1
|
Chinthrajah RS, Sindher SB, Nadeau KC, Leflein JG, Spergel JM, Petroni DH, Jones SM, Casale TB, Wang J, Carr WW, Shreffler WG, Wood RA, Wambre E, Liu J, Akinlade B, Atanasio A, Orengo JM, Hamilton JD, Kamal MA, Hooper AT, Patel K, Laws E, Mannent LP, Adelman DC, Ratnayake A, Radin AR. Dupilumab as an Adjunct to Oral Immunotherapy in Pediatric Patients With Peanut Allergy. Allergy 2025; 80:827-842. [PMID: 39673367 PMCID: PMC11891407 DOI: 10.1111/all.16420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 07/03/2024] [Accepted: 09/03/2024] [Indexed: 12/16/2024]
Abstract
BACKGROUND Peanut allergy is a common, life-threatening food allergy in children. We evaluated whether dupilumab, which blocks the activity of interleukin (IL)-4/IL-13, enhances the efficacy of oral immunotherapy (OIT) AR101 in pediatric patients with peanut allergy. METHODS A Phase II, multicenter, randomized, double-blind study was conducted in the USA (NCT03682770) in pediatric patients (6-≤ 17 years old) with confirmed peanut allergy. Patients were randomized 2:1 to receive dupilumab + OIT or placebo + OIT during a 28-40-week up-dosing period. Patients in the dupilumab + OIT group were re-randomized 1:1 and received dupilumab + OIT or placebo + OIT during 24-week OIT maintenance, undergoing a 2044 mg (cumulative) of peanut protein double-blind, placebo-controlled food challenge (DBPCFC) following up-dosing, maintenance, and at 12-week post-treatment follow-up. RESULTS The study enrolled 148 patients, 123 of whom were included in the modified full analysis set, with a mean age of 11.1 years. Dupilumab + OIT treatment (n = 84) led to a 20.2% increase (p < 0.05) in the number of patients who passed a DBPCFC to 2044 mg (cumulative) of peanut protein following the up-dosing period versus placebo (OIT alone, n = 39). Following the OIT maintenance period, continuous dupilumab treatment improved the number of patients who passed a DBPCFC to 2044 mg (cumulative) of peanut protein versus patients continuously on OIT alone (16.6% difference [95% CI -9.7, 42.8], p = 0.2123). Safety was consistent with known dupilumab safety profile. CONCLUSIONS Dupilumab provided a modest increase efficacy of OIT in children and adolescents with peanut allergy, though it did not provide protection against OIT-related anaphylaxis. TRIAL REGISTRATION ClinicalTrials.gov identifier: NCT03793608.
Collapse
Affiliation(s)
- R. Sharon Chinthrajah
- Sean N. Parker Center for Allergy and Asthma Research at Stanford UniversityStanfordCaliforniaUSA
| | - Sayantani B. Sindher
- Sean N. Parker Center for Allergy and Asthma Research at Stanford UniversityStanfordCaliforniaUSA
| | - Kari C. Nadeau
- Harvard T.H. Chan School of Public HealthHarvard UniversityBostonMassachusettsUSA
| | | | - Jonathan M. Spergel
- Children's Hospital of PhiladelphiaPerelman School of Medicine at University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | | | - Stacie M. Jones
- Department of Pediatrics, Division of Allergy and ImmunologyUniversity of Arkansas for Medical Sciences and Arkansas Children's HospitalLittle RockArkansasUSA
| | - Thomas B. Casale
- Division of Allergy & ImmunologyUniversity of South FloridaTampaFloridaUSA
| | - Julie Wang
- Department of Pediatrics, Division of Allergy & ImmunologyIcahn School of Medicine at Mount SinaiNew YorkNew YorkUSA
| | - Warner W. Carr
- Allergy & Asthma Associates of Southern California, Food Allergy Center of Southern CaliforniaSouthern California ResearchMission ViejoCaliforniaUSA
| | - Wayne G. Shreffler
- Food Allergy Center and Department of PediatricsMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Robert A. Wood
- Division of Pediatric Allergy & ImmunologyJohns Hopkins University School of MedicineBaltimoreMarylandUSA
| | - Erik Wambre
- Benaroya Research InstituteSeattleWashingtonUSA
| | - Jinzhong Liu
- Regeneron Pharmaceuticals Inc.TarrytownNew YorkUSA
| | | | | | | | | | | | | | - Kiran Patel
- Former EmployeeSanofiCambridgeMassachusettsUSA
| | | | | | - Daniel C. Adelman
- Department of Medicine, Allergy/ImmunologyUniversity of CaliforniaSan FranciscoCaliforniaUSA
- Aimmune TherapeuticsBrisbaneCaliforniaUSA
| | | | | |
Collapse
|
2
|
Arnau‐Soler A, Tremblay BL, Sun Y, Madore A, Simard M, Kersten ETG, Ghauri A, Marenholz I, Eiwegger T, Simons E, Chan ES, Nadeau K, Sampath V, Mazer BD, Elliott S, Hampson C, Soller L, Sandford A, Begin P, Hui J, Wilken BF, Gerdts J, Bourkas A, Ellis AK, Vasileva D, Clarke A, Eslami A, Ben‐Shoshan M, Martino D, Daley D, Koppelman GH, Laprise C, Lee Y, Asai Y. Food Allergy Genetics and Epigenetics: A Review of Genome-Wide Association Studies. Allergy 2025; 80:106-131. [PMID: 39698764 PMCID: PMC11724255 DOI: 10.1111/all.16429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 10/12/2024] [Accepted: 11/26/2024] [Indexed: 12/20/2024]
Abstract
In this review, we provide an overview of food allergy genetics and epigenetics aimed at clinicians and researchers. This includes a brief review of the current understanding of genetic and epigenetic mechanisms, inheritance of food allergy, as well as a discussion of advantages and limitations of the different types of studies in genetic research. We specifically focus on the results of genome-wide association studies in food allergy, which have identified 16 genetic variants that reach genome-wide significance, many of which overlap with other allergic diseases, including asthma, atopic dermatitis, and allergic rhinitis. Identified genes for food allergy are mainly involved in epithelial barrier function (e.g., FLG, SERPINB7) and immune function (e.g., HLA, IL4). Epigenome-wide significant findings at 32 loci are also summarized as well as 14 additional loci with significance at a false discovery of < 1 × 10-4. Integration of epigenetic and genetic data is discussed in the context of disease mechanisms, many of which are shared with other allergic diseases. The potential utility of genetic and epigenetic discoveries is deliberated. In the future, genetic and epigenetic markers may offer ways to predict the presence or absence of clinical IgE-mediated food allergy among sensitized individuals, likelihood of development of natural tolerance, and response to immunotherapy.
Collapse
Affiliation(s)
- Aleix Arnau‐Soler
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Bénédicte L. Tremblay
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Yidan Sun
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Anne‐Marie Madore
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Mathieu Simard
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Elin T. G. Kersten
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Ahla Ghauri
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Ingo Marenholz
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
| | - Thomas Eiwegger
- Translational Medicine Program, Research InstituteHospital for Sick ChildrenTorontoOntarioCanada
- Department of Immunology, Temerty Faculty of MedicineUniversity of TorontoTorontoOntarioCanada
- Karl Landsteiner University of Health SciencesKrems an der DonauAustria
- Department of Pediatric and Adolescent MedicineUniversity Hospital St. PöltenSt. PöltenAustria
- Department of Paediatrics, Division of Clinical Immunology and Allergy, Food Allergy and Anaphylaxis Program, the Hospital for Sick ChildrenThe University of TorontoTorontoOntarioCanada
| | - Elinor Simons
- Section of Allergy & Clinical Immunology, Department of Pediatrics & Child Health, University of ManitobaChildren's Hospital Research InstituteWinnipegManitobaCanada
| | - Edmond S. Chan
- Division of Allergy, Department of PediatricsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Kari Nadeau
- Department of Environmental StudiesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Vanitha Sampath
- Department of Environmental StudiesHarvard T.H. Chan School of Public HealthBostonMassachusettsUSA
| | - Bruce D. Mazer
- Research Institute of the McGill University Health CentreMontrealQuebecCanada
| | - Susan Elliott
- Department of Geography and Environmental ManagementUniversity of WaterlooWaterlooOntarioCanada
| | | | - Lianne Soller
- Division of Allergy, Department of PediatricsThe University of British ColumbiaVancouverBritish ColumbiaCanada
| | - Andrew Sandford
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Philippe Begin
- Department of Pediatrics, Service of Allergy and Clinical ImmunologyCentre Hospitalier Universitaire Sainte‐JustineMontréalQuébecCanada
- Department of Medicine, Service of Allergy and Clinical ImmunologyCentre Hospitalier de l'Université de MontréalMontréalQuébecCanada
| | - Jennie Hui
- School of Population HealthUniversity of Western AustraliaPerthWestern AustraliaAustralia
| | - Bethany F. Wilken
- School of Medicine, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | | | - Adrienn Bourkas
- School of Medicine, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Anne K. Ellis
- Division of Allergy & Immunology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| | - Denitsa Vasileva
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Ann Clarke
- Department of Medicine, Cumming School of MedicineUniversity of CalgaryCalgaryAlbertaCanada
| | - Aida Eslami
- Département de médecine Sociale et préventive, Faculté de médecineUniversité LavalQuebecCanada
| | - Moshe Ben‐Shoshan
- Division of Allergy and Clinical Immunology, Department of Pediatrics, Montréal Children's HospitalMcGill University Health CentreMontréalQuebecCanada
| | - David Martino
- Wal‐Yan Respiratory Research CentreTelethon Kids InstitutePerthAustralia
| | - Denise Daley
- Department of MedicineThe University of British ColumbiaVancouverBritish ColumbiaCanada
- Centre for Heart Lung InnovationVancouverBritish ColumbiaCanada
| | - Gerard H. Koppelman
- Department of Pediatric Pulmonology and Pediatric AllergologyUniversity Medical Center Groningen, Beatrix Children's Hospital, University of GroningenGroningenthe Netherlands
- University of Groningen, University Medical Center Groningen, Groningen Research Institute for Asthma and COPD (GRIAC)Groningenthe Netherlands
| | - Catherine Laprise
- Département Des Sciences FondamentalesUniversité du Québec à ChicoutimiSaguenayQuebecCanada
| | - Young‐Ae Lee
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC)BerlinGermany
- Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt‐Universität Zu BerlinBerlinGermany
- Experimental and Clinical Research Center, a Joint Cooperation of Max Delbruck Center for Molecular Medicine and Charité—Universitätsmedizin BerlinBerlinGermany
- German Center for Child and Adolescent Health (DZKJ)BerlinGermany
| | - Yuka Asai
- Division of Dermatology, Department of MedicineQueen's UniversityKingstonOntarioCanada
| |
Collapse
|
3
|
Berni Canani R, Caminati M, Carucci L, Eguiluz-Gracia I. Skin, gut, and lung barrier: Physiological interface and target of intervention for preventing and treating allergic diseases. Allergy 2024; 79:1485-1500. [PMID: 38439599 DOI: 10.1111/all.16092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 02/21/2024] [Accepted: 02/23/2024] [Indexed: 03/06/2024]
Abstract
The epithelial barriers of the skin, gut, and respiratory tract are critical interfaces between the environment and the host, and they orchestrate both homeostatic and pathogenic immune responses. The mechanisms underlying epithelial barrier dysfunction in allergic and inflammatory conditions, such as atopic dermatitis, food allergy, eosinophilic oesophagitis, allergic rhinitis, chronic rhinosinusitis, and asthma, are complex and influenced by the exposome, microbiome, individual genetics, and epigenetics. Here, we review the role of the epithelial barriers of the skin, digestive tract, and airways in maintaining homeostasis, how they influence the occurrence and progression of allergic and inflammatory conditions, how current treatments target the epithelium to improve symptoms of these disorders, and what the unmet needs are in the identification and treatment of epithelial disorders.
Collapse
Affiliation(s)
- Roberto Berni Canani
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Marco Caminati
- Allergy Unit and Asthma Centre, Verona Integrated University Hospital and Department of Medicine, University of Verona, Verona, Italy
| | - Laura Carucci
- Department of Translational Medical Science, University of Naples Federico II, Naples, Italy
- CEINGE Advanced Biotechnologies, University of Naples Federico II, Naples, Italy
| | - Ibon Eguiluz-Gracia
- Allergy Unit, Hospital Regional Universitario de Malága, Malaga, Spain
- Allergy Group, Biomedical Research Institute of Malaga (IBIMA)-BIONAND Platform, RICORS Inflammatory Diseases, Malaga, Spain
| |
Collapse
|
4
|
Schuetz JP, Anderson B, Sindher SB. New biologics for food allergy. Curr Opin Allergy Clin Immunol 2024; 24:147-152. [PMID: 38547423 DOI: 10.1097/aci.0000000000000981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
PURPOSE OF REVIEW This review aims to explore role of emerging biologics, including ligelizumab, UB-221, dupilumab, and antialarmins, in food allergy management. With a focus on recent developments, we evaluate their promise in mitigating adverse events during oral immunotherapy (OIT), reducing allergic reactions, and addressing the limitations of current therapeutic options. RECENT FINDINGS Antiimmunoglobulin E mAbs, exemplified by omalizumab, demonstrate efficacy in desensitization and safety improvement during multiallergen OIT. Next-generation antibodies like ligelizumab and UB-221 exhibit enhanced potency and unique mechanisms, holding promise for food allergy treatment. Dupilumab, targeting IL-4 receptor alpha, presents potential benefits in decreasing allergen-specific IgE and modifying the atopic march. Exploration of antialarmins, specifically anti-IL-33 (etokimab) and anti-TSLP (tezepelumab), reveals encouraging results, with etokimab showing early success in peanut allergy trials. SUMMARY Biologics hold promising potential for food allergy treatment. Tailoring therapeutic approaches based on shared decision-making becomes pivotal. While omalizumab remains a significant option, next-generation anti-IgE antibodies and agents targeting alarmins exhibit unique strengths. Dupilumab, despite limited success as monotherapy, shows promise as an adjunct for OIT. Careful consideration of treatment goals, patient preferences, and the evolving landscape of biologics will shape future clinical practice, offering allergists an expanded toolbox for personalized food allergy management.
Collapse
Affiliation(s)
- Jackson P Schuetz
- Department of Pathology, Sean N. Parker Center for Allergy and Asthma Research at Stanford University, Stanford, California, USA
| | | | | |
Collapse
|