1
|
Jameel MI, Duncan L, Mooney K, Anderson JT. Herbivory and water availability interact to shape the adaptive landscape in the perennial forb, Boechera stricta. Evolution 2025; 79:557-573. [PMID: 39713890 PMCID: PMC11965616 DOI: 10.1093/evolut/qpae186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 12/11/2024] [Accepted: 12/20/2024] [Indexed: 12/24/2024]
Abstract
Abiotic and biotic factors interact to influence phenotypic evolution; however, identifying the causal agents of selection that drive the evolution and expression of traits remains challenging. In a field common garden, we manipulated water availability and herbivore abundance across 3 years, and evaluated clinal variation in functional traits and phenology, phenotypic plasticity, local adaptation, and selection using diverse accessions of the perennial forb, Boechera stricta. Consistent with expectations, drought stress exacerbated damage from herbivores. We found significant plasticity and genetic clines in foliar and phenological traits. Water availability and herbivory interacted to exert selection, even on traits like flowering duration, which showed no clinal variation. Furthermore, the direction of selection on specific leaf area in response to water availability mirrored the genetic cline and plasticity, suggesting that variation in water levels across the landscape influences the evolution of this trait. Finally, both herbivory and water availability likely contribute to local adaptation. This work emphasizes the additive and synergistic roles of abiotic and biotic factors in shaping phenotypic variation across environmental gradients.
Collapse
Affiliation(s)
- M Inam Jameel
- Department of Genetics, University of Georgia, Athens, GA, United States
| | - Lisa Duncan
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
| | - Kailen Mooney
- Department of Ecology and Evolutionary Biology, University of California, Irvine, CA, United States
- Rocky Mountain Biological Laboratory, Gothic, CO, United States
| | - Jill T Anderson
- Department of Genetics, University of Georgia, Athens, GA, United States
- Rocky Mountain Biological Laboratory, Gothic, CO, United States
- Odum School of Ecology, University of Georgia, Athens, GA, United States
| |
Collapse
|
2
|
Meurville MP, Silvestro D, LeBoeuf AC. Ecological change and conflict reduction led to a social circulatory system in ants. Commun Biol 2025; 8:246. [PMID: 39955384 PMCID: PMC11830068 DOI: 10.1038/s42003-025-07688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 02/06/2025] [Indexed: 02/17/2025] Open
Abstract
Behavioral innovations can be ecologically transformative for lineages that perform them and for their associated communities. Many ecologically dominant, superorganismal, and speciose ant lineages use mouth-to-mouth social regurgitation behavior - stomodeal trophallaxis - to share exogenous and endogenous materials within colonies. This behavior is less common in other species-poor, less cooperative ant lineages. How and why trophallaxis evolved and fixed in only some ant clades remains unclear, and whether this trait could be indicative of superorganismality has yet to be established. Here we show that trophallaxis evolved in two main events, in non-doryline formicoids around 130 Ma and in some ponerines around 90 Ma, lineages that today encompass 86% of all ant species. We found that trophallaxis evolved in lineages that began drinking sugary liquids and that had reduced intra-colonial conflict by constraining worker reproductive potential. Evolution of trophallaxis increased net diversification. Causal models indicate that trophallaxis required low reproductive conflict and contributed to the large colony sizes of the ants that use it. This suggests that the evolution of social regurgitation was enabled by both social conflict reduction and opportunistic inclusion of nectar and honeydew in the ant diet during the shifts in terrestrial ecosystems toward flowering plants.
Collapse
Affiliation(s)
| | - Daniele Silvestro
- Department of Biological and Environmental Sciences, Gothenburg Global Biodiversity Centre, University of Gothenburg, Gothenburg, Sweden
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, 4056, Basel, Switzerland
| | - Adria C LeBoeuf
- Department of Biology, University of Fribourg, Fribourg, Switzerland.
- Department of Zoology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
3
|
Cruz AR, Davidowitz G, Moore CM, Bronstein JL. Mutualisms in a warming world. Ecol Lett 2023. [PMID: 37303268 DOI: 10.1111/ele.14264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 05/16/2023] [Accepted: 05/21/2023] [Indexed: 06/13/2023]
Abstract
Predicting the impacts of global warming on mutualisms poses a significant challenge given the functional and life history differences that usually exist among interacting species. However, this is a critical endeavour since virtually all species on Earth depend on other species for survival and/or reproduction. The field of thermal ecology can provide physiological and mechanistic insights, as well as quantitative tools, for addressing this challenge. Here, we develop a conceptual and quantitative framework that connects thermal physiology to species' traits, species' traits to interacting mutualists' traits and interacting traits to the mutualism. We first identify the functioning of reciprocal mutualism-relevant traits in diverse systems as the key temperature-dependent mechanisms driving the interaction. We then develop metrics that measure the thermal performance of interacting mutualists' traits and that approximate the thermal performance of the mutualism itself. This integrated approach allows us to additionally examine how warming might interact with resource/nutrient availability and affect mutualistic species' associations across space and time. We offer this framework as a synthesis of convergent and critical issues in mutualism science in a changing world, and as a baseline to which other ecological complexities and scales might be added.
Collapse
Affiliation(s)
- Austin R Cruz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
| | - Goggy Davidowitz
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| | | | - Judith L Bronstein
- Department of Ecology & Evolutionary Biology, The University of Arizona, Tucson, Arizona, USA
- Department of Entomology, The University of Arizona, Tucson, Arizona, USA
| |
Collapse
|
4
|
Mooney E, Mitchell A, Den Uyl J, Mullins M, DiBiase C, Heschel MS. Host plant phenology shapes aphid abundance and interactions with ants. OIKOS 2022. [DOI: 10.1111/oik.09109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Emily Mooney
- Univ. of Colorado Colorado Springs Colorado SpringsParis CO USA
| | | | - James Den Uyl
- Univ. of Colorado Colorado Springs Colorado SpringsParis CO USA
- Rocky Mountain Biological Laboratory Crested Butte CO USA
| | - Maria Mullins
- Univ. of Colorado Colorado Springs Colorado SpringsParis CO USA
- Rocky Mountain Biological Laboratory Crested Butte CO USA
| | | | | |
Collapse
|
5
|
Lach L. Invasive ant establishment, spread, and management with changing climate. CURRENT OPINION IN INSECT SCIENCE 2021; 47:119-124. [PMID: 34252591 DOI: 10.1016/j.cois.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Ant invasions and climate change both pose globally widespread threats to the environment and economy. I highlight our current knowledge of how climate change will affect invasive ant distributions, population growth, spread, impact, and invasive ant management. Invasive ants often have traits that enable rapid colony growth in a range of habitats. Consequently, many invasive ant species will continue to have large global distributions as environmental conditions change. Distributions and impacts at community scales will depend on how resident ant communities respond to local abiotic conditions as well as availability of plant-based carbohydrate resources. Though target species may change under an altered climate, invasive ant impacts are unlikely to diminish, and novel control methods will be necessary.
Collapse
Affiliation(s)
- Lori Lach
- James Cook University, College of Science and Engineering, PO Box 6811, Cairns, 4870 Australia.
| |
Collapse
|
6
|
Villalta I, Oms CS, Angulo E, Molinas-González CR, Devers S, Cerdá X, Boulay R. Does social thermal regulation constrain individual thermal tolerance in an ant species? J Anim Ecol 2020; 89:2063-2076. [PMID: 32445419 DOI: 10.1111/1365-2656.13268] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 05/06/2020] [Indexed: 11/30/2022]
Abstract
In ants, social thermal regulation is the collective maintenance of a nest temperature that is optimal for individual colony members. In the thermophilic ant Aphaenogaster iberica, two key behaviours regulate nest temperature: seasonal nest relocation and variable nest depth. Outside the nest, foragers must adapt their activity to avoid temperatures that exceed their thermal limits. It has been suggested that social thermal regulation constrains physiological and morphological thermal adaptations at the individual level. We tested this hypothesis by examining the foraging rhythms of six populations of A. iberica, which were found at different elevations (from 100 to 2,000 m) in the Sierra Nevada mountain range of southern Spain. We tested the thermal resistance of individuals from these populations under controlled conditions. Janzen's climatic variability hypothesis (CVH) states that greater climatic variability should select for organisms with broader temperature tolerances. We found that the A. iberica population at 1,300 m experienced the most extreme temperatures and that ants from this population had the highest heat tolerance (LT50 = 57.55°C). These results support CVH's validity at microclimatic scales, such as the one represented by the elevational gradient in this study. Aphaenogaster iberica maintains colony food intake levels across different elevations and mean daily temperatures by shifting its rhythm of activity. This efficient colony-level thermal regulation and the significant differences in individual heat tolerance that we observed among the populations suggest that behaviourally controlled thermal regulation does not constrain individual physiological adaptations for coping with extreme temperatures.
Collapse
Affiliation(s)
- Irene Villalta
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc de Grandmont, Tours, France.,Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Cristela Sánchez Oms
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc de Grandmont, Tours, France.,Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Elena Angulo
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | | | - Séverine Devers
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc de Grandmont, Tours, France
| | - Xim Cerdá
- Estación Biológica de Doñana, CSIC, Sevilla, Spain
| | - Raphaël Boulay
- Institut de Recherche sur la Biologie de l'Insecte, Université de Tours, Parc de Grandmont, Tours, France
| |
Collapse
|
7
|
Tsang TPN, Guénard B, Bonebrake TC. Omnivorous ants are less carnivorous and more protein-limited in exotic plantations. J Anim Ecol 2020; 89:1941-1951. [PMID: 32379899 DOI: 10.1111/1365-2656.13249] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Accepted: 04/27/2020] [Indexed: 11/28/2022]
Abstract
Diets of species are crucial in determining how they influence food webs and community structures, and how their populations are regulated by different bottom-up processes. Omnivores are able to adjust their diet flexibly according to environmental conditions, such that their impacts on food webs and communities, and the macronutrients constraining their population, can be plastic. In particular, omnivore diets are known to be influenced by prey availability, which exhibits high spatial and temporal variation. To examine the plasticity of diet and macronutrient limitation in omnivores, we compared trophic positions, macronutrient preferences and food exploitation rates of omnivorous ants in invertebrate-rich (secondary forests) and invertebrate-poor (Lophostemon confertus plantations) habitats. We hypothesized that omnivorous ants would have lower trophic positions, enhanced protein limitation and reduced food exploitation rates in L. confertus plantations relative to secondary forests. We performed cafeteria experiments to examine changes in macronutrient limitation and food exploitation rates. We also sampled ants and conducted stable isotope analyses to investigate dietary shifts between these habitats. We found that conspecific ants were less carnivorous and had higher preferences for protein-rich food in L. confertus plantations compared to secondary forests. However, ant assemblages did not exhibit increased preferences for protein-rich food in L. confertus plantations. At the species-level, food exploitation rates varied idiosyncratically between habitats. At the assemblage-level, food exploitation rates were reduced in L. confertus plantations. Our results reveal that plantation establishments alter the diet and foraging behaviour of omnivorous ants. Such changes suggest that omnivorous ants in plantations will have reduced top-down impacts on prey communities but also see an increased importance of protein as a bottom-up force in constraining omnivore population sizes.
Collapse
Affiliation(s)
- Toby P N Tsang
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Benoit Guénard
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Timothy C Bonebrake
- School of Biological Sciences, Faculty of Science, The University of Hong Kong, Hong Kong SAR, People's Republic of China
| |
Collapse
|
8
|
Abdala‐Roberts L, Puentes A, Finke DL, Marquis RJ, Montserrat M, Poelman EH, Rasmann S, Sentis A, van Dam NM, Wimp G, Mooney K, Björkman C. Tri-trophic interactions: bridging species, communities and ecosystems. Ecol Lett 2019; 22:2151-2167. [PMID: 31631502 PMCID: PMC6899832 DOI: 10.1111/ele.13392] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 08/18/2019] [Accepted: 09/05/2019] [Indexed: 01/12/2023]
Abstract
A vast body of research demonstrates that many ecological and evolutionary processes can only be understood from a tri-trophic viewpoint, that is, one that moves beyond the pairwise interactions of neighbouring trophic levels to consider the emergent features of interactions among multiple trophic levels. Despite its unifying potential, tri-trophic research has been fragmented, following two distinct paths. One has focused on the population biology and evolutionary ecology of simple food chains of interacting species. The other has focused on bottom-up and top-down controls over the distribution of biomass across trophic levels and other ecosystem-level variables. Here, we propose pathways to bridge these two long-standing perspectives. We argue that an expanded theory of tri-trophic interactions (TTIs) can unify our understanding of biological processes across scales and levels of organisation, ranging from species evolution and pairwise interactions to community structure and ecosystem function. To do so requires addressing how community structure and ecosystem function arise as emergent properties of component TTIs, and, in turn, how species traits and TTIs are shaped by the ecosystem processes and the abiotic environment in which they are embedded. We conclude that novel insights will come from applying tri-trophic theory systematically across all levels of biological organisation.
Collapse
Affiliation(s)
- Luis Abdala‐Roberts
- Departamento de Ecología TropicalCampus de Ciencias Biológicas y AgropecuariasUniversidad Autónoma de YucatánKm. 15.5 Carretera Mérida‐XmatkuilMX‐97000MéridaYucatánMéxico
| | - Adriana Puentes
- Department of EcologySwedish University of Agricultural SciencesBox 7044SE‐750 07UppsalaSweden
| | - Deborah L. Finke
- Division of Plant SciencesUniversity of Missouri1‐33 Agriculture BuildingUS‐65211ColumbiaMOUSA
| | - Robert J. Marquis
- Department of Biology and the Whitney R. Harris World Ecology CenterUniversity of Missouri–St. Louis1 University BoulevardUS‐63121St. LouisMOUSA
| | - Marta Montserrat
- Instituto de Hortofruticultura Subtropical y Mediterránea “La Mayora” (IHSM‐UMA‐CSIC)Consejo Superior de Investigaciones CientíficasE‐29750Algarrobo‐Costa (Málaga)Spain
| | - Erik H. Poelman
- Laboratory of EntomologyWageningen UniversityP.O. Box 166700 AAWageningenThe Netherlands
| | - Sergio Rasmann
- Institute of BiologyUniversity of NeuchâtelRue Emile‐Argand 11CH‐2000NeuchâtelSwitzerland
| | - Arnaud Sentis
- UMR RECOVERIRSTEAAix Marseille University3275 route Cézanne13182Aix‐en‐ProvenceFrance
| | - Nicole M. van Dam
- Molecular Interaction EcologyFriedrich‐Schiller‐University Jena & German Centre for Integrative Biodiversity Research (iDiv)Halle‐Jena‐LeipzigDeutscher Platz 5eDE‐04103LeipzigGermany
| | - Gina Wimp
- Department of BiologyGeorgetown University406 Reiss Science BuildingUS‐20057WashingtonDCUSA
| | - Kailen Mooney
- Department of Ecology and Evolutionary BiologyUniversity of California Irvine321 Steinhaus HallUS‐92697IrvineCAUSA
| | - Christer Björkman
- Department of EcologySwedish University of Agricultural SciencesBox 7044SE‐750 07UppsalaSweden
| |
Collapse
|
9
|
Nelson AS, Symanski CT, Hecking MJ, Mooney KA. Elevational cline in herbivore abundance driven by a monotonic increase in trophic-level sensitivity to aridity. J Anim Ecol 2019; 88:1406-1416. [PMID: 31135959 DOI: 10.1111/1365-2656.13034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 05/01/2019] [Indexed: 11/30/2022]
Abstract
The abiotic environment drives species abundances and distributions both directly and indirectly through effects on multi-trophic species interactions. However, few studies have documented the individual and combined consequences of these direct and indirect effects. We studied an ant-tended aphid along an elevational gradient, where lower elevations were more arid. Hypotheses of stronger species interactions at lower elevations and a greater sensitivity of higher trophic levels to climate led us to predict increased top-down control of aphids by natural enemies (third trophic level) but even stronger protection from mutualist ants (fourth trophic level) with increasing aridity. As a result, we predicted that mutualism strength and aphid abundance would increase with aridity. We documented patterns of aphid abundance and tested for both the direct and multi-trophic indirect effects of aridity on aphid performance. To do so, we used both observational and manipulative methods across two years in replicate high- and low-elevation valleys, where summer temperatures decreased by 3.7°C and precipitation increased by 27 mm/mo from low to high elevations. Aphid colonies were 75% larger in the most (vs. least) arid sites, and this was best explained by changes in interactions with predators and ants. Aphids were unaffected by the direct effects of the abiotic environment or its indirect effects via host plant quality. In contrast, natural enemy effects increased with aridity; under ant exclusion, natural enemies had no effect on aphids in the least arid sites but depressed colony growth by 252% in the most arid sites. Ant activity also increased with aridity, with ants discovering more aphid colonies and experimental baits and allocating more foragers per aphid, although there was no effect of aridity on ant abundance or community composition. Correspondingly, the mutualist services provided by ants increased with aridity; ants provided no benefits to aphids in the least arid sites but doubled colony growth in the most arid sites. In summary, an elevational cline in herbivore abundance was driven by a monotonic increase in trophic-level sensitivity to aridity. These findings illustrate that predicting species responses to climate change will require a multi-trophic perspective.
Collapse
Affiliation(s)
- Annika S Nelson
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside, California.,Rocky Mountain Biological Laboratory, Crested Butte, Colorado
| | - Cole T Symanski
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado.,Department of Entomology, University of California at Riverside, Riverside, California
| | - Matthew J Hecking
- Rocky Mountain Biological Laboratory, Crested Butte, Colorado.,School of Natural Sciences, Hampshire College, Amherst, Massachusetts
| | - Kailen A Mooney
- Department of Ecology and Evolutionary Biology, University of California at Irvine, Riverside, California.,Rocky Mountain Biological Laboratory, Crested Butte, Colorado
| |
Collapse
|