1
|
Francis J, Wakefield E, Jamieson SSR, Phillips RA, Hodgson DA, Southwell C, Emmerson L, Fretwell P, Bentley MJ, McClymont EL. A circumpolar review of the breeding distribution and habitat use of the snow petrel ( Pagodroma nivea), the world's most southerly breeding vertebrate. Polar Biol 2024; 48:9. [PMID: 39712872 PMCID: PMC11655582 DOI: 10.1007/s00300-024-03336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 12/04/2024] [Accepted: 12/05/2024] [Indexed: 12/24/2024]
Abstract
Knowledge of the spatial distribution of many polar seabird species is incomplete due to the remoteness of their breeding locations. Here, we compiled a new database of published and unpublished records of all known snow petrel Pagodroma nivea breeding sites. We quantified local environmental conditions at sites by appending indices of climate and substrate, and regional-scale conditions by appending 30 year mean (1992-2021) sea-ice conditions within accessible foraging areas. Breeding snow petrels are reported at 456 sites across Antarctica and subantarctic islands. Although many counts are old or have large margins of error, population estimates available for 222 known sites totalled a minimum of ~ 77400 breeding pairs. However with so many missing data, the true breeding population will be much higher. Most sites are close to the coast (median = 1.15 km) and research stations (median = 26 km). Median distance to the November sea-ice edge (breeding season sea-ice maximum) is 430 km. Locally, most nests occur in cavities in high-grade metamorphic rocks. Minimum air temperatures occur at inland sites, and maxima at their northern breeding limit. Breeding location and cavity selection is likely determined by availability of suitable breeding substrate within sustainable distance of suitable foraging habitat. Within this range, nest sites may then be selected based on local conditions such as cavity size and aspect. Our database will allow formal analyses of habitat selection and provides a baseline against which to monitor future snow petrel distribution changes in response to climate change.
Collapse
Affiliation(s)
- Josie Francis
- Department of Geography, Durham University, South Road, Durham, DH1 3LE UK
| | - Ewan Wakefield
- Department of Geography, Durham University, South Road, Durham, DH1 3LE UK
| | | | | | - Dominic A. Hodgson
- British Antarctic Survey, High Cross Madingley Road, Cambridge, CB3 0ET UK
| | | | | | - Peter Fretwell
- British Antarctic Survey, High Cross Madingley Road, Cambridge, CB3 0ET UK
| | - Michael J. Bentley
- Department of Geography, Durham University, South Road, Durham, DH1 3LE UK
| | - Erin L. McClymont
- Department of Geography, Durham University, South Road, Durham, DH1 3LE UK
| |
Collapse
|
2
|
Sun R, Fay R, Ventura F, Şen B, Barbraud C, Delord K, Krumhardt K, Jenouvrier S. Climate Change Impacts Pair-Bond Dynamics in a Long-Lived Monogamous Species. Ecol Lett 2024; 27:e14555. [PMID: 39737522 DOI: 10.1111/ele.14555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/29/2024] [Accepted: 09/30/2024] [Indexed: 01/01/2025]
Abstract
Climate change can influence populations of monogamous species by affecting pair-bond dynamics. This study examined the impact of climate on widowhood and divorce, and the subsequent effects on individual vital rates and life-history outcomes over 54 years in a snow petrel (Pagodroma nivea) population. We found that environmental conditions can affect pair-bond dynamics both directly and indirectly. Divorce was adaptive, occurring more frequently after breeding failure and leading to improved breeding success. Divorce probabilities also increased under severe climatic conditions, regardless of prior breeding success, supporting the 'Habitat-mediated' mechanisms. Overall, pair-bond disruptions reduced subsequent vital rates and lifetime outcomes. Climate forecasts from an Atmosphere-Ocean General Circulation Model projected increased male widowhood rates due to decreased sea ice negatively affecting female survival, despite considerable uncertainty. These findings highlight the importance of environmentally induced changes in demographic and pair-bond disruption rates as crucial factors shaping demographic responses to climate change.
Collapse
Affiliation(s)
- Ruijiao Sun
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
- Department of Earth, Atmospheric and Planetary Science, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Marine Science Institute, University of California Santa Barbara, Santa Barbara, California, USA
| | - Rémi Fay
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Francesco Ventura
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Bilgecan Şen
- Appalachian Laboratory, University of Maryland Center for Environmental Science, Frostburg, Maryland, USA
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle University UMR7372, Villiers en Bois, France
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé, CNRS-La Rochelle University UMR7372, Villiers en Bois, France
| | - Kristen Krumhardt
- Climate and Global Dynamics, NSF National Center for Atmospheric Research (NCAR), Boulder, Colorado, USA
| | - Stéphanie Jenouvrier
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| |
Collapse
|
3
|
Viollat L, Quéroué M, Delord K, Gimenez O, Barbraud C. Bottom-up effects drive the dynamic of an Antarctic seabird predator-prey system. Ecology 2024; 105:e4367. [PMID: 38923494 DOI: 10.1002/ecy.4367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 04/10/2024] [Accepted: 05/17/2024] [Indexed: 06/28/2024]
Abstract
Understanding how populations respond to variability in environmental conditions and interspecific interactions is one of the biggest challenges of population ecology, particularly in the context of global change. Although many studies have investigated population responses to climate change, very few have explicitly integrated interspecific relationships when studying these responses. In this study, we aimed to understand the combined effects of interspecific interactions and environmental conditions on the demographic parameters of a prey-predator system of three sympatric seabird populations breeding in Antarctica: the south polar skua (Catharacta maccormicki) and its two main preys during the breeding season, the Adélie penguin (Pygoscelis adeliae) and the emperor penguin (Aptenodytes forsteri). We built a two-species integrated population model (IPM) with 31 years of capture-recapture and count data and provided a framework that made it possible to estimate the demographic parameters and abundance of a predator-prey system in a context where capture-recapture data were not available for one species. Our results showed that predator-prey interactions and local environmental conditions differentially affected south polar skuas depending on their breeding state of the previous year. Concerning prey-predator relationships, the number of Adélie penguin breeding pairs showed a positive effect on south polar skua survival and breeding probability, and the number of emperor penguin dead chicks showed a positive effect on the breeding success of south polar skuas. In contrast, there was no evidence for an effect of the number of south polar skuas on the demography of Adélie penguins. We also found an important impact of sea ice conditions on both the dynamics of south polar skuas and Adélie penguins. Our results suggest that this prey-predator system is mostly driven by bottom-up processes and local environmental conditions.
Collapse
Affiliation(s)
- Lise Viollat
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS-Université de Montpellier-EPHE-IRD, Montpellier, France
| | - Maud Quéroué
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS-Université de Montpellier-EPHE-IRD, Montpellier, France
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois, France
| | - Olivier Gimenez
- Centre d'Ecologie Fonctionnelle et Evolutive (CEFE), UMR 5175, CNRS-Université de Montpellier-EPHE-IRD, Montpellier, France
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé (CEBC), UMR 7372, CNRS-La Rochelle Université, Villiers-en-Bois, France
| |
Collapse
|
4
|
Fay R, Hamel S, van de Pol M, Gaillard JM, Yoccoz NG, Acker P, Authier M, Larue B, Le Coeur C, Macdonald KR, Nicol-Harper A, Barbraud C, Bonenfant C, Van Vuren DH, Cam E, Delord K, Gamelon M, Moiron M, Pelletier F, Rotella J, Teplitsky C, Visser ME, Wells CP, Wheelwright NT, Jenouvrier S, Saether BE. Temporal correlations among demographic parameters are ubiquitous but highly variable across species. Ecol Lett 2022; 25:1640-1654. [PMID: 35610546 PMCID: PMC9323452 DOI: 10.1111/ele.14026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 02/23/2022] [Accepted: 04/12/2022] [Indexed: 02/01/2023]
Abstract
Temporal correlations among demographic parameters can strongly influence population dynamics. Our empirical knowledge, however, is very limited regarding the direction and the magnitude of these correlations and how they vary among demographic parameters and species’ life histories. Here, we use long‐term demographic data from 15 bird and mammal species with contrasting pace of life to quantify correlation patterns among five key demographic parameters: juvenile and adult survival, reproductive probability, reproductive success and productivity. Correlations among demographic parameters were ubiquitous, more frequently positive than negative, but strongly differed across species. Correlations did not markedly change along the slow‐fast continuum of life histories, suggesting that they were more strongly driven by ecological than evolutionary factors. As positive temporal demographic correlations decrease the mean of the long‐run population growth rate, the common practice of ignoring temporal correlations in population models could lead to the underestimation of extinction risks in most species.
Collapse
Affiliation(s)
- Rémi Fay
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sandra Hamel
- Département de biologie, Université Laval, Québec City, QC, Canada
| | - Martijn van de Pol
- College of Science and Engineering, James Cook University, Townsville, Queensland, Australia.,Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Jean-Michel Gaillard
- Laboratoire de Biométrie et Biologie Évolutive, CNRS, Unité Mixte de Recherche (UMR) 5558, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Nigel G Yoccoz
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Paul Acker
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| | - Matthieu Authier
- Observatoire PELAGIS, UMS-CNRS 3462, Université de la Rochelle, La Rochelle, France
| | - Benjamin Larue
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Christie Le Coeur
- Department of Biosciences, Centre for Ecological and Evolutionary Synthesis (CEES), University of Oslo, Oslo, Norway
| | | | - Alex Nicol-Harper
- School of Ocean and Earth Science, National Oceanography Centre, University of Southampton Waterfront Campus, Southampton, UK.,Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, LEMAR, UMR 7372, Centre National de la Recherche Scientifique, Villiers en Bois, France
| | - Christophe Bonenfant
- Laboratoire de Biométrie et Biologie Évolutive, CNRS, Unité Mixte de Recherche (UMR) 5558, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Dirk H Van Vuren
- Department of Wildlife, Fish, and Conservation Biology, University of California, Davis, California, USA
| | - Emmanuelle Cam
- LEMAR, CNRS, IRD, Ifremer, Université de Bretagne Occidentale, Plouzané, France
| | - Karine Delord
- Centre d'Etudes Biologiques de Chizé, LEMAR, UMR 7372, Centre National de la Recherche Scientifique, Villiers en Bois, France
| | - Marlène Gamelon
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway.,Laboratoire de Biométrie et Biologie Évolutive, CNRS, Unité Mixte de Recherche (UMR) 5558, Université Lyon 1, Université de Lyon, Villeurbanne, France
| | - Maria Moiron
- CEFE, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France.,Institute of Avian Research, Wilhelmshaven, Germany
| | - Fanie Pelletier
- Département de Biologie, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jay Rotella
- Department of Ecology, Montana State University, Bozeman, Montana, USA
| | | | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, the Netherlands
| | - Caitlin P Wells
- Fish, Wildlife and Conservation Biology Department, Colorado State University, Colorado, USA
| | | | - Stéphanie Jenouvrier
- Biology Department, Woods Hole Oceanographic Institution, Woods Hole, Massachusetts, USA.,Centre d'Etudes Biologiques de Chizé, LEMAR, UMR 7372, Centre National de la Recherche Scientifique, Villiers en Bois, France
| | - Bernt-Erik Saether
- Centre for Biodiversity Dynamics, Department of Biology, Norwegian University of Science and Technology, Trondheim, Norway
| |
Collapse
|