1
|
Yan M, Liang T, Zhao H, Bi Y, Wang T, Yu T, Zhang Y. Model Properties and Clinical Application in the Finite Element Analysis of Knee Joint: A Review. Orthop Surg 2024; 16:289-302. [PMID: 38174410 PMCID: PMC10834231 DOI: 10.1111/os.13980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/21/2023] [Accepted: 12/04/2023] [Indexed: 01/05/2024] Open
Abstract
The knee is the most complex joint in the human body, including bony structures like the femur, tibia, fibula, and patella, and soft tissues like menisci, ligaments, muscles, and tendons. Complex anatomical structures of the knee joint make it difficult to conduct precise biomechanical research and explore the mechanism of movement and injury. The finite element model (FEM), as an important engineering analysis technique, has been widely used in many fields of bioengineering research. The FEM has advantages in the biomechanical analysis of objects with complex structures. Researchers can use this technology to construct a human knee joint model and perform biomechanical analysis on it. At the same time, finite element analysis can effectively evaluate variables such as stress, strain, displacement, and rotation, helping to predict injury mechanisms and optimize surgical techniques, which make up for the shortcomings of traditional biomechanics experimental research. However, few papers introduce what material properties should be selected for each anatomic structure of knee FEM to meet different research purposes. Based on previous finite element studies of the knee joint, this paper summarizes various modeling strategies and applications, serving as a reference for constructing knee joint models and research design.
Collapse
Affiliation(s)
- Mingyue Yan
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Ting Liang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Haibo Zhao
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Yanchi Bi
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
| | - Tianrui Wang
- Department of Orthopedics, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Tengbo Yu
- Institute of Sports Medicine and Health, Qingdao University, Qingdao, China
- Department of Orthopedic Surgery, Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Yingze Zhang
- Department of Orthopedics, The Third Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
2
|
Jia G, Guo L, Peng B, Liu X, Zhang S, Wu M, Geng B, Han H, Xia Y, Teng Y. The optimal tibial tunnel placement to maximize the graft bending angle in the transtibial posterior cruciate ligament reconstruction: a quantitative assessment in three-dimensional computed tomography model. Quant Imaging Med Surg 2023; 13:5195-5206. [PMID: 37581068 PMCID: PMC10423400 DOI: 10.21037/qims-22-1057] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 05/11/2023] [Indexed: 08/16/2023]
Abstract
Background The graft bending angle created by the graft and the tibial tunnel has inevitably occurred during the transtibial posterior cruciate ligament (PCL) reconstruction. However, few studies quantitively analyzed this angle. This study aimed to (I) explore the optimal tibial tunnel placement to maximize the graft bending angle in the PCL reconstruction; (II) reveal the effect of the tibial tunnel placement on the graft bending angle. Methods This was an in-vitro surgical simulation study based on the three-dimensional (3D) computed tomography (CT). A total of 55 patients who took CT scanning for knee injuries were selected (April 2020 to January 2022) from the local hospital database for review. The 3D knee models were established on the Mimics software based on the knees' CT data. Using the Rhinoceros software to simulate the transtibial PCL reconstruction on the 3D CT knee model. The anteromedial and anterolateral tibial tunnel approaches were simulated with different tibial tunnel angle. The graft bending angle and tibial tunnel length (TTL) with different tibial tunnel angles were quantitively analyzed. Results The graft bending angle in anterolateral approach with a 50° tibial tunnel angle was significantly greater than it in anteromedial approach with a 60° tibial tunnel angle (P<0.001). There was no difference of the graft bending angle between the anterolateral approach with a 40° tibial tunnel angle and the anteromedial approach with a 60° tibial tunnel angle (P>0.05). The graft bending angle showed a strong correlation with the tibial tunnel angle (for anteromedial approach: r=0.759, P<0.001; for anterolateral approach: r=0.702, P<0.001). The best-fit equation to calculate the graft bending angle based on the tibial tunnel angle was Y = 0.89*X + 59.05 in anteromedial tibial tunnel approach (r2=0.576), and was Y = 0.78*X + 80.21 anterolateral tibial tunnel approach (r2=0.493). Conclusions The graft bending angle and TTL will significantly increase as the tibial tunnel angle becomes greater. Maximizing the tibial tunnel angle (50° tibial tunnel angle) in the anterolateral approach could provide the greatest graft bending angle in the PCL reconstruction. No matter how the tibial tunnel angle is changed in the anteromedial approach, using anterolateral approach might reduce the killer turn effect more effectively than using anteromedial approach.
Collapse
Affiliation(s)
- Gengxin Jia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Laiwei Guo
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Bo Peng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Xiaolong Liu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Shifeng Zhang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Meng Wu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Hua Han
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| | - Yuanjun Teng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, China
- Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, China
| |
Collapse
|
3
|
Peng B, Tang Y, Jia G, Geng B, Xu L, Xia Y, Teng Y. Biomechanical Comparison of Anatomic Versus Lower of Anteromedial and Anterolateral Tibial Tunnels in Posterior Cruciate Ligament Reconstruction. Orthop Surg 2023; 15:851-857. [PMID: 36597708 PMCID: PMC9977590 DOI: 10.1111/os.13641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 11/17/2022] [Accepted: 11/28/2022] [Indexed: 01/05/2023] Open
Abstract
OBJECTIVE In order to reduce the "killer turn" effect, various tibial tunnels have been developed. However, few studies investigated the biomechanical effects of different tibial tunnels during PCL reconstruction. This study aims to compare the time-zero biomechanical properties of anteromedial, anterolateral, lower anteromedial, and lower anterolateral tibial tunnels in transtibial posterior cruciate ligament (PCL) reconstruction under load-to-failure loading. METHODS Porcine tibias and bovine extensor tendons were used to simulate in vitro transtibial PCL reconstruction. Forty bovine extensor tendons and 40 porcine tibias were randomly divided into four experimental groups: anteromedial tunnel group (AM group, n = 10), anterolateral tunnel group (AL group, n = 10), lower anteromedial tunnel group (L-AM group, n = 10), and lower anterolateral tunnel group (L-AL group, n = 10). The biomechanical test was then carried out in each group using the load-to-failure test. The ultimate load (in newtons), yield load (in newtons), tensile stiffness (in newtons per millimeter), load-elongation curve, failure mode, and tibial tunnel length (in millimeter) were recorded for each specimen. One-way analysis of variance (ANOVA) was used to compare the mean differences among the four groups. RESULTS The biomechanical outcomes showed that there were no differences in the mean tensile stiffness and failure mode among four groups. The ultimate load and yield load of the L-AM group were significantly higher than those of other three groups (P < 0.05). For the AM group, its ultimate load is significantly higher than that of the L-AL group (P < 0.05), and its yield load is higher than that of the AL group and L-AL group (P < 0.05). However, we found no significant differences in either ultimate load or yield load between AL group and L-AL group (P > 0.05). There was significant statistical difference in the length of tibial tunnel between anatomic groups (AM and AL) and lower groups (L-AM and L-AL) (P < 0.05). CONCLUSION Compared with the anteromedial, anterolateral, and lower anterolateral tibial tunnel, the lower anteromedial tibial tunnel showed better time-zero biomechanical properties including ultimate load and yield load in transtibial PCL reconstruction.
Collapse
Affiliation(s)
- Bo Peng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Yuchen Tang
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Gengxin Jia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Bin Geng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Lihu Xu
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Yayi Xia
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Yuanjun Teng
- Department of Orthopaedics, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.,Orthopaedics Key Laboratory of Gansu Province, Lanzhou University Second Hospital, Lanzhou University, Lanzhou, Gansu, 730030, China
| |
Collapse
|