1
|
Li J, Weng J, Du W, Gao M, Cui H, Jiang P, Wang H, Peng X. Machine learning-assisted diagnosis of parotid tumor by using contrast-enhanced CT imaging features. JOURNAL OF STOMATOLOGY, ORAL AND MAXILLOFACIAL SURGERY 2025; 126:102030. [PMID: 39233054 DOI: 10.1016/j.jormas.2024.102030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/25/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
PURPOSE This study aims to develop a machine learning diagnostic model for parotid gland tumors based on preoperative contrast-enhanced CT imaging features to assist in clinical decision-making. MATERIALS AND METHODS Clinical data and contrast-enhanced CT images of 144 patients with parotid gland tumors from the Peking University School of Stomatology Hospital, collected from January 2019 to December 2022, were gathered. The 3D slicer software was utilized to accurately annotate the tumor regions, followed by exploring the correlation between multiple preoperative contrast-enhanced CT imaging features and the benign or malignant nature of the tumor, as well as the type of benign tumor. A prediction model was constructed using the k-nearest neighbors (KNN) algorithm. RESULTS Through feature selection, four key features-morphology, adjacent structure invasion, boundary, and suspicious cervical lymph node metastasis-were identified as crucial in preoperative discrimination between benign and malignant tumors. The KNN prediction model achieved an accuracy rate of 94.44 %. Additionally, six features including arterial phase CT value, age, delayed phase CT value, pre-contrast CT value, venous phase CT value, and gender, were also significant in the classification of benign tumors, with a KNN prediction model accuracy of 95.24 %. CONCLUSION The machine learning model based on preoperative contrast-enhanced CT imaging features can effectively discriminate between benign and malignant parotid gland tumors and classify benign tumors, providing valuable reference information for clinicians.
Collapse
Affiliation(s)
- Jiaqi Li
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Jiuling Weng
- Laboratory of Haihui Data Analysis, School of Mathematical Sciences, Beihang University, Beijing, China
| | - Wen Du
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China
| | - Min Gao
- Department of Geriatric Dentistry, Peking University School and Hospital of Stomatology, Beijing, China
| | - Haobo Cui
- Laboratory of Haihui Data Analysis, School of Mathematical Sciences, Beihang University, Beijing, China
| | - Pingping Jiang
- The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Haihui Wang
- Laboratory of Haihui Data Analysis, School of Mathematical Sciences, Beihang University, Beijing, China.
| | - Xin Peng
- Department of Oral and Maxillofacial Surgery, Peking University School and Hospital of Stomatology, Beijing, China.
| |
Collapse
|
2
|
Tarakçı ÖD, Kış HC, Amasya H, Öztürk İ, Karahan E, Orhan K. Radiomics-Based Diagnosis in Dentomaxillofacial Radiology: A Systematic Review. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01307-3. [PMID: 39528882 DOI: 10.1007/s10278-024-01307-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/01/2024] [Accepted: 10/13/2024] [Indexed: 11/16/2024]
Abstract
Radiomics is a quantitative tool for digital image analysis. This systematic review aims to investigate the scientific articles to evaluate the potential implications of Radiomics analysis in Dentomaxillofacial Radiology (DMFR). Studies regarding Radiomics applications in DMFR and human samples, in vivo study, a case reports/series if ≧5 samples were included, while case reports/series if < 5 samples, articles other than in English, abstracts without full text, and studies published before 2015 were excluded. Fifty-one articles were selected from 3789 literatures. The QUADAS-2 tool was used for risk of bias assessment. The accuracy of predicting dentomaxillofacial pathologies was considered as the primary outcome, and the modeling type of Radiomics was considered as the secondary outcome. A meta-analysis could not be performed due to the lack of information and standardization among the reported accuracies. The reported accuracies were found between 0.66 and 99.65%. Logistic regression (n = 6) was found to be the most common Radiomics modeling type, followed by Support Vector Machine and Decision Tree (n = 5). Second-order statistics (n = 38) was the most common type of Radiomics application, followed by first-order (n = 26), higher-order (n = 20), and shape-based (n = 15) statistics. Further work is needed to increase standardization in the Radiomics workflow. Quantitative image analysis is an alternative tool for conventional visual radiographic evaluation. Radiomics systems depend on elements such as imaging modality, feature type, data mining, or statistical method. Radiomics applications do not justify digital transformation on their own, but the potential of its integration into the digital workflow is considerable.
Collapse
Affiliation(s)
- Özge Dönmez Tarakçı
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Izmir Tınaztepe University, Izmir, Turkey
| | - Hatice Cansu Kış
- Department of Orthodontics, Faculty of Dentistry, Tokat Gaziosmanpaşa University, Tokat, Turkey
| | - Hakan Amasya
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Istanbul University-Cerrahpaşa, Istanbul, Turkey.
- CAST (Cerrahpaşa Research, Simulation and Design Laboratory), Istanbul University-Cerrahpaşa, Istanbul, Turkey.
- Health Biotechnology Joint Research and Application Center of Excellence, Esenler, Istanbul, Turkey.
| | - İrem Öztürk
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Emre Karahan
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
| | - Kaan Orhan
- Department of Dentomaxillofacial Radiology, Faculty of Dentistry, Ankara University, Ankara, Turkey
- Medical Design Application and Research Center (MEDITAM), Ankara University, Ankara, Turkey
- Department of Oral Diagnostics, Faculty of Dentistry, Semmelweis University, Budapest, Hungary
| |
Collapse
|
3
|
He Y, Zheng B, Peng W, Chen Y, Yu L, Huang W, Qin G. An ultrasound-based ensemble machine learning model for the preoperative classification of pleomorphic adenoma and Warthin tumor in the parotid gland. Eur Radiol 2024; 34:6862-6876. [PMID: 38570381 DOI: 10.1007/s00330-024-10719-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/24/2024] [Accepted: 03/13/2024] [Indexed: 04/05/2024]
Abstract
OBJECTIVES The preoperative classification of pleomorphic adenomas (PMA) and Warthin tumors (WT) in the parotid gland plays an essential role in determining therapeutic strategies. This study aims to develop and validate an ultrasound-based ensemble machine learning (USEML) model, employing nonradiative and noninvasive features to differentiate PMA from WT. METHODS A total of 203 patients with histologically confirmed PMA or WT who underwent parotidectomy from two centers were enrolled. Clinical factors, ultrasound (US) features, and radiomic features were extracted to develop three types of machine learning model: clinical models, US models, and USEML models. The diagnostic performance of the USEML model, as well as that of physicians based on experience, was evaluated and validated using receiver operating characteristic (ROC) curves in internal and external validation cohorts. DeLong's test was used for comparisons of AUCs. SHAP values were also utilized to explain the classification model. RESULTS The USEML model achieved the highest AUC of 0.891 (95% CI, 0.774-0.961), surpassing the AUCs of both the US (0.847; 95% CI, 0.720-0.932) and clinical (0.814; 95% CI, 0.682-0.908) models. The USEML model also outperformed physicians in both internal and external validation datasets (both p < 0.05). The sensitivity, specificity, negative predictive value, and positive predictive value of the USEML model and physician experience were 89.3%/75.0%, 87.5%/54.2%, 87.5%/65.6%, and 89.3%/65.0%, respectively. CONCLUSIONS The USEML model, incorporating clinical factors, ultrasound factors, and radiomic features, demonstrated efficient performance in distinguishing PMA from WT in the parotid gland. CLINICAL RELEVANCE STATEMENT This study developed a machine learning model for preoperative diagnosis of pleomorphic adenoma and Warthin tumor in the parotid gland based on clinical, ultrasound, and radiomic features. Furthermore, it outperformed physicians in an external validation dataset, indicating its potential for clinical application. KEY POINTS • Differentiating pleomorphic adenoma (PMA) and Warthin tumor (WT) affects management decisions and is currently done by invasive biopsy. • Integration of US-radiomic, clinical, and ultrasound findings in a machine learning model results in improved diagnostic accuracy. • The ultrasound-based ensemble machine learning (USEML) model consistently outperforms physicians, suggesting its potential applicability in clinical settings.
Collapse
Affiliation(s)
- Yanping He
- Department of Medical Ultrasonics, The First People's Hospital of Foshan, No. 81, Lingnan Avenue North, Foshan, 528000, China
| | - Bowen Zheng
- Department of Radiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China
| | - Weiwei Peng
- Department of Medical Ultrasonics, The First People's Hospital of Foshan, No. 81, Lingnan Avenue North, Foshan, 528000, China
| | - Yongyu Chen
- Department of Medical Ultrasonics, The First People's Hospital of Foshan, No. 81, Lingnan Avenue North, Foshan, 528000, China
| | - Lihui Yu
- Department of Medical Ultrasonics, The First People's Hospital of Foshan, No. 81, Lingnan Avenue North, Foshan, 528000, China
| | - Weijun Huang
- Department of Medical Ultrasonics, The First People's Hospital of Foshan, No. 81, Lingnan Avenue North, Foshan, 528000, China.
| | - Genggeng Qin
- Department of Radiology, Nanfang Hospital, Southern Medical University, 1838 Guangzhou Avenue North, Guangzhou, 510515, China.
- Medical Imaging Center, Ganzhou People's Hospital, 16th Meiguan Avenue, Ganzhou, 34100, China.
| |
Collapse
|
4
|
Sunnetci KM, Kaba E, Celiker FB, Alkan A. MR Image Fusion-Based Parotid Gland Tumor Detection. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024:10.1007/s10278-024-01137-3. [PMID: 39327379 DOI: 10.1007/s10278-024-01137-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 04/30/2024] [Indexed: 09/28/2024]
Abstract
The differentiation of benign and malignant parotid gland tumors is of major significance as it directly affects the treatment process. In addition, it is also a vital task in terms of early and accurate diagnosis of parotid gland tumors and the determination of treatment planning accordingly. As in other diseases, the differentiation of tumor types involves several challenging, time-consuming, and laborious processes. In the study, Magnetic Resonance (MR) images of 114 patients with parotid gland tumors are used for training and testing purposes by Image Fusion (IF). After the Apparent Diffusion Coefficient (ADC), Contrast-enhanced T1-w (T1C-w), and T2-w sequences are cropped, IF (ADC, T1C-w), IF (ADC, T2-w), IF (T1C-w, T2-w), and IF (ADC, T1C-w, T2-w) datasets are obtained for different combinations of these sequences using a two-dimensional Discrete Wavelet Transform (DWT)-based fusion technique. For each of these four datasets, ResNet18, GoogLeNet, and DenseNet-201 architectures are trained separately, and thus, 12 models are obtained in the study. A Graphical User Interface (GUI) application that contains the most successful of these trained architectures for each data is also designed to support the users. The designed GUI application not only allows the fusing of different sequence images but also predicts whether the label of the fused image is benign or malignant. The results show that the DenseNet-201 models for IF (ADC, T1C-w), IF (ADC, T2-w), and IF (ADC, T1C-w, T2-w) are better than the others, with accuracies of 95.45%, 95.96%, and 92.93%, respectively. It is also noted in the study that the most successful model for IF (T1C-w, T2-w) is ResNet18, and its accuracy is equal to 94.95%.
Collapse
Affiliation(s)
- Kubilay Muhammed Sunnetci
- Department of Electrical and Electronics Engineering, Osmaniye Korkut Ata University, Osmaniye, 80000, Turkey
- Department of Electrical and Electronics Engineering, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, 46050, Turkey
| | - Esat Kaba
- Department of Radiology, Recep Tayyip Erdogan University, Rize, 53100, Turkey
| | | | - Ahmet Alkan
- Department of Electrical and Electronics Engineering, Kahramanmaraş Sütçü İmam University, Kahramanmaraş, 46050, Turkey.
| |
Collapse
|
5
|
Wei W, Xu J, Xia F, Liu J, Zhang Z, Wu J, Wei T, Feng H, Ma Q, Jiang F, Zhu X, Zhang X. Deep learning-assisted diagnosis of benign and malignant parotid gland tumors based on automatic segmentation of ultrasound images: a multicenter retrospective study. Front Oncol 2024; 14:1417330. [PMID: 39184051 PMCID: PMC11341398 DOI: 10.3389/fonc.2024.1417330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 07/18/2024] [Indexed: 08/27/2024] Open
Abstract
Objectives To construct deep learning-assisted diagnosis models based on automatic segmentation of ultrasound images to facilitate radiologists in differentiating benign and malignant parotid tumors. Methods A total of 582 patients histopathologically diagnosed with PGTs were retrospectively recruited from 4 centers, and their data were collected for analysis. The radiomics features of six deep learning models (ResNet18, Inception_v3 etc) were analyzed based on the ultrasound images that were obtained under the best automatic segmentation model (Deeplabv3, UNet++, and UNet). The performance of three physicians was compared when the optimal model was used and not. The Net Reclassification Index (NRI) and Integrated Discrimination Improvement (IDI) were utilized to evaluate the clinical benefit of the optimal model. Results The Deeplabv3 model performed optimally in terms of automatic segmentation. The ResNet18 deep learning model had the best prediction performance, with an area under the receiver-operating characteristic curve of 0.808 (0.694-0.923), 0.809 (0.712-0.906), and 0.812 (0.680-0.944) in the internal test set and external test sets 1 and 2, respectively. Meanwhile, the optimal model-assisted clinical and overall benefits were markedly enhanced for two out of three radiologists (in internal validation set, NRI: 0.259 and 0.213 [p = 0.002 and 0.017], IDI: 0.284 and 0.201 [p = 0.005 and 0.043], respectively; in external test set 1, NRI: 0.183 and 0.161 [p = 0.019 and 0.008], IDI: 0.205 and 0.184 [p = 0.031 and 0.045], respectively; in external test set 2, NRI: 0.297 and 0.297 [p = 0.038 and 0.047], IDI: 0.332 and 0.294 [p = 0.031 and 0.041], respectively). Conclusions The deep learning model constructed for automatic segmentation of ultrasound images can improve the diagnostic performance of radiologists for PGTs.
Collapse
Affiliation(s)
- Wei Wei
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Jingya Xu
- Department of Radiology, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Fei Xia
- Department of Ultrasound, WuHu Hospital, East China Normal University (The Second People’s Hospital, WuHu), Wuhu, Anhui, China
| | - Jun Liu
- Department of Ultrasound, Linyi Central Hospital, Linyi, Shandong, China
| | - Zekai Zhang
- Department of Ultrasound, Zibo Central Hospital, Zibo, Shandong, China
| | - Jing Wu
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Tianjun Wei
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Huijun Feng
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Qiang Ma
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Feng Jiang
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Xiangming Zhu
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| | - Xia Zhang
- Department of Ultrasound, The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital), Wuhu, China
| |
Collapse
|
6
|
Rao Y, Ma Y, Wang J, Xiao W, Wu J, Shi L, Guo L, Fan L. Performance of radiomics in the differential diagnosis of parotid tumors: a systematic review. Front Oncol 2024; 14:1383323. [PMID: 39119093 PMCID: PMC11306159 DOI: 10.3389/fonc.2024.1383323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/01/2024] [Indexed: 08/10/2024] Open
Abstract
Purpose A systematic review and meta-analysis were conducted to evaluate the diagnostic precision of radiomics in the differential diagnosis of parotid tumors, considering the increasing utilization of radiomics in tumor diagnosis. Although some researchers have attempted to apply radiomics in this context, there is ongoing debate regarding its accuracy. Methods Databases of PubMed, Cochrane, EMBASE, and Web of Science up to May 29, 2024 were systematically searched. The quality of included primary studies was assessed using the Radiomics Quality Score (RQS) checklist. The meta-analysis was performed utilizing a bivariate mixed-effects model. Results A total of 39 primary studies were incorporated. The machine learning model relying on MRI radiomics for diagnosis malignant tumors of the parotid gland, demonstrated a sensitivity of 0.80 [95% CI: 0.74, 0.86], SROC of 0.89 [95% CI: 0.27-0.99] in the validation set. The machine learning model based on MRI radiomics for diagnosis malignant tumors of the parotid gland, exhibited a sensitivity of 0.83[95% CI: 0.76, 0.88], SROC of 0.89 [95% CI: 0.17-1.00] in the validation set. The models also demonstrated high predictive accuracy for benign lesions. Conclusion There is great potential for radiomics-based models to improve the accuracy of diagnosing benign and malignant tumors of the parotid gland. To further enhance this potential, future studies should consider implementing standardized radiomics-based features, adopting more robust feature selection methods, and utilizing advanced model development tools. These measures can significantly improve the diagnostic accuracy of artificial intelligence algorithms in distinguishing between benign and malignant tumors of the parotid gland. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42023434931.
Collapse
Affiliation(s)
- Yilin Rao
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Yuxi Ma
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jinghan Wang
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Weiwei Xiao
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Jiaqi Wu
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Liang Shi
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Ling Guo
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| | - Liyuan Fan
- Department of Prosthodontics, The Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, The Affiliated Stomatological Hospital, Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
7
|
Wang Y, Gao J, Yin Z, Wen Y, Sun M, Han R. Differentiation of benign and malignant parotid gland tumors based on the fusion of radiomics and deep learning features on ultrasound images. Front Oncol 2024; 14:1384105. [PMID: 38803533 PMCID: PMC11128676 DOI: 10.3389/fonc.2024.1384105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 04/29/2024] [Indexed: 05/29/2024] Open
Abstract
Objective The pathological classification and imaging manifestation of parotid gland tumors are complex, while accurate preoperative identification plays a crucial role in clinical management and prognosis assessment. This study aims to construct and compare the performance of clinical models, traditional radiomics models, deep learning (DL) models, and deep learning radiomics (DLR) models based on ultrasound (US) images in differentiating between benign parotid gland tumors (BPGTs) and malignant parotid gland tumors (MPGTs). Methods Retrospective analysis was conducted on 526 patients with confirmed PGTs after surgery, who were randomly divided into a training set and a testing set in the ratio of 7:3. Traditional radiomics and three DL models (DenseNet121, VGG19, ResNet50) were employed to extract handcrafted radiomics (HCR) features and DL features followed by feature fusion. Seven machine learning classifiers including logistic regression (LR), support vector machine (SVM), RandomForest, ExtraTrees, XGBoost, LightGBM and multi-layer perceptron (MLP) were combined to construct predictive models. The most optimal model was integrated with clinical and US features to develop a nomogram. Receiver operating characteristic (ROC) curve was employed for assessing performance of various models while the clinical utility was assessed by decision curve analysis (DCA). Results The DLR model based on ExtraTrees demonstrated superior performance with AUC values of 0.943 (95% CI: 0.918-0.969) and 0.916 (95% CI: 0.861-0.971) for the training and testing set, respectively. The combined model DLR nomogram (DLRN) further enhanced the performance, resulting in AUC values of 0.960 (95% CI: 0.940- 0.979) and 0.934 (95% CI: 0.876-0.991) for the training and testing sets, respectively. DCA analysis indicated that DLRN provided greater clinical benefits compared to other models. Conclusion DLRN based on US images shows exceptional performance in distinguishing BPGTs and MPGTs, providing more reliable information for personalized diagnosis and treatment plans in clinical practice.
Collapse
Affiliation(s)
| | | | | | | | | | - Ruoling Han
- Department of Ultrasound, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
8
|
Jiang T, Chen C, Zhou Y, Cai S, Yan Y, Sui L, Lai M, Song M, Zhu X, Pan Q, Wang H, Chen X, Wang K, Xiong J, Chen L, Xu D. Deep learning-assisted diagnosis of benign and malignant parotid tumors based on ultrasound: a retrospective study. BMC Cancer 2024; 24:510. [PMID: 38654281 PMCID: PMC11036551 DOI: 10.1186/s12885-024-12277-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/16/2024] [Indexed: 04/25/2024] Open
Abstract
BACKGROUND To develop a deep learning(DL) model utilizing ultrasound images, and evaluate its efficacy in distinguishing between benign and malignant parotid tumors (PTs), as well as its practicality in assisting clinicians with accurate diagnosis. METHODS A total of 2211 ultrasound images of 980 pathologically confirmed PTs (Training set: n = 721; Validation set: n = 82; Internal-test set: n = 89; External-test set: n = 88) from 907 patients were retrospectively included in this study. The optimal model was selected and the diagnostic performance evaluation is conducted by utilizing the area under curve (AUC) of the receiver-operating characteristic(ROC) based on five different DL networks constructed at varying depths. Furthermore, a comparison of different seniority radiologists was made in the presence of the optimal auxiliary diagnosis model. Additionally, the diagnostic confusion matrix of the optimal model was calculated, and an analysis and summary of misjudged cases' characteristics were conducted. RESULTS The Resnet18 demonstrated superior diagnostic performance, with an AUC value of 0.947, accuracy of 88.5%, sensitivity of 78.2%, and specificity of 92.7% in internal-test set, and with an AUC value of 0.925, accuracy of 89.8%, sensitivity of 83.3%, and specificity of 90.6% in external-test set. The PTs were subjectively assessed twice by six radiologists, both with and without the assisted of the model. With the assisted of the model, both junior and senior radiologists demonstrated enhanced diagnostic performance. In the internal-test set, there was an increase in AUC values by 0.062 and 0.082 for junior radiologists respectively, while senior radiologists experienced an improvement of 0.066 and 0.106 in their respective AUC values. CONCLUSIONS The DL model based on ultrasound images demonstrates exceptional capability in distinguishing between benign and malignant PTs, thereby assisting radiologists of varying expertise levels to achieve heightened diagnostic performance, and serve as a noninvasive imaging adjunct diagnostic method for clinical purposes.
Collapse
Affiliation(s)
- Tian Jiang
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), 310022, Hangzhou, Zhejiang, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, 310022, Hangzhou, Zhejiang, China
| | - Chen Chen
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, 317502, TaiZhou, Zhejiang, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), 317502, Taizhou, Zhejiang, China
| | - Yahan Zhou
- Wenling Big Data and Artificial Intelligence Institute in Medicine, 317502, TaiZhou, Zhejiang, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), 317502, Taizhou, Zhejiang, China
| | - Shenzhou Cai
- Wenling Big Data and Artificial Intelligence Institute in Medicine, 317502, TaiZhou, Zhejiang, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), 317502, Taizhou, Zhejiang, China
| | - Yuqi Yan
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), 310022, Hangzhou, Zhejiang, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, 317502, TaiZhou, Zhejiang, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), 317502, Taizhou, Zhejiang, China
| | - Lin Sui
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), 310022, Hangzhou, Zhejiang, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, 317502, TaiZhou, Zhejiang, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), 317502, Taizhou, Zhejiang, China
| | - Min Lai
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, 310022, Hangzhou, Zhejiang, China
- Second Clinical College, Zhejiang University of Traditional Chinese Medicine, 310022, Hangzhou, Zhejiang, China
| | - Mei Song
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, 310022, Hangzhou, Zhejiang, China
| | - Xi Zhu
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Wenling Big Data and Artificial Intelligence Institute in Medicine, 317502, TaiZhou, Zhejiang, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), 317502, Taizhou, Zhejiang, China
| | - Qianmeng Pan
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), 317502, Taizhou, Zhejiang, China
| | - Hui Wang
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), 317502, Taizhou, Zhejiang, China
| | - Xiayi Chen
- Wenling Big Data and Artificial Intelligence Institute in Medicine, 317502, TaiZhou, Zhejiang, China
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), 317502, Taizhou, Zhejiang, China
| | - Kai Wang
- Dongyang Hospital Affiliated to Wenzhou Medical University, 322100, Jinhua, Zhejiang, China
| | - Jing Xiong
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, 518000, Shenzhen, Guangdong, China
| | - Liyu Chen
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, 310022, Hangzhou, Zhejiang, China.
| | - Dong Xu
- Department of Diagnostic Ultrasound Imaging & Interventional Therapy, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), 310022, Hangzhou, Zhejiang, China.
- Zhejiang Provincial Research Center for Cancer Intelligent Diagnosis and Molecular Technology, 310022, Hangzhou, Zhejiang, China.
- Wenling Big Data and Artificial Intelligence Institute in Medicine, 317502, TaiZhou, Zhejiang, China.
- Taizhou Key Laboratory of Minimally Invasive Interventional Therapy & Artificial Intelligence, Taizhou Campus of Zhejiang Cancer Hospital (Taizhou Cancer Hospital), 317502, Taizhou, Zhejiang, China.
| |
Collapse
|
9
|
Tsilivigkos C, Athanasopoulos M, Micco RD, Giotakis A, Mastronikolis NS, Mulita F, Verras GI, Maroulis I, Giotakis E. Deep Learning Techniques and Imaging in Otorhinolaryngology-A State-of-the-Art Review. J Clin Med 2023; 12:6973. [PMID: 38002588 PMCID: PMC10672270 DOI: 10.3390/jcm12226973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 11/02/2023] [Accepted: 11/06/2023] [Indexed: 11/26/2023] Open
Abstract
Over the last decades, the field of medicine has witnessed significant progress in artificial intelligence (AI), the Internet of Medical Things (IoMT), and deep learning (DL) systems. Otorhinolaryngology, and imaging in its various subspecialties, has not remained untouched by this transformative trend. As the medical landscape evolves, the integration of these technologies becomes imperative in augmenting patient care, fostering innovation, and actively participating in the ever-evolving synergy between computer vision techniques in otorhinolaryngology and AI. To that end, we conducted a thorough search on MEDLINE for papers published until June 2023, utilizing the keywords 'otorhinolaryngology', 'imaging', 'computer vision', 'artificial intelligence', and 'deep learning', and at the same time conducted manual searching in the references section of the articles included in our manuscript. Our search culminated in the retrieval of 121 related articles, which were subsequently subdivided into the following categories: imaging in head and neck, otology, and rhinology. Our objective is to provide a comprehensive introduction to this burgeoning field, tailored for both experienced specialists and aspiring residents in the domain of deep learning algorithms in imaging techniques in otorhinolaryngology.
Collapse
Affiliation(s)
- Christos Tsilivigkos
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| | - Michail Athanasopoulos
- Department of Otolaryngology, University Hospital of Patras, 265 04 Patras, Greece; (M.A.); (N.S.M.)
| | - Riccardo di Micco
- Department of Otolaryngology and Head and Neck Surgery, Medical School of Hannover, 30625 Hannover, Germany;
| | - Aris Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| | - Nicholas S. Mastronikolis
- Department of Otolaryngology, University Hospital of Patras, 265 04 Patras, Greece; (M.A.); (N.S.M.)
| | - Francesk Mulita
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Georgios-Ioannis Verras
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Ioannis Maroulis
- Department of Surgery, University Hospital of Patras, 265 04 Patras, Greece; (G.-I.V.); (I.M.)
| | - Evangelos Giotakis
- 1st Department of Otolaryngology, National and Kapodistrian University of Athens, Hippocrateion Hospital, 115 27 Athens, Greece; (A.G.); (E.G.)
| |
Collapse
|