China
| | - Xihu Yang
- Department of Oral and Maxillofacial Surgery, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
8
|
Pawlicka M, Gumbarewicz E, Błaszczak E, Stepulak A. Transcription Factors and Markers Related to Epithelial-Mesenchymal Transition and Their Role in Resistance to Therapies in Head and Neck Cancers. Cancers (Basel) 2024; 16:1354. [PMID: 38611032 PMCID: PMC11010970 DOI: 10.3390/cancers16071354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024] Open
Abstract
Head and neck cancers (HNCs) are heterogeneous and aggressive tumors of the upper aerodigestive tract. Although various histological types exist, the most common is squamous cell carcinoma (HNSCC). The incidence of HNSCC is increasing, making it an important public health concern. Tumor resistance to contemporary treatments, namely, chemo- and radiotherapy, and the recurrence of the primary tumor after its surgical removal cause huge problems for patients. Despite recent improvements in these treatments, the 5-year survival rate is still relatively low. HNSCCs may develop local lymph node metastases and, in the most advanced cases, also distant metastases. A key process associated with tumor progression and metastasis is epithelial-mesenchymal transition (EMT), when poorly motile epithelial tumor cells acquire motile mesenchymal characteristics. These transition cells can invade different adjacent tissues and finally form metastases. EMT is governed by various transcription factors, including the best-characterized TWIST1 and TWIST2, SNAIL, SLUG, ZEB1, and ZEB2. Here, we highlight the current knowledge of the process of EMT in HNSCC and present the main protein markers associated with it. This review focuses on the transcription factors related to EMT and emphasizes their role in the resistance of HNSCC to current chemo- and radiotherapies. Understanding the role of EMT and the precise molecular mechanisms involved in this process may help with the development of novel anti-cancer therapies for this type of tumor.
Collapse
Affiliation(s)
| | | | | | - Andrzej Stepulak
- Department of Biochemistry and Molecular Biology, Medical University of Lublin, 1 Chodzki Street, 20-093 Lublin, Poland; (M.P.); (E.G.); (E.B.)
| |
Collapse
|
9
|
Kleszcz R, Paluszczak J, Belka M, Krajka-Kuźniak V. PRI-724 and IWP-O1 Wnt Signaling Pathway Inhibitors Modulate the Expression of Glycolytic Enzymes in Tongue Cancer Cell Lines. Curr Issues Mol Biol 2023; 45:9579-9592. [PMID: 38132445 PMCID: PMC10742556 DOI: 10.3390/cimb45120599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2023] Open
Abstract
The dysregulation of energetic metabolism is one of the hallmarks of cancer cells. Indeed, the growth of head and neck squamous cell carcinoma (HNSCC) cells depends heavily on glycolytic activity, which can be considered a potential therapeutic target. Wnt signaling is one of the pathways that undergoes upregulation in HNSCC. Our previous studies have shown that Wnt signaling inhibitors-PRI-724 and IWP-O1-attenuate tongue SCC survival and reduce glucose uptake and lactate release. The aim of this research was to further evaluate the possible mechanisms of the previously observed effects. We assessed the effect of PRI-724 and IWP-O1 on the expression of selected glycolytic enzymes: phosphofructokinase M, pyruvate kinase M2, and lactate dehydrogenase. Relative transcript expression was assessed by real-time PCR, and protein levels by Western blot. Moreover, clinical data concerning mRNA and protein expression, gene promoter methylation, and HNSCC patients' survival time were analyzed by the UALCAN tool, and protein-protein interaction was assessed using the STRING database. Experimental and bioinformatic data confirmed the relation between Wnt signaling and glycolytic enzymes in tongue cancer cells and HNSCC clinical samples. Overall, the inhibition of glucose metabolism by Wnt signaling inhibitors is a promising mode of action against tongue cancer cells.
Collapse
Affiliation(s)
- Robert Kleszcz
- Chair and Department of Pharmaceutical Biochemistry, Poznan University of Medical Sciences, Rokietnicka 3, 60-806 Poznań, Poland; (J.P.); (M.B.); (V.K.-K.)
| | | | | | | |
Collapse
|
10
|
Kabzinski J, Kucharska-Lusina A, Majsterek I. RNA-Based Liquid Biopsy in Head and Neck Cancer. Cells 2023; 12:1916. [PMID: 37508579 PMCID: PMC10377854 DOI: 10.3390/cells12141916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
Head and neck cancer (HNC) is a prevalent and diverse group of malignancies with substantial morbidity and mortality rates. Early detection and monitoring of HNC are crucial for improving patient outcomes. Liquid biopsy, a non-invasive diagnostic approach, has emerged as a promising tool for cancer detection and monitoring. In this article, we review the application of RNA-based liquid biopsy in HNC. Various types of RNA, including messenger RNA (mRNA), microRNA (miRNA), long non-coding RNA (lncRNA), small nuclear RNA (snRNA), small nucleolar RNA (snoRNA), circular RNA (circRNA) and PIWI-interacting RNA (piRNA), are explored as potential biomarkers in HNC liquid-based diagnostics. The roles of RNAs in HNC diagnosis, metastasis, tumor resistance to radio and chemotherapy, and overall prognosis are discussed. RNA-based liquid biopsy holds great promise for the early detection, prognosis, and personalized treatment of HNC. Further research and validation are necessary to translate these findings into clinical practice and improve patient outcomes.
Collapse
Affiliation(s)
- Jacek Kabzinski
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| | - Aleksandra Kucharska-Lusina
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| | - Ireneusz Majsterek
- Department of Clinical Chemistry and Biochemistry, Medical University of Lodz, MolecoLAB A6, Mazowiecka 5, 92-215 Lodz, Poland
| |
Collapse
|