1
|
Parksook WW, Williams GH. Aldosterone and cardiovascular diseases. Cardiovasc Res 2023; 119:28-44. [PMID: 35388416 DOI: 10.1093/cvr/cvac027] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 12/07/2021] [Accepted: 12/28/2021] [Indexed: 11/12/2022] Open
Abstract
Aldosterone's role in the kidney and its pathophysiologic actions in hypertension are well known. However, its role or that of its receptor [minieralocorticoid receptor (MR)] in other cardiovascular (CV) disease are less well described. To identify their potential roles in six CV conditions (heart failure, myocardial infarction, atrial fibrillation, stroke, atherosclerosis, and thrombosis), we assessed these associations in the following four areas: (i) mechanistic studies in rodents and humans; (ii) pre-clinical studies of MR antagonists; (iii) clinical trials of MR antagonists; and (iv) genetics. The data were acquired from an online search of the National Library of Medicine using the PubMed search engine from January 2011 through June 2021. There were 3702 publications identified with 200 publications meeting our inclusion and exclusion criteria. Data strongly supported an association between heart failure and dysregulated aldosterone/MR. This association is not surprising given aldosterone/MR's prominent role in regulating sodium/volume homeostasis. Atrial fibrillation and myocardial infarction are also associated with dysregulated aldosterone/MR, but less strongly. For the most part, the data were insufficient to determine whether there was a relationship between atherosclerosis, stroke, or thrombosis and aldosterone/MR dysregulation. This review clearly documented an expanding role for aldosterone/MR's dysregulation in CV diseases beyond hypertension. How expansive it might be is limited by the currently available data. It is anticipated that with an increased focus on aldosterone/MR's potential roles in these diseases, additional clinical and pre-clinical data will clarify these relationships, thereby, opening approaches to use modulators of aldosterone/MR's action to more precisely treat these CV conditions.
Collapse
Affiliation(s)
- Wasita W Parksook
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Division of Endocrinology and Metabolism, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
- Division of General Internal Medicine, Faculty of Medicine, Chulalongkorn University, and King Chulalongkorn Memorial Hospital, Thai Red Cross Society, Bangkok, Thailand
| | - Gordon H Williams
- Division of Endocrinology, Diabetes and Hypertension, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Daimi H, Lozano-Velasco E, Aranega A, Franco D. Genomic and Non-Genomic Regulatory Mechanisms of the Cardiac Sodium Channel in Cardiac Arrhythmias. Int J Mol Sci 2022; 23:1381. [PMID: 35163304 PMCID: PMC8835759 DOI: 10.3390/ijms23031381] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/19/2022] Open
Abstract
Nav1.5 is the predominant cardiac sodium channel subtype, encoded by the SCN5A gene, which is involved in the initiation and conduction of action potentials throughout the heart. Along its biosynthesis process, Nav1.5 undergoes strict genomic and non-genomic regulatory and quality control steps that allow only newly synthesized channels to reach their final membrane destination and carry out their electrophysiological role. These regulatory pathways are ensured by distinct interacting proteins that accompany the nascent Nav1.5 protein along with different subcellular organelles. Defects on a large number of these pathways have a tremendous impact on Nav1.5 functionality and are thus intimately linked to cardiac arrhythmias. In the present review, we provide current state-of-the-art information on the molecular events that regulate SCN5A/Nav1.5 and the cardiac channelopathies associated with defects in these pathways.
Collapse
Affiliation(s)
- Houria Daimi
- Biochemistry and Molecular Biology Laboratory, Faculty of Pharmacy, University of Monastir, Monastir 5000, Tunisia
| | - Estefanía Lozano-Velasco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Amelia Aranega
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| | - Diego Franco
- Department of Experimental Biology, University of Jaen, 23071 Jaen, Spain; (E.L.-V.); (A.A.); (D.F.)
- Medina Foundation, Technology Park of Health Sciences, Av. del Conocimiento, 34, 18016 Granada, Spain
| |
Collapse
|
3
|
Association between ZFHX3 and PRRX1 Polymorphisms and Atrial Fibrillation Susceptibility from Meta-Analysis. Int J Hypertens 2021; 2021:9423576. [PMID: 34950514 PMCID: PMC8692054 DOI: 10.1155/2021/9423576] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Accepted: 10/15/2021] [Indexed: 11/17/2022] Open
Abstract
Background Atrial fibrillation (AF) is a common, sustained cardiac arrhythmia. Recent studies have reported an association between ZFHX3/PRRX1 polymorphisms and AF. In this study, a meta-analysis was conducted to confirm these associations. Objective and Methods. The PubMed, Embase, and Wanfang databases were searched, covering all publications before July 20, 2020. Results Overall, seven articles including 3,674 cases and 8,990 healthy controls for ZFHX3 rs2106261 and 1045 cases and 1407 controls for PRRX1 rs3903239 were included. The odds ratio (OR) (95% confidence interval (CI)) was used to assess the associations. Publication bias was calculated using Egger's and Begg's tests. We found that the ZFHX3 rs2106261 polymorphism increased AF risk in Asians (for example, allelic contrast: OR [95% CI]: 1.39 [1.31–1.47], P < 0.001). Similarly, strong associations were detected through stratified analysis using source of control and genotype methods (for example, allelic contrast: OR [95% CI]: 1.51 [1.38–1.64], P < 0.001 for HB; OR [95% CI]: 1.31 [1.21–1.41], P < 0.001 for PB; OR [95% CI]: 1.55 [1.33–1.80], P < 0.001 for TaqMan; and OR [95% CI]: 1.31 [1.21–1.41], P < 0.001 for high-resolution melt). In contrast, an inverse relationship was observed between the PRRX1 rs3903239 polymorphism and AF risk (C-allele vs. T-allele: OR [95% CI]: 0.83 [0.77–0.99], P=0.036; CT vs. TT: OR [95% CI]: 0.79 [0.67–0.94], P=0.006). No obvious evidence of publication bias was observed. Conclusions In summary, our study suggests that the ZFHX3 rs2106261 and PRRX1 rs3903239 polymorphisms are associated with AF risk, and larger case-controls must be carried out to confirm the abovementioned conclusions.
Collapse
|
4
|
Tamirisa KP, Al-Khatib SM, Mohanty S, Han JK, Natale A, Gupta D, Russo AM, Al-Ahmad A, Gillis AM, Thomas KL. Racial and Ethnic Differences in the Management of Atrial Fibrillation. CJC Open 2021; 3:S137-S148. [PMID: 34993443 PMCID: PMC8712595 DOI: 10.1016/j.cjco.2021.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/03/2021] [Indexed: 01/24/2023] Open
Abstract
Atrial fibrillation (AF) is the most common clinical arrhythmia, and it results in adverse outcomes and increased healthcare costs. Racial and ethnic differences in AF management, although recognized, are poorly understood. This review summarizes racial differences in AF epidemiology, genetics, clinical presentation, and management. In addition, it highlights the underrepresentation of racial and ethnic populations in AF clinical trials, especially trials focused on stroke prevention. Specific strategies are proposed for future research and initiatives that have potential to eliminate racial and ethnic differences in the care of patients with AF. Addressing racial and ethnic disparities in healthcare access, enrollment in clinical trials, resource allocation, prevention, and management will likely narrow the gaps in the care and outcomes of racial and ethnic minorities suffering from AF.
Collapse
Affiliation(s)
| | - Sana M. Al-Khatib
- Division of Cardiology, Duke University Medical Centre, Durham, North Carolina, USA
| | | | - Janet K. Han
- Division of Cardiology, Veterans Affairs (VA) Greater Los Angeles Healthcare System, Los Angeles, California, USA
- University of California Los Angeles School of Medicine, Los Angeles, California, USA
| | - Andrea Natale
- Texas Cardiac Arrhythmia Institute, Austin/Dallas, Texas, USA
| | - Dhiraj Gupta
- Department of Cardiology, University of Liverpool, London, United Kingdom
| | - Andrea M. Russo
- Division of Cardiology, Cooper University Hospital, Camden, New Jersey, USA
| | - Amin Al-Ahmad
- Texas Cardiac Arrhythmia Institute, Austin/Dallas, Texas, USA
| | - Anne M. Gillis
- Department of Cardiac Sciences, University of Calgary, Calgary, Alberta, Canada
| | - Kevin L. Thomas
- Division of Cardiology, Duke University Medical Centre, Durham, North Carolina, USA
| |
Collapse
|
5
|
Xu C, Zhang R, Xia Y, Xiong L, Yang W, Wang P. Annotation of susceptibility SNPs associated with atrial fibrillation. Aging (Albany NY) 2020; 12:16981-16998. [PMID: 32902410 PMCID: PMC7521544 DOI: 10.18632/aging.103615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 06/18/2020] [Indexed: 01/24/2023]
Abstract
OBJECTIVE Genome-wide association studies (GWAS) and the candidate gene based association studies have identified a panel of variants associated with atrial fibrillation (AF), however, most of the identified single nucleotide polymorphisms (SNPs) were found located within intergenic or intronic genomic regions, and whether the positive SNPs have a real biological function is unknown, and the real disease causing gene need to be studied. RESULTS The current results of the genetic studies including common variants identified by GWAS (338 index SNPs) and candidate gene based association studies (40 SNPs) were summarized. CONCLUSION Our study suggests the relationship between genetic variants and possible targeted genes, and provides insight into potential genetic pathways underlying AF incidence and development. The results may provide an encyclopedia of AF susceptibility SNPs and shed light on the functional mechanisms of AF variants identified through genetic studies. METHODS We summarized AF susceptibility SNPs identified by GWAS and candidate gene based association studies, and give a comprehensive functional annotation of all these AF susceptibility loci. by genomic annotation, microRNA binding prediction, promoter activity analysis, enhancer activity analysis, transcription factors binding activity prediction, expression quantitative trait loci (eQTL) analysis, long-range transcriptional regulatory function analysis, gene ontology and pathway enrichment analysis.
Collapse
Affiliation(s)
- Chengqi Xu
- College of Life Science and Technology, Center for Human Genome Research and Cardio-X Institute, Huazhong University of Science and Technology, Wuhan 430074, P. R. China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Yunlong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian 116011, P. R. China
| | - Liang Xiong
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, P. R. China
| | - Wei Yang
- Jilin Provincial Key Laboratory on Molecular and Chemical Genetic, The Second Hospital of Jilin University, Changchun 130041, P. R. China
| | - Pengyun Wang
- Department of Clinical Laboratory, Liyuan Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430077, P. R. China
| |
Collapse
|
6
|
Li XH, Hu YM, Yin GL, Wu P. Correlation between HCN4 gene polymorphisms and lone atrial fibrillation risk. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:2989-2993. [PMID: 31315459 DOI: 10.1080/21691401.2019.1637885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Background and objective: Atrial electrical remodelling (AER) was significantly associated with atrial fibrillation (AF) development. Polymorphisms in hyperpolarization activated cyclic nucleotide gated potassium channel 4 (HCN4) gene might be correlated with AER. In the present study, we explored the association of HCN4 polymorphisms (rs498005 and rs7164883) with lone AF risk in a Chinese Han population. Methods: In this case-control study, the Sanger sequencing method was utilized to genotype the HCN4 polymorphisms. Relative risk of AF was assessed by the χ2 test, and presented by odds ratios (ORs) and corresponding 95% confidence intervals (CIs). Logistic regression analysis was performed for multivariate analysis. The effects of HCN4 polymorphisms on AF clinical features were analyzed by the Mann-Whitney U test and adjusted by the Bonferroni method. Results: C allele of rs498005 was significantly correlated with increased risk of AF (OR = 1.412, 95%CI = 1.012-1.970), and the association still exited after adjustment by age, gender, the status of smoking and drinking, histories of diabetes, hyperlipidaemia and myocardial infarction (adjusted OR = 1.473, 95%CI = 1.043-2.081). G allele of rs7164883 SNP was marginally associated with enhanced AF risk after adjustment by the above clinical parameters (adjusted OR = 1.742, 95%CI = 1.019-2.980). Atrial late potential (ALP), including TP (P wave duration after filtering) and LP20 (the amplitude of superimposed potential in the final 20 ms of P wave) were significantly associated with rs498005 genotype (p < .001). Conclusion: HCN4 rs498005 and rs7164883 polymorphisms are significantly associated with AF risk.
Collapse
Affiliation(s)
- Xiao-Hong Li
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| | - Ya-Min Hu
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| | - Guang-Li Yin
- b Department of Cardiology, Hebei Provincial Hospital of Integrative Chinese and Western Medicine , Cangzhou , China
| | - Ping Wu
- a Department of Cardiology, Cangzhou City Central Hospital , Cangzhou , China
| |
Collapse
|
7
|
Mora-García G, Gómez-Camargo D, Alario Á, Gómez-Alegría C. A Common Variation in the Caveolin 1 Gene Is Associated with High Serum Triglycerides and Metabolic Syndrome in an Admixed Latin American Population. Metab Syndr Relat Disord 2018; 16:453-463. [PMID: 29762069 PMCID: PMC6211369 DOI: 10.1089/met.2018.0004] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Background: The caveolin 1 (CAV1) gene has been associated with metabolic traits in animal models and human cohorts. Recently, a prevalent variant in CAV1 has been found to be related to metabolic syndrome in Hispanics living in North America. Since Hispanics represent an admixed population at high risk for cardiovascular diseases, in this study a Latin American population with a similar genetic background was assessed. Objective: To analyze a genetic association between CAV1 and metabolic traits in an admixed Latin American population. Methods: A cross-sectional study was carried out with adults from the Colombian Caribbean Coast, selected in urban clusters and work places through a stratified sampling to include diverse ages and socioeconomic groups. Blood pressure and waist circumference were registered. Serum concentrations of glucose, triglycerides, and high-density lipoprotein cholesterol were measured from an 8-hr fasting whole-blood sample. Two previously analyzed CAV1 single nucleotide polymorphisms were genotyped (rs926198 and rs11773845). A logistic regression model was applied to estimate the associations. An admixture adjustment was performed through a Bayesian model. Results: A total of 605 subjects were included. rs11773845 was associated with hypertriglyceridemia [odds ratio (OR) = 1.33, p = 0.001] and the metabolic syndrome (OR = 1.53, p = 0.02). When admixture adjustment was performed these genetic associations preserved their statistical significance. There were no significant associations between rs926198 and metabolic traits. Conclusions: The CAV1 variation rs11773845 was found to be consistently associated with high serum triglycerides and the metabolic syndrome. This is the first report of a relationship between CAV1 variants and serum triglycerides in Latin America.
Collapse
Affiliation(s)
- Gustavo Mora-García
- 1 Grupo UNIMOL, Facultad de Medicina, Universidad de Cartagena , Cartagena de Indias, Colombia
| | - Doris Gómez-Camargo
- 1 Grupo UNIMOL, Facultad de Medicina, Universidad de Cartagena , Cartagena de Indias, Colombia
| | - Ángelo Alario
- 2 Departamento Médico, Facultad de Medicina, Universidad de Cartagena , Cartagena de Indias, Colombia
| | - Claudio Gómez-Alegría
- 3 Grupo de Investigación UNIMOL, Departamento de Farmacia, Facultad de Ciencias, Universidad Nacional de Colombia , Bogotá, Colombia
| |
Collapse
|
8
|
Genetic modulation of atrial fibrillation risk in a Hispanic/Latino cohort. PLoS One 2018; 13:e0194480. [PMID: 29624624 PMCID: PMC5889061 DOI: 10.1371/journal.pone.0194480] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 03/05/2018] [Indexed: 01/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most prevalent cardiac rhythm disorder worldwide but the underlying genetic and molecular mechanisms and the response to therapies is not fully understood. Despite a greater burden of AF risk factors in Hispanics/Latinos the prevalence of AF remains low. Over the last decade, genome-wide association studies have identified numerous AF susceptibility loci in mostly whites of European descent. The goal of this study was to determine if the top 9 single nucleotide polymorphisms (SNPs) associated with AF in patients of European descent also increase susceptibility to AF in Hispanics/Latinos. AF cases were prospectively enrolled in the University of Illinois at Chicago (UIC) AF Registry and control subjects were identified from the UIC Cohort of Patients, Family and Friends. AF cases and controls were genotyped for 9 AF risk SNPs at chromosome 1q21: rs13376333, rs6666258; chr1q24: rs3903239; chr4q25: rs2200733; rs10033464; chr10q22: rs10824026; chr14q23: rs1152591; chr16q22: rs2106261 and rs7193343. The study sample consisted of 713 Hispanic/Latino subjects including 103 AF cases and 610 controls. Among the 8 AF risk SNPs genotyped, only rs10033464 SNP at chromosome (chr) 4q25 (near PITX2) was significantly associated with development of AF after multiple risk factor adjustment and multiple testing (adj. odds ratio [OR] 2.27, 95% confidence interval [CI] 1.31–3.94; P = 3.3 x 10−3). Furthermore, the association remained significant when the analysis was restricted to Hispanics of Mexican descent (adj. OR 2.32, 95% CI 1.35–3.99; P = 0.002. We confirm for the first time the association between a chromosome 4q25 SNP and increased susceptibility to AF in Hispanics/Latinos. While the underlying molecular mechanisms by which the chr4q25 SNP modulates AF risk remains unclear, this study supports a genetic basis for non-familial AF in patients of Hispanic descent.
Collapse
|
9
|
Xiong X, Naji DH, Wang B, Zhao Y, Wang J, Wang D, Zhang Y, Li S, Chen S, Huang Y, Yang Q, Wang X, Yin D, Tu X, Chen Q, Ma X, Xu C, Wang QK. Significant Association between OPG/TNFRSF11B Variant and Common Complex Ischemic Stroke. J Stroke Cerebrovasc Dis 2018; 27:1683-1691. [PMID: 29501268 DOI: 10.1016/j.jstrokecerebrovasdis.2018.01.029] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 01/02/2018] [Accepted: 01/28/2018] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND The serum level of osteoprotegerin (encoded by OPG or TNFRSF11B) was previously shown to be increased in patients with ischemic stroke. A single nucleotide polymorphism rs3134069 in the TNFRSF11B gene was previously associated with ischemic stroke in a population of diabetic patients in Italy. It remains to be determined whether rs3134069 is associated with ischemic stroke in the general population or populations without diabetes. MATERIALS AND METHODS We genotyped rs3134069 and performed a case-control association study to test whether rs3134069 is associated with ischemic stroke in 2 independent Chinese Han populations, including a China-Central population with 1629 cases and 1504 controls and a China-Northern population with 1206 cases and 720 controls. RESULTS rs3134069 showed significant association with ischemic stroke in the China-Central population (P = 9.24 × 10-3, odds ratio [OR] = 1.50). The association was replicated in the independent China-Northern population (P = 2.45 × 10-4, OR = 1.53). The association became more significant in the combined population (P = 7.09 × 10-6, OR = 1.41). The associations remained significant in the male population, female population, and population without type 2 diabetes. Our expression quantitative trait loci analysis found that the minor allele C of rs3134069 was significantly associated with a decreasedexpression level of TNFRSF11B (P = .002). CONCLUSIONS This study demonstrates that rs3134069 in TNFRSF11B increases risk of ischemic stroke by decreasing TNFRSF11B expression.
Collapse
Affiliation(s)
- Xin Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Duraid Hamied Naji
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Binbin Wang
- National Research Institute for Family Planning, Beijing, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Junhan Wang
- Department of Clinical Laboratory of University Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yuting Zhang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Shanshan Chen
- Key Laboratory for Molecular Diagnosis of Hubei Province, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- Wuhan Children's Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Yang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio
| | - Xu Ma
- National Research Institute for Family Planning, Beijing, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology, Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China; Center for Cardiovascular Genetics, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio; Department of Molecular Medicine, Case Western Reserve University, Cleveland, Ohio; Department of Genetics and Genome Sciences, Case Western Reserve University, Cleveland, Ohio.
| |
Collapse
|
10
|
Kalinderi K, Fragakis N, Sotiriadou M, Oriol DI, Katritsis D, Letsas K, Korantzopoulos P, Karamanolis A, Pagourelias E, Antoniadis AP, Dalampyras P, Mavroudi M, Kyriakou P, Papadopoulos C, Skeberis V, Vassilikos V, Fidani L. PRRX1 Rs3903239 polymorphism and atrial fibrillation in a Greek population. Hellenic J Cardiol 2018; 59:298-299. [PMID: 29355724 DOI: 10.1016/j.hjc.2018.01.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2017] [Revised: 01/04/2018] [Accepted: 01/12/2018] [Indexed: 12/27/2022] Open
Affiliation(s)
- Kallirhoe Kalinderi
- Department of General Biology, Medical School, Aristotle University of Thessaloniki, Greece
| | - Nikolaos Fragakis
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Melani Sotiriadou
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Dols-Icardo Oriol
- Department of Neurology, Memory Unit and Sant Pau Biomedical Research Institute, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Center for Networked Biomedical Research into Neurodegenerative Diseases (CIBERNED), Madrid, Spain
| | | | - Konstantinos Letsas
- Second Department of Cardiology, Evangelismos General Hospital, Athens, Greece
| | | | - Athanasios Karamanolis
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Efstathios Pagourelias
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Antonios P Antoniadis
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Panagiotis Dalampyras
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Melaxrini Mavroudi
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Panagiota Kyriakou
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Christodoulos Papadopoulos
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Vassileios Skeberis
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Vassileios Vassilikos
- Third Cardiology Department, Hippokrateion Hospital, Aristotle University Medical School, Thessaloniki, Greece
| | - Liana Fidani
- Department of General Biology, Medical School, Aristotle University of Thessaloniki, Greece.
| |
Collapse
|
11
|
Abstract
PURPOSE OF REVIEW Atrial fibrillation is an important cause of morbidity in the aging population. The mechanisms responsible for the triggering and maintenance of the chaotic atrial rhythm are still poorly understood. In this review, we will focus on the genetic aspects of atrial fibrillation, to understand causality, with special emphasis on recent studies published in the field. RECENT FINDINGS Diseases such as hypertension, valvular heart disease, and heart failure may induce atrial fibrillation, which increases the risk of stroke and sudden cardiac death. Clinical studies published in these last two decades have provided evidence that genetics play a key role in atrial fibrillation. Thus, a family history of the disease has been identified in up to 30% of clinically diagnosed patients. In those genotyped families, most carry rare genetic variants in genes associated with ionic channels, calcium handling protein, or predisposing to fibrosis, conduction system disease, and inflammatory processes. SUMMARY Currently, atrial fibrillation is the most common sustained arrhythmia in clinical practice. The pathophysiological mechanisms of atrial fibrillation are complex. A better understanding of the molecular basis will help improve both current risk stratification and clinical management.
Collapse
Affiliation(s)
- Alexandra Pérez-Serra
- aCardiovascular Genetics Center, University of Girona - IDIBGI bCentro Investigación Biomédica en Red. Enfermedades Cardiovasculares (CIBERCV) cDepartment of Medical Sciences, School of Medicine, University of Girona dCardiomyopathies Unit, Hospital Josep Trueta, Girona, Spain
| | | | | |
Collapse
|
12
|
Jia W, Qi X, Li Q. Association Between Rs3807989 Polymorphism in Caveolin-1 (CAV1) Gene and Atrial Fibrillation: A Meta-Analysis. Med Sci Monit 2016; 22:3961-3966. [PMID: 27775682 PMCID: PMC5091217 DOI: 10.12659/msm.896826] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Background Atrial fibrillation (AF) is the most common sustained arrhythmia affected by multiple cardiovascular risk factors. It is reported that caveolin-1 gene (CAV1) rs3807989 polymorphism might be associated with AF risk. The goal of this meta-analysis was to confirm the association between CAV1 rs3807989 polymorphism and susceptibility to AF. Material/Methods We carried out a comprehensive literature search through the electronic databases PubMed, MEDLIN, and Web of Science. We performed a meta-analysis of all selected studies based on CAV1 rs3807989 polymorphism genotypes, including 3758 cases and 6126 controls. Results After meta-analysis with fixed- or random-effects models, we found significant associations in all 5 comparisons: allelic model (G/A; OR=1.228, 95%CI: 1.061–1.420; P=0.006), homozygote model (GG/AA; OR=1.439, 95%CI: 1.094–1.894; P=0.009), heterozygote model (GG/GA; OR=1.257, 95%CI: 1.064–1.486; P=0.007), dominant model (GG/AA+GA; OR=1.287, 95%CI: 1.076–1.540; P=0.006), and recessive model (AA/GA+GG; OR=0.738, 95%CI: 0.629–0.867; P<0.001). Sensitivity analysis results revealed the overall results were robust. Conclusions The results revealed a significant association between CAV1 gene rs3807989 polymorphism and susceptibility to AF, suggesting that the presence of allelic G might be one of the genetic factors conferring susceptibility to AF. To confirm this association, further well-designed studies are necessary.
Collapse
Affiliation(s)
- Wenjun Jia
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China (mainland)
| | - Xin Qi
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China (mainland)
| | - Qi Li
- Department of Cardiology, Tianjin Union Medical Center, Tianjin, China (mainland)
| |
Collapse
|
13
|
Chen S, Wang X, Wang J, Zhao Y, Wang D, Tan C, Fa J, Zhang R, Wang F, Xu C, Huang Y, Li S, Yin D, Xiong X, Li X, Chen Q, Tu X, Yang Y, Xia Y, Xu C, Wang QK. Genomic variant in CAV1 increases susceptibility to coronary artery disease and myocardial infarction. Atherosclerosis 2016; 246:148-156. [PMID: 26775120 DOI: 10.1016/j.atherosclerosis.2016.01.008] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2015] [Revised: 12/11/2015] [Accepted: 01/06/2016] [Indexed: 12/20/2022]
Abstract
BACKGROUND The CAV1 gene encodes caveolin-1 expressed in cell types relevant to atherosclerosis. Cav-1-null mice showed a protective effect on atherosclerosis under the ApoE(-/-) background. However, it is unknown whether CAV1 is linked to CAD and MI in humans. In this study we analyzed a tagSNP for CAV1 in intron 2, rs3807989, for potential association with CAD. METHODS AND RESULTS We performed case-control association studies in three independent Chinese Han populations from GeneID, including 1249 CAD cases and 841 controls in Population I, 1260 cases and 833 controls in Population II and 790 cases and 1212 controls in Population III (a total of 3299 cases and 2886 controls). We identified significant association between rs3807989 and CAD in three independent populations and in the combined population (Padj = 2.18 × 10(-5), OR = 1.19 for minor allele A). We also detected significant association between rs3807989 and MI (Padj = 5.43 × 10(-5), OR = 1.23 for allele A). Allele A of SNP rs3807989 was also associated with a decreased level of LDL cholesterol. Although rs3807989 is a tagSNP for both CAV1 and nearby CAV2, allele A of SNP rs3807989 was associated with an increased expression level of CAV1 (both mRNA and protein), but not CAV2. CONCLUSIONS The data in this study demonstrated that rs3807989 at the CAV1/CAV2 locus was associated with significant risk of CAD and MI by increasing expression of CAV1 (but not CAV2). Thus, CAV1 becomes a strong candidate susceptibility gene for CAD/MI in humans.
Collapse
Affiliation(s)
- Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Junhan Wang
- Department of Clinical Laboratory, University Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Yuanyuan Zhao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chengcheng Tan
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Fa
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Rongfeng Zhang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Fan Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoping Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yufeng Huang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Sisi Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Yin
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Xiong
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Xiuchun Li
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyun Chen
- Center for Cardiovascular Genetics, Department of Molecular Cardiology, Cleveland Clinic, and Department of Molecular Medicine, CCLCM, Case Western Reserve University, Cleveland, OH 44195, USA
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Yanzong Yang
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yonglong Xia
- Department of Cardiology, First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China.,Center for Cardiovascular Genetics, Department of Molecular Cardiology, Cleveland Clinic, and Department of Molecular Medicine, CCLCM, Case Western Reserve University, Cleveland, OH 44195, USA
| |
Collapse
|
14
|
Chen S, Wang C, Wang X, Xu C, Wu M, Wang P, Tu X, Wang QK. Significant Association Between CAV1 Variant rs3807989 on 7p31 and Atrial Fibrillation in a Chinese Han Population. J Am Heart Assoc 2015; 4:JAHA.115.001980. [PMID: 25953654 PMCID: PMC4599427 DOI: 10.1161/jaha.115.001980] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Background Recent genome-wide association studies (GWAS) in European ancestry populations revealed several genomic loci for atrial fibrillation (AF). We previously replicated the 4q25 locus (PITX2) and 16q22 locus (ZFHX3) in the Chinese population, but not the KCNN3 locus on 1q21. With single-nucleotide polymorphism rs3807989 in CAV1 encoding caveolin-1, however, controversial results were reported in 2 Chinese replication studies. Methods and Results Six remaining AF genetic loci from GWAS, including rs3807989/CAV1, rs593479/PRRX1, rs6479562/C9orf3, rs10824026/SYNPO2L, rs1152591/SYNE2, and rs7164883/HCN4, were analyzed in a Chinese Han population with 941 cases and 562 controls. Only rs3807989 showed significant association with AF (Padj=4.77×10−5), and the finding was replicated in 2 other independent populations with 709 cases and 2175 controls, 463 cases and 644 controls, and the combined population with a total of 2113 cases and 3381 controls (Padj=2.20×10−9; odds ratio [OR]=1.34 for major allele G). Meta-analysis, together with data from previous reports in Chinese and Japanese populations, also showed a significant association between rs3807989 and AF (P=3.40×10−4; OR=1.24 for allele G). We also found that rs3807989 showed a significant association with lone AF in 3 independent populations and in the combined population (Padj=3.85×10−8; OR=1.43 for major allele G). Conclusions The data in this study revealed a significant association between rs3807989 and AF in the Chinese Han population. Together with the findings that caveolin-1 interacts with potassium channels Kir2.1, KCNH2, and HCN4 and sodium channels Nav1.5 and Nav1.8, CAV1 becomes a strong candidate susceptibility gene for AF across different ethnic populations. This study is the first to show a significant association between rs3807989 and lone AF.
Collapse
Affiliation(s)
- Shanshan Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Chuchu Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Xiaojing Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Chengqi Xu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Manman Wu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Pengxia Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Xin Tu
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.)
| | - Qing K Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Cardio-X Institute, College of Life Science and Technology and Center for Human Genome Research, Huazhong University of Science and Technology, Wuhan, China (S.C., C.W., X.W., C.X., M.W., P.W., X.T., Q.K.W.) Center for Cardiovascular Genetics, Department of Molecular Cardiology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH (Q.K.W.) Department of Molecular Medicine, Department of Genetics and Genome Sciences, CCLCM, Case Western Reserve University, Cleveland, OH (Q.K.W.)
| |
Collapse
|