1
|
Lin M, Hu Y, An H, Guo T, Gao Y, Peng K, Zhao M, Zhang X, Zhou H. Silk fibroin-based biomaterials for disc tissue engineering. Biomater Sci 2023; 11:749-776. [PMID: 36537344 DOI: 10.1039/d2bm01343f] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Low back pain is the major cause of disability worldwide, and intervertebral disc degeneration (IVDD) is one of the most important causes of low back pain. Currently, there is no method to treat IVDD that can reverse or regenerate intervertebral disc (IVD) tissue, but the recent development of disc tissue engineering (DTE) offers a new means of addressing these disadvantages. Among numerous biomaterials for tissue engineering, silk fibroin (SF) is widely used due to its easy availability and excellent physical/chemical properties. SF is usually used in combination with other materials to construct biological scaffolds or bioactive substance delivery systems, or it can be used alone. The present article first briefly outlines the anatomical and physiological features of IVD, the associated etiology and current treatment modalities of IVDD, and the current status of DTE. Then, it highlights the characteristics of SF biomaterials and their latest research advances in DTE and discusses the prospects and challenges in the application of SF in DTE, with a view to facilitating the clinical process of developing interventions related to IVD-derived low back pain caused by IVDD.
Collapse
Affiliation(s)
- Maoqiang Lin
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yicun Hu
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Haiying An
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, Wuhan 430000, Hubei, China
| | - Taowen Guo
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Yanbing Gao
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Kaichen Peng
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Meiling Zhao
- Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| | - Xiaobo Zhang
- Department of Orthopedics, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710000, Shaanxi, China.
| | - Haiyu Zhou
- Department of Orthopedics, Lanzhou University Second Hospital, Lanzhou 730030, Gansu, China. .,Key Laboratory of Bone and Joint Disease Research of Gansu Province, Lanzhou 730030, Gansu, China
| |
Collapse
|
2
|
Rohani Shirvan A, Nouri A, Sutti A. A perspective on the wet spinning process and its advancements in biomedical sciences. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
3
|
Nadhif MH, Ghiffary MM, Irsyad M, Mazfufah NF, Nurhaliza F, Rahman SF, Rahyussalim AJ, Kurniawati T. Anatomically and Biomechanically Relevant Monolithic Total Disc Replacement Made of 3D-Printed Thermoplastic Polyurethane. Polymers (Basel) 2022; 14:4160. [PMID: 36236107 PMCID: PMC9571194 DOI: 10.3390/polym14194160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/17/2022] [Accepted: 09/29/2022] [Indexed: 11/05/2022] Open
Abstract
Various implant treatments, including total disc replacements, have been tried to treat lumbar intervertebral disc (IVD) degeneration, which is claimed to be the main contributor of lower back pain. The treatments, however, come with peripheral issues. This study proposes a novel approach that complies with the anatomical features of IVD, the so-called monolithic total disc replacement (MTDR). As the name suggests, the MTDR is a one-part device that consists of lattice and rigid structures to mimic the nucleus pulposus and annulus fibrosus, respectively. The MTDR can be made of two types of thermoplastic polyurethane (TPU 87A and TPU 95A) and fabricated using a 3D printing approach: fused filament fabrication. The MTDR design involves two configurations-the full lattice (FLC) and anatomy-based (ABC) configurations. The MTDR is evaluated in terms of its physical, mechanical, and cytotoxicity properties. The physical characterization includes the geometrical evaluations, wettability measurements, degradability tests, and swelling tests. The mechanical characterization comprises compressive tests of the materials, an analytical approach using the Voigt model of composite, and a finite element analysis. The cytotoxicity assays include the direct assay using hemocytometry and the indirect assay using a tetrazolium-based colorimetric (MTS) assay. The geometrical evaluation shows that the fabrication results are tolerable, and the two materials have good wettability and low degradation rates. The mechanical characterization shows that the ABC-MTDR has more similar mechanical properties to an IVD than the FLC-MTDR. The cytotoxicity assays prove that the materials are non-cytotoxic, allowing cells to grow on the surfaces of the materials.
Collapse
Affiliation(s)
- Muhammad Hanif Nadhif
- Medical Physiology and Biophysics Department, Faculty of Medicine, Universitas Indonesia, Kampus UI Salemba, Jakarta 10430, Indonesia
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Muhammad Maulana Ghiffary
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Muhammad Irsyad
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Mechanical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Nuzli Fahdia Mazfufah
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
| | - Fakhira Nurhaliza
- Medical Technology Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Biomedical Engineering Program, Electrical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Siti Fauziyah Rahman
- Biomedical Engineering Program, Electrical Engineering Department, Faculty of Engineering, Universitas Indonesia, Kampus UI Depok, Depok 16424, Indonesia
| | - Ahmad Jabir Rahyussalim
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Orthopedics and Traumatology Department, Faculty of Medicine/Ciptomangunkusumo Central Hospital, Jakarta 10430, Indonesia
- Integrated Service Unit of Stem Cell Medical Technology, Cipto Mangunkusumo Central Hospital, Jakarta 10430, Indonesia
| | - Tri Kurniawati
- Stem Cells and Tissue Engineering Cluster, Indonesian Medical Education and Research Institute, Kampus UI Salemba, Jakarta 10430, Indonesia
- Integrated Service Unit of Stem Cell Medical Technology, Cipto Mangunkusumo Central Hospital, Jakarta 10430, Indonesia
| |
Collapse
|
4
|
Tavakoli J, Tipper JL. Detailed mechanical characterization of the transition zone: New insight into the integration between the annulus and nucleus of the intervertebral disc. Acta Biomater 2022; 143:87-99. [PMID: 35259517 DOI: 10.1016/j.actbio.2022.03.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Revised: 02/27/2022] [Accepted: 03/01/2022] [Indexed: 11/19/2022]
Abstract
The Nucleus Pulposus (NP) and Annulus Fibrous (AF) are two primary regions of the intervertebral disc (IVD). The interface between the AF and NP, where the gradual transition in structure and type of fibers are observed, is known as the Transition Zone (TZ). Recent structural studies have shown that the TZ contains organized fibers that appear to connect the NP to the AF. However, the mechanical characteristics of the TZ are yet to be explored. The current study aimed to investigate the mechanical properties of the TZ at the anterolateral (AL) and posterolateral (PL) regions in both radial and circumferential directions of loading using ovine IVDs (N = 28). Young's and toe moduli, maximum stress, failure strain, strain at maximum stress, and toughness were calculated mechanical parameters. The findings from this study revealed that the mechanical properties of the TZ, including young's modulus (p = 0.001), failure strain (p < 0.001), strain at maximum stress (p = 0.002), toughness (p = 0.027), and toe modulus (p = 0.005), were significantly lower for the PL compared to the AL region. Maximum stress was not significantly different between the PL and AL regions (p = 0.164). We found that maximum stress (p = 0.002), failure strain (p < 0.001), and toughness (p = 0.001) were significantly different in different loading directions. No significant differences for modulus (young's; p = 0.169 and toe; p = 0.352) and strain at maximum stress (p = 0.727) were found between the radial and circumferential loading directions. STATEMENT OF SIGNIFICANCE: To date there has not been a study that has investigated the mechanical characterization of the annulus (AF)-nucleus (NP) interface (transition zone; TZ) in the intervertebral disc (IVD), nor is it known whether the posterolateral (PL) and anterolateral (AL) regions of the TZ exhibit different mechanical properties. Accordingly, the TZ mechanical properties have been rarely used in the development of computational IVD models and relevant tissue-engineered scaffolds. The current research reported the mechanical properties of the TZ region and revealed that its mechanical properties were significantly lower for the PL compared to the AL region. These new findings enhance our knowledge about the nature of AF-NP integration and may help to develop more realistic tissue-engineered or computational IVD models.
Collapse
Affiliation(s)
- Javad Tavakoli
- Centre for Health Technologies, Faculty of Engineering and Information Technology, School of Biomedical Engineering, University of Technology Sydney, NSW, Australia.
| | - Joanne L Tipper
- Centre for Health Technologies, Faculty of Engineering and Information Technology, School of Biomedical Engineering, University of Technology Sydney, NSW, Australia.
| |
Collapse
|
5
|
Stergar J, Gradisnik L, Velnar T, Maver U. Intervertebral disc tissue engineering: A brief review. Bosn J Basic Med Sci 2019; 19:130-137. [PMID: 30726701 DOI: 10.17305/bjbms.2019.3778] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 07/29/2018] [Indexed: 12/12/2022] Open
Abstract
Intervertebral disc (IVD) degeneration (IDD) is associated with low back pain and significantly affects the patient's quality of life. Degeneration of the IVD alters disk height and the mechanics of the spine, leading to chronic segmental spinal instability. The pathophysiology of IVD disease is still not well understood. Current therapies for IDD include conservative and invasive approaches, but none of those treatments are able to restore the disc structure and function. Recently, tissue engineering techniques emerged as a possible approach to treat IDD, by replacing a damaged IVD with scaffolds and appropriate cells. Advances in manufacturing techniques, material processing and development, surface functionalization, drug delivery systems and cell incorporation furthered the development of tissue engineering therapies. In this review, biomaterial scaffolds and cell-based therapies for IVD regeneration are briefly discussed.
Collapse
Affiliation(s)
- Janja Stergar
- Institute of Biomedical Sciences, Faculty of Medicine, University of Maribor, Maribor, Slovenia Laboratory of Inorganic Chemistry, Faculty of Chemistry and Chemical Technology, University of Maribor, Maribor, Slovenia.
| | | | | | | |
Collapse
|
6
|
Wei Q, Zhang X, Zhou C, Ren Q, Zhang Y. Roles of large aggregating proteoglycans in human intervertebral disc degeneration. Connect Tissue Res 2019; 60:209-218. [PMID: 29992840 DOI: 10.1080/03008207.2018.1499731] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Degeneration of the intervertebral discs, a natural progression of the aging process, is strongly implicated as a cause of low back pain. Aggrecan is the major structural proteoglycan in the extracellular matrix of the intervertebral disc. It is large, possessing numerous glycosaminoglycan chains and the ability to form aggregates in association with hyaluronan. The negatively charged glycosaminoglycan side chains in aggrecan in the nucleus pulposus of the intervertebral discs can bind electrostatically to polar water molecules, which are crucial for maintaining the well-hydrated state that enables the discs to undergo reversible deformation under compressive loading. A more in-depth understanding of the molecular basis of disc degeneration is essential to the design of therapeutic solutions to treat degenerative discs. Within this scope, we discuss the current knowledge concerning the structure and function of aggrecan in intervertebral disc degeneration. These data suggest that aggrecan plays a central role in the function and degeneration of the intervertebral disc, which may suggest potential aggrecan-based therapies for disc regeneration.
Collapse
Affiliation(s)
- Qingshen Wei
- a Department of Orthopedic Surgery , Rizhao Traditional Chinese Medicine Hospital , Rizhao , China
| | - Xiangwei Zhang
- a Department of Orthopedic Surgery , Rizhao Traditional Chinese Medicine Hospital , Rizhao , China
| | - Caiju Zhou
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| | - Qiang Ren
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| | - Yuntao Zhang
- b School of Pharmaceutical Science , Jining Medical University , Rizhao , China
| |
Collapse
|
7
|
Efficacy of Platelet-Rich Plasma Containing Xenogenic Adipose Tissue-Derived Stromal Cells on Restoring Intervertebral Disc Degeneration: A Preclinical Study in a Rabbit Model. Pain Res Manag 2019; 2019:6372356. [PMID: 31149318 PMCID: PMC6501249 DOI: 10.1155/2019/6372356] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2018] [Revised: 01/08/2019] [Accepted: 03/05/2019] [Indexed: 01/08/2023]
Abstract
Objective Platelet-rich plasma (PRP) containing multiple growth factors is a promising strategy for disc degeneration. Thus, this study hypothesizes that the combination of PRP and adipose tissue-derived stromal cells (ADSCs) may repair degenerative disc more effectively than using each one of them alone. Methods The model of early intervertebral disc degeneration was induced by annular puncture in the New Zealand rabbit. Autologous PRP was extracted from fresh arterial blood by using two centrifugation techniques. ADSC was offered by the Center for Clinic Stem Cell Research. Four weeks after the first experiment, PRP or ADSCs or a combination of PRP and ADSCs was injected into the punctured intervertebral disc. Four weeks later, disc height and signal intensity on T2-weighted magnetic resonance imaging (MRI) were assessed. Results One month after puncture, we detected relatively narrow discs and lower signal intensity in MRI T2-weighted images. At four weeks after injection, the PRP-ADSC group statistically significantly restored discs, compared with PRP, ADSCs, or negative control group. Conclusions The combination of PRP and ADSCs shows an effective potential to restore degenerated intervertebral discs in the rabbit.
Collapse
|
8
|
Qiu YL, Chen X, Hou YL, Hou YJ, Tian SB, Chen YH, Yu L, Nie MH, Liu XQ. Characterization of different biodegradable scaffolds in tissue engineering. Mol Med Rep 2019; 19:4043-4056. [PMID: 30896809 PMCID: PMC6471812 DOI: 10.3892/mmr.2019.10066] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 12/19/2018] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to compare the characteristics of acellular dermal matrix (ADM), small intestinal submucosa (SIS) and Bio‑Gide scaffolds with acellular vascular matrix (ACVM)‑0.25% human‑like collagen I (HLC‑I) scaffold in tissue engineering blood vessels. The ACVM‑0.25% HLC‑I scaffold was prepared and compared with ADM, SIS and Bio‑Gide scaffolds via hematoxylin and eosin (H&E) staining, Masson staining and scanning electron microscope (SEM) observations. Primary human gingival fibroblasts (HGFs) were cultured and identified. Then, the experiment was established via the seeding of HGFs on different scaffolds for 1, 4 and 7 days. The compatibility of four different scaffolds with HGFs was evaluated by H&E staining, SEM observation and Cell Counting Kit‑8 assay. Then, a series of experiments were conducted to evaluate water absorption capacities, mechanical abilities, the ultra‑microstructure and the cytotoxicity of the four scaffolds. The ACVM‑0.25% HLC‑I scaffold was revealed to exhibit the best cell proliferation and good cell architecture. ADM and Bio‑Gide scaffolds exhibited good mechanical stability but cell proliferation was reduced when compared with the ACVM‑0.25% HLC‑I scaffold. In addition, SIS scaffolds exhibited the worst cell proliferation. The ACVM‑0.25% HLC‑I scaffold exhibited the best water absorption, followed by the SIS and Bio‑Gide scaffolds, and then the ADM scaffold. In conclusion, the ACVM‑0.25% HLC‑I scaffold has good mechanical properties as a tissue engineering scaffold and the present results suggest that it has better biological characterization when compared with other scaffold types.
Collapse
Affiliation(s)
- Yan-Ling Qiu
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xiao Chen
- Department of Orthodontics, Mianyang Stomatological Hospital, Mianyang, Sichuan 621000, P.R. China
| | - Ya-Li Hou
- Department of Oral Pathology, College and Hospital of Stomatology, Hebei Medical University and The Key Laboratory of Stomatology, Shijiazhuang, Hebei 050000, P.R. China
| | - Yan-Juan Hou
- Department of Nephrology, Second Hospital, Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China
| | - Song-Bo Tian
- Department of Oral Medicine, Second Hospital of Hebei Medical University, Shijiazhuang, Hebei 050000, P.R. China
| | - Yu-He Chen
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Li Yu
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Min-Hai Nie
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| | - Xu-Qian Liu
- Department of Periodontics and Oral Mucosa, Affiliated Stomatology Hospital, Southwest Medical University, Luzhou, Sichuan 646000, P.R. China
| |
Collapse
|
9
|
Lin CY, Crowley ST, Uchida S, Komaki Y, Kataoka K, Itaka K. Treatment of Intervertebral Disk Disease by the Administration of mRNA Encoding a Cartilage-Anabolic Transcription Factor. MOLECULAR THERAPY. NUCLEIC ACIDS 2019; 16:162-171. [PMID: 30889482 PMCID: PMC6424144 DOI: 10.1016/j.omtn.2019.02.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2019] [Revised: 02/10/2019] [Accepted: 02/16/2019] [Indexed: 12/27/2022]
Abstract
Intervertebral disk (IVD) degeneration is often associated with severity of lower back pain. IVD core is an avascular, highly hydrated tissue composed of type II collagen, glycosaminoglycans, and proteoglycans. The disk degeneration is not only a destruction of IVD structure but also is related to a disorder of the turnover of the disk matrix, leading the jelly-like IVD core to be replaced by fibrous components. Here we present a disease-modifying strategy for IVD degenerative diseases by direct regulation of the cells in the IVD using mRNA medicine, to alter the misbalanced homeostasis during disk degeneration. When mRNA encoding a cartilage-anabolic transcription factor, runt-related transcription factor-1, was administered to a rat model of coccygeal disk degeneration using a polyplex nanomicelle composed of polyethylene glycol-polyamino acid block copolymers and mRNA, the disk height was maintained to a significantly higher extent (≈81%) compared to saline control (69%), with prevention of fibrosis in the disk tissue. In addition, the use of nanomicelles effectively prevented inflammation, which was observed by injection of naked mRNA into the disk. This proof-of-concept study revealed that mRNA medicine has a potential for treating IVD degenerative diseases by introducing a cartilage-anabolic factor into the host cells, proposing a new therapeutic strategy using mRNA medicine.
Collapse
Affiliation(s)
- Chin-Yu Lin
- Institute of New Drug Development, China Medical University, Taichung 40402, Taiwan; Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan
| | - Samuel Thomas Crowley
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan
| | - Satoshi Uchida
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, Bunkyo, Tokyo 113-8656, Japan
| | - Yuji Komaki
- Central Institute for Experimental Animals, Kawasaki, Kanagawa 210-0821, Japan
| | - Kazunori Kataoka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Policy Alternatives Research Institute, The University of Tokyo, Bunkyo, Tokyo 113-0033, Japan
| | - Keiji Itaka
- Innovation Center of NanoMedicine, Kawasaki Institute of Industrial Promotion, Kawasaki, Kanagawa 210-0821, Japan; Department of Biofunction Research, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU), Chiyoda-ku, Tokyo 101-0062, Japan.
| |
Collapse
|
10
|
Memic A, Colombani T, Eggermont LJ, Rezaeeyazdi M, Steingold J, Rogers ZJ, Navare KJ, Mohammed HS, Bencherif SA. Latest Advances in Cryogel Technology for Biomedical Applications. ADVANCED THERAPEUTICS 2019. [DOI: 10.1002/adtp.201800114] [Citation(s) in RCA: 171] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Adnan Memic
- Center of NanotechnologyKing Abdulaziz University Jeddah 21589 Saudi Arabia
- Center for Biomedical EngineeringDepartment of MedicineBrigham and Women's HospitalHarvard Medical School Cambridge MA 02139 USA
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Thibault Colombani
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | - Loek J. Eggermont
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of Tumor ImmunologyOncode Institute, Radboud Institute for Molecular Life SciencesRadboud University Medical Center Nijmegen 6500 The Netherlands
| | | | - Joseph Steingold
- Department of Pharmaceutical SciencesNortheastern University Boston MA 02115 USA
| | - Zach J. Rogers
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
| | | | | | - Sidi A. Bencherif
- Department of Chemical EngineeringNortheastern University Boston MA 02115 USA
- Department of BioengineeringNortheastern University Boston MA 02115 USA
- Harvard John A. Paulson School of Engineering and Applied SciencesHarvard University Cambridge MA 02138 USA
- Sorbonne UniversityUTC CNRS UMR 7338Biomechanics and Bioengineering (BMBI)University of Technology of Compiègne Compiègne 60159 France
| |
Collapse
|
11
|
Hensley A, Rames J, Casler V, Rood C, Walters J, Fernandez C, Gill S, Mercuri JJ. Decellularization and characterization of a whole intervertebral disk xenograft scaffold. J Biomed Mater Res A 2018; 106:2412-2423. [PMID: 29673061 PMCID: PMC6158084 DOI: 10.1002/jbm.a.36434] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 03/27/2018] [Accepted: 04/05/2018] [Indexed: 02/06/2023]
Abstract
Intervertebral disk (IVD) degeneration is a multifactor process that results in the physical destruction of the nucleus pulposus (NP) and annulus fibrosus (AF). This compromises IVD function and causes significant disability and economic burden. Strategies to replace the entire composite structure of the IVD are limited and most approaches do not recapitulate the heterogenous biochemical composition, microarchitecture or mechanical properties of the native tissue. Our central hypothesis was that donor IVDs which resemble the size and biochemistry of human lumbar IVDs could be successfully decellularized while retaining the tissue's structure and function with the long-term goal of creating a composite scaffold for tissue engineering the human IVD. Accordingly, we optimized a procedure to decellularize bovine tail IVDs using a combination of detergents, ultrasonication, freeze-thaw cycles, and nucleases. The resultant decellularized whole IVD xenografts retained distinct AF and NP regions which contained no visible intact cell nuclei and minimal residual bovine deoxyribose nucleic acid (DNA; 65.98 ± 4.07 and 47.12 ± 13.22 ng/mg, respectively). Moreover, the NP region of decellularized IVDs contained 313.40 ± 50.67 µg/mg glycosaminoglycan. The presence of collagen type II was confirmed via immunohistochemistry. Additionally, histological analysis of the AF region of decellularized IVDs demonstrated retention of the native angle-ply collagen microarchitecture. Unconfined compression testing demonstrated no significant differences in swelling pressure and toe-region modulus between fresh and decellularized IVDs. However, linear region moduli, peak stress and equilibrium moduli were all significantly reduced. Together, this research demonstrates a successful initial step in developing a biomimetic acellular whole IVD xenograft scaffold for use in IVD tissue engineering. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A:2412-2423, 2018.
Collapse
Affiliation(s)
- Austin Hensley
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Jess Rames
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Victor Casler
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Christopher Rood
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Joshua Walters
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Christopher Fernandez
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| | - Sanjitpal Gill
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina.,Department of Orthopaedic Surgery, Medical Group of the Carolinas-Pelham, Spartanburg Regional Healthcare System, Greer, South Carolina
| | - Jeremy J Mercuri
- Laboratory of Orthopaedic Tissue Regeneration & Orthobiologics, Department of Bioengineering, Clemson University, Clemson, South Carolina
| |
Collapse
|
12
|
Bedside to bench and back to bedside: Translational implications of targeted intervertebral disc therapeutics. J Orthop Translat 2017; 10:18-27. [PMID: 29662757 PMCID: PMC5822961 DOI: 10.1016/j.jot.2017.03.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 03/27/2017] [Accepted: 03/28/2017] [Indexed: 12/25/2022] Open
Abstract
Spinal pain and associated disability is a leading cause of morbidity worldwide that has a strong association with degenerative disc disease (DDD). DDD can begin in early–late adolescence and has a variable course. Biologically based therapies to treat DDD face significant challenges posed by the unique milieu of the environment within the intervertebral discs. Many potential promising therapies are still in the early stages of development with a hostile microenvironment within the disc presenting unique challenges. The translational potential of this article: Patient selection, reasonable therapeutic goals, approach, and timing will need to be discerned in order to successfully translate potential therapeutics.
Collapse
|
13
|
Wang M, Yuan Z, Ma N, Hao C, Guo W, Zou G, Zhang Y, Chen M, Gao S, Peng J, Wang A, Wang Y, Sui X, Xu W, Lu S, Liu S, Guo Q. Advances and Prospects in Stem Cells for Cartilage Regeneration. Stem Cells Int 2017; 2017:4130607. [PMID: 28246531 PMCID: PMC5299204 DOI: 10.1155/2017/4130607] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 11/24/2016] [Accepted: 12/26/2016] [Indexed: 12/16/2022] Open
Abstract
The histological features of cartilage call attention to the fact that cartilage has a little capacity to repair itself owing to the lack of a blood supply, nerves, or lymphangion. Stem cells have emerged as a promising option in the field of cartilage tissue engineering and regenerative medicine and could lead to cartilage repair. Much research has examined cartilage regeneration utilizing stem cells. However, both the potential and the limitations of this procedure remain controversial. This review presents a summary of emerging trends with regard to using stem cells in cartilage tissue engineering and regenerative medicine. In particular, it focuses on the characterization of cartilage stem cells, the chondrogenic differentiation of stem cells, and the various strategies and approaches involving stem cells that have been used in cartilage repair and clinical studies. Based on the research into chondrocyte and stem cell technologies, this review discusses the damage and repair of cartilage and the clinical application of stem cells, with a view to increasing our systematic understanding of the application of stem cells in cartilage regeneration; additionally, several advanced strategies for cartilage repair are discussed.
Collapse
Affiliation(s)
- Mingjie Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Zhiguo Yuan
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Ning Ma
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Chunxiang Hao
- Anesthesiology Department, Chinese PLA General Hospital, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Weimin Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Gengyi Zou
- Medical College, Nankai University, Tianjin, 300071, China
| | - Yu Zhang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Mingxue Chen
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuang Gao
- Center for Biomedical Material and Tissue Engineering, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Jiang Peng
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Aiyuan Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Yu Wang
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Xiang Sui
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Wenjing Xu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shibi Lu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Shuyun Liu
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| | - Quanyi Guo
- Institute of Orthopaedics, Chinese PLA General Hospital, Beijing Key Lab of Regenerative Medicine in Orthopaedics, Key Laboratory of Musculoskeletal Trauma & War Injuries, PLA, 28 Fuxing Road, Haidian District, Beijing 100853, China
| |
Collapse
|