1
|
Song D, Yang Q, Ge J, Chen K, Tong J, Shen Y. Color vision-associated environmental and biological factors in the development of myopia. Exp Eye Res 2025; 254:110324. [PMID: 40058723 DOI: 10.1016/j.exer.2025.110324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/18/2025] [Accepted: 03/06/2025] [Indexed: 04/08/2025]
Abstract
As a global public health problem, myopia has attracted more and more attention for its high prevalence and severe visual impairment. Although extensive research on the risk factors for myopia has been conducted, the underlying pathogenesis is still unclear. Color vision, mediated by retinal cone cells, is a fundamental and important component of human visual functions. Indeed, numerous studies implicate color vision-associated environmental and biological factors in myopia pathogenesis, indicating that related interventions may delay myopia progression. Studies have shown that color vision can induce different accommodation responses under near work conditions and exert opposite effects in different light environments to influence myopia advancement. Besides, color vision-related genes and metabolites are proven to be correlated with myopia. This review aims to make detailed elaborations on the role of color vision in myopia and its potential interaction mechanism, hoping to provide new ideas for myopia prevention.
Collapse
Affiliation(s)
- Dongjie Song
- Department of Ophthalmology, The Fourth Affiliated Hospital, Zhejiang University School of Medicine, Yiwu, Zhejiang, China
| | - Qianjie Yang
- Department of Ophthalmology, Ningbo Eye Hospital, Ningbo, Zhejiang, China
| | - Jiayun Ge
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Kuangqi Chen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Eye Hospital of Shandong First Medical University (Shandong Eye Hospital), Eye Institute of Shandong First Medical University, State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Jinan, Shandong, China; School of Ophthalmology, Shandong First Medical University, Jinan, Shandong, China.
| | - Jianping Tong
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| | - Ye Shen
- Department of Ophthalmology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China.
| |
Collapse
|
2
|
Riddell N, Murphy MJ, Zahra S, Robertson-Dixon I, Crewther SG. Broadband Long Wavelength Light Promotes Myopic Eye Growth and Alters Retinal Responses to Light Offset in Chick. Invest Ophthalmol Vis Sci 2025; 66:30. [PMID: 39804628 PMCID: PMC11734760 DOI: 10.1167/iovs.66.1.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Accepted: 12/09/2024] [Indexed: 01/18/2025] Open
Abstract
Purpose Prolonged exposure to broadband light with a short-wavelength (blue) or long-wavelength (orange/red) bias is known to impact eye growth and refraction, but the mechanisms underlying this response are unknown. Thus, the present study investigated the effects of broadband blue and orange lights with well-differentiated spectrums on refractive development and global flash electroretinography (gfERG) measures of retinal function in the chick myopia model. Methods Chicks were raised for 4 days with monocular negative lenses, or no lens, under blue, orange, or white light. Chick weight, eye dimensions, and refraction were measured at the conclusion of rearing. In a separate cohort of chicks, the effect of 4 days of colored light rearing on retinal responses to orange, blue, or white light flashes was assessed using gfERG. Results Chicks reared under orange light for 4 days exhibited a significantly larger myopic shift in response to negative lenses compared to those reared under blue light. Orange light rearing for 4 days increased the gfERG d-wave amplitude and implicit time in response to orange light flashes but did not alter responses to white or blue flashes. Blue and white light rearing did not affect the retina's response to light flashes of any color. Conclusions Orange light rearing exacerbated defocus-induced myopia relative to blue light rearing. The gfERG recordings revealed that prolonged orange light exposure increased retinal responsivity to the offset of long wavelength light flashes, suggesting a potential role for ON/OFF pathway balance in generating the refractive response that requires further electrophysiological and molecular investigation.
Collapse
Affiliation(s)
- Nina Riddell
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Melanie J. Murphy
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | - Sania Zahra
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| | | | - Sheila G. Crewther
- School of Psychology and Public Health, La Trobe University, Melbourne, Australia
| |
Collapse
|
3
|
Xiang A, He H, Li A, Meng X, Luo Y, Luo Y, Wang X, Yang J, Chen X, Zhong X. Changes in choroidal thickness and blood flow in response to form deprivation-induced myopia and repeated low-level red-light therapy in Guinea pigs. Ophthalmic Physiol Opt 2025; 45:111-119. [PMID: 39367704 DOI: 10.1111/opo.13404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 09/16/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024]
Abstract
PURPOSE To evaluate ocular refractive development, choroidal thickness (ChT) and changes in choroidal blood flow in form-deprived myopia (FDM) Guinea pigs treated with repeated low-level red-light (RLRL) therapy. METHODS Twenty-eight 3-week-old male tricolour Guinea pigs were randomised into three groups: normal controls (NC, n = 10), form-deprived (FD, n = 10) and red light treated with form-deprivation (RLFD, n = 8). Interocular refraction and axial length (AL) changes were monitored. Optical coherence tomography angiography (OCTA) measured choroidal thickness, vessel area density, vessel skeleton density and blood flow signal intensity (flux) in the choriocapillaris and medium-large vessel layers. The experimental intervention lasted 3 weeks. RESULTS At week 3, the FD group had higher myopia and longer axial length than the NC group (all p < 0.001). The RLFD group had higher hyperopia and shorter axial length than the FD group (all p < 0.001). At week 1, the NC group had a thicker choroidal thickness than the FD group (p < 0.05). At weeks 2 and 3, the RLFD group had a thicker choroidal thickness than the FD group (p = 0.002, p < 0.001, respectively). Additionally, the NC group had higher vessel area density, vessel skeleton density and flux in the choriocapillaris layer than the FD group at the three follow-up time points (all p < 0.05). At week 3, the vessel skeleton density and flux were higher in the RLFD group than in the FD group (all p < 0.05). Correlation analysis results showed that weekly changes in refraction and choroidal thickness were negatively correlated with changes in axial length (all p < 0.05). Choroidal thickness changes were positively correlated with alterations in the vessel area density, vessel skeleton density and flux in the choriocapillaris layer, as well as vessel skeleton density and flux changes in the medium-large vessel layers (all p < 0.05). CONCLUSIONS Repeated low-level red-light (RLRL) therapy retards FDM progression in Guinea pigs, potentially through increased choroidal blood flow in the choriocapillaris layer.
Collapse
Affiliation(s)
- Aiqun Xiang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Hong He
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Haikou, China
| | - Anzhen Li
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xuyun Meng
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Yanting Luo
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Haikou, China
| | - Yuhan Luo
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Xingxing Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
| | - Junming Yang
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Haikou, China
| | - Xiaolian Chen
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Haikou, China
| | - Xingwu Zhong
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Guangdong Provincial Key Laboratory of Ophthalmology and Visual Science, Sun Yat-sen University, Guangzhou, China
- Hainan Eye Hospital and Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Centre, Sun Yat-sen University, Haikou, China
| |
Collapse
|
4
|
Schaeffel F, Wildsoet CF. Red light therapy for myopia: Merits, risks and questions. Ophthalmic Physiol Opt 2024; 44:801-807. [PMID: 38563650 DOI: 10.1111/opo.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 02/29/2024] [Accepted: 03/14/2024] [Indexed: 04/04/2024]
Affiliation(s)
- Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| | - Christine F Wildsoet
- Herbert Wertheim School of Optometry and Vision Science, University California Berkeley, Berkeley, California, USA
- School of Optometry and Vision Science, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
5
|
Swiatczak B, Schaeffel F. Effects of short-term exposure to red or near-infrared light on axial length in young human subjects. Ophthalmic Physiol Opt 2024; 44:954-962. [PMID: 38557968 DOI: 10.1111/opo.13311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 03/19/2024] [Accepted: 03/20/2024] [Indexed: 04/04/2024]
Abstract
PURPOSE To determine whether visible light is needed to elicit axial eye shortening by exposure to long wavelength light. METHODS Incoherent narrow-band red (620 ± 10 nm) or near-infrared (NIR, 875 ± 30 nm) light was generated by an array of light-emitting diodes (LEDs) and projected monocularly in 17 myopic and 13 non-myopic subjects for 10 min. The fellow eye was occluded. Light sources were positioned 50 cm from the eye in a dark room. Axial length (AL) was measured before and after the exposure using low-coherence interferometry. RESULTS Non-myopic subjects responded to red light with significant eye shortening, while NIR light induced minor axial elongation (-13.3 ± 17.3 μm vs. +6.5 ± 11.6 μm, respectively, p = 0.005). Only 41% of the myopic subjects responded to red light exposure with a decrease in AL and changes were therefore, on average, not significantly different from those observed with NIR light (+0.2 ± 12.1 μm vs. +1.1 ± 11.2 μm, respectively, p = 0.83). Interestingly, there was a significant correlation between refractive error and induced changes in AL after exposure to NIR light in myopic eyes (r(15) = -0.52, p = 0.03) and induced changes in AL after exposure to red light in non-myopic eyes (r(11) = 0.62, p = 0.02), with more induced axial elongation with increasing refractive error. CONCLUSIONS Incoherent narrow-band red light at 620 nm induced axial shortening in 77% of non-myopic and 41% of myopic eyes. NIR light did not induce any significant changes in AL in either refractive group, suggesting that the beneficial effect of red laser light therapy on myopia progression requires visible stimulation and not simply thermal energy.
Collapse
Affiliation(s)
- Barbara Swiatczak
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
| | - Frank Schaeffel
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Basel, Switzerland
- Section of Neurobiology of the Eye, Ophthalmic Research Institute, University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
6
|
She Z, Gawne TJ. The Parameters Governing the Anti-Myopia Efficacy of Chromatically Simulated Myopic Defocus in Tree Shrews. Transl Vis Sci Technol 2024; 13:6. [PMID: 38722277 PMCID: PMC11090138 DOI: 10.1167/tvst.13.5.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Accepted: 03/21/2024] [Indexed: 05/15/2024] Open
Abstract
Purpose We previously showed that exposing tree shrews (Tupaia belangeri, small diurnal mammals closely related to primates) to chromatically simulated myopic defocus (CSMD) counteracted small-cage myopia and instead induced hyperopia (approximately +4 diopters [D]). Here, we explored the parameters of this effect. Methods Tree shrews were exposed to the following interventions for 11 days: (1) rearing in closed (n = 7) or open (n = 6) small cages; (2) exposed to a video display of Maltese cross images with CSMD combined with overhead lighting (n = 4); (3) exposed to a video display of Maltese cross images with zero blue contrast ("flat blue," n = 8); and (4) exposed to a video display of black and white grayscale tree images with different spatial filtering (blue pixels lowpass <1 and <2 cycles per degree [CPD]) for the CSMD. Results (1) Tree shrews kept in closed cages, but not open cages, developed myopia. (2) Overhead illumination reduced the hyperopia induced by CSMD. (3) Zero-blue contrast produced hyperopia but slightly less than the CSMD. (4) Both of the CSMD tree images counteracted small cage myopia, but the one low pass filtering blue <1 CPD was more effective at inducing hyperopia. Conclusions Any pattern with reduced blue contrast at and below approximately 1 CPD counteracts myopia/promotes hyperopia, but maximal effectiveness may require that the video display be the brightest object in the environment. Translational Relevance Chromatically simulated myopic blur might be a powerful anti-myopia therapy in children, but the parameter selection could be critical. Issues for translation to humans are discussed.
Collapse
Affiliation(s)
- Zhihui She
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Timothy J. Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
7
|
Qiu K, David C, Li Y, Lei Z, Tong L, Lin W. A retrospective study of cumulative absolute reduction in axial length after photobiomodulation therapy. BMC Ophthalmol 2024; 24:191. [PMID: 38664659 PMCID: PMC11044358 DOI: 10.1186/s12886-024-03427-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 04/03/2024] [Indexed: 04/29/2024] Open
Abstract
BACKGROUND To assess the age and timeline distribution of ocular axial length shortening among myopic children treated with photobiomodulation therapy in the real world situations. METHODS Retrospective study of photobiomodulation therapy in Chinese children aged 4 to 13 years old where axial length measurements were recorded and assessed to determine effectiveness at two age groups (4 ∼ 8 years old group and 9 ∼ 13 years old group). Data was collected from myopic children who received photobiomodulation therapy for 6 ∼ 12 months. Effectiveness of myopia control was defined as any follow-up axial length ≤ baseline axial length, confirming a reduction in axial length. Independent t-test was used to compare the effectiveness of the younger group and the older group with SPSS 22.0. RESULTS 342 myopic children were included with mean age 8.64 ± 2.20 years and baseline mean axial length of 24.41 ± 1.17 mm. There were 85.40%, 46.30%, 71.20% and 58.30% children with axial length shortening recorded at follow-up for 1 month, 3 months, 6 months and 12 months, respectively. With respect to the axial length shortened eyes, the mean axial length difference (standard deviation) was - 0.039 (0.11) mm, -0.032 (0.11) mm, -0.037 (0.12) mm, -0.028 (0.57) mm at 1, 3, 6, and 12-month follow-up, respectively. Greater AL shortening was observed among the older group who had longer baseline axial lengths than the younger group (P < 0.001). CONCLUSIONS Overall myopia control effectiveness using photobiomodulation therapy was shown to be age and time related, with the maximum absolute reduction in axial elongation being cumulative.
Collapse
Affiliation(s)
- Kaikai Qiu
- Fuzhou Southeast Institute of Visual Ophthalmology, Fuzhou (City), China.
| | - Coveney David
- Firstwest Innovations, 350007, Perth (City), Australia
| | - Ying Li
- The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Xuzhou (City, China
| | - Zhou Lei
- Department of Optometry, Ningbo Eye Hospital of Wenzhou Medical University, 315000, Ningbo(City), China
| | - Liyang Tong
- Department of Optometry, Ningbo Eye Hospital of Wenzhou Medical University, 315000, Ningbo(City), China
| | - Wen Lin
- Fuzhou Southeast Institute of Visual Ophthalmology, Fuzhou (City), China.
| |
Collapse
|
8
|
Salzano AD, Khanal S, Cheung NL, Weise KK, Jenewein EC, Horn DM, Mutti DO, Gawne TJ. Repeated Low-level Red-light Therapy: The Next Wave in Myopia Management? Optom Vis Sci 2023; 100:812-822. [PMID: 37890098 DOI: 10.1097/opx.0000000000002083] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/29/2023] Open
Abstract
SIGNIFICANCE Exposure to long-wavelength light has been proposed as a potential intervention to slow myopia progression in children. This article provides an evidence-based review of the safety and myopia control efficacy of red light and discusses the potential mechanisms by which red light may work to slow childhood myopia progression.The spectral composition of the ambient light in the visual environment has powerful effects on eye growth and refractive development. Studies in mammalian and primate animal models (macaque monkeys and tree shrews) have shown that daily exposure to long-wavelength (red or amber) light promotes slower eye growth and hyperopia development and inhibits myopia induced by form deprivation or minus lens wear. Consistent with these results, several recent randomized controlled clinical trials in Chinese children have demonstrated that exposure to red light for 3 minutes twice a day significantly reduces myopia progression and axial elongation. These findings have collectively provided strong evidence for the potential of using red light as a myopia control intervention in clinical practice. However, several questions remain unanswered. In this article, we review the current evidence on the safety and efficacy of red light as a myopia control intervention, describe potential mechanisms, and discuss some key unresolved issues that require consideration before red light can be broadly translated into myopia control in children.
Collapse
Affiliation(s)
| | - Safal Khanal
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Nathan L Cheung
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina
| | - Katherine K Weise
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| | - Erin C Jenewein
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania
| | - Darryl M Horn
- Pennsylvania College of Optometry, Salus University, Elkins Park, Pennsylvania
| | - Donald O Mutti
- The Ohio State University College of Optometry, Columbus, Ohio
| | - Timothy J Gawne
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|