1
|
Cook NM, Gobbato G, Jacott CN, Marchal C, Hsieh CY, Lam AHC, Simmonds J, Del Cerro P, Gomez PN, Rodney C, Cruz-Mireles N, Uauy C, Haerty W, Lawson DM, Charpentier M. Autoactive CNGC15 enhances root endosymbiosis in legume and wheat. Nature 2025; 638:752-759. [PMID: 39814887 PMCID: PMC11839481 DOI: 10.1038/s41586-024-08424-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/19/2024] [Indexed: 01/18/2025]
Abstract
Nutrient acquisition is crucial for sustaining life. Plants develop beneficial intracellular partnerships with arbuscular mycorrhiza (AM) and nitrogen-fixing bacteria to surmount the scarcity of soil nutrients and tap into atmospheric dinitrogen, respectively1,2. Initiation of these root endosymbioses requires symbiont-induced oscillations in nuclear calcium (Ca2+) concentrations in root cells3. How the nuclear-localized ion channels, cyclic nucleotide-gated channel (CNGC) 15 and DOESN'T MAKE INFECTIONS1 (DMI1)4 are coordinated to specify symbiotic-induced nuclear Ca2+ oscillations remains unknown. Here we discovered an autoactive CNGC15 mutant that generates spontaneous low-frequency Ca2+ oscillations. While CNGC15 produces nuclear Ca2+ oscillations via a gating mechanism involving its helix 1, DMI1 acts as a pacemaker to specify the frequency of the oscillations. We demonstrate that the specificity of symbiotic-induced nuclear Ca2+ oscillations is encoded in its frequency. A high frequency activates endosymbiosis programmes, whereas a low frequency modulates phenylpropanoid pathways. Consequently, the autoactive cngc15 mutant, which is capable of generating both frequencies, has increased flavonoids that enhance AM, root nodule symbiosis and nutrient acquisition. We transferred this trait to wheat, resulting in field-grown wheat with increased AM colonization and nutrient acquisition. Our findings reveal a new strategy to boost endosymbiosis in the field and reduce inorganic fertilizer use while sustaining plant growth.
Collapse
Affiliation(s)
- Nicola M Cook
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Giulia Gobbato
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Catherine N Jacott
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- Microbiology Department, Faculty of Biology, University of Seville, Seville, Spain
| | - Clemence Marchal
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- Department of Plant Biochemistry, Center for Plant Molecular Biology (ZMBP), Eberhard Karls University, Tübingen, Germany
| | - Chen Yun Hsieh
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Anson Ho Ching Lam
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - James Simmonds
- Crop Genetics Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Pablo Del Cerro
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- Microbiology Department, Faculty of Biology, University of Seville, Seville, Spain
| | - Pilar Navarro Gomez
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- University of Pablo de Olavide, Andalusian Center for Developmental Biology/CSIC/Andalusian Government, Seville, Spain
| | - Clemence Rodney
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- Biochemistry and Metabolism Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Neftaly Cruz-Mireles
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK
- Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Cristobal Uauy
- Crop Genetics Department, John Innes Centre Norwich Research Park, Norwich, UK
| | | | - David M Lawson
- Biochemistry and Metabolism Department, John Innes Centre Norwich Research Park, Norwich, UK
| | - Myriam Charpentier
- Cell and Developmental Biology Department, John Innes Centre Norwich Research Park, Norwich, UK.
| |
Collapse
|
2
|
Wang Z, Niu Y, Xie Y, Huang C, Yung WS, Li MW, Wong FL, Lam HM. QTL mapping and BSR-seq revealed loci and candidate genes associated with the sporadic multifoliolate phenotype in soybean (Glycine max). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:262. [PMID: 39511005 PMCID: PMC11543727 DOI: 10.1007/s00122-024-04765-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
KEY MESSAGE The QTLs and candidate genes governing the multifoliolate phenotype were identified by combining linkage mapping with BSR-seq, revealing a possible interplay between genetics and the environment in soybean leaf development. Soybean, as a legume, is typified by trifoliolate leaves. Although multifoliolate leaves (compound leaves with more than three leaflets each) have been reported in soybean, including sporadic appearances in the first compound leaves in a recombinant inbred line (RIL) population from a cross between cultivated soybean C08 and wild soybean W05 from this study, the genetic basis of this phenomenon is still unclear. Here, we integrated quantitative trait locus (QTL) mapping with bulked segregant RNA sequencing (BSR-seq) to identify the genetic loci associated with the multifoliolate phenotype in soybean. Using linkage mapping, ten QTLs related to the multifoliolate trait were identified. Among these, a significant and major QTL, qMF-2-1 on chromosome 2 and consistently detected across biological replicates, explained more than 10% of the phenotypic variation. Together with BSR-seq analyses, which analyzed the RILs with the highest multifoliolate frequencies and those with the lowest frequencies as two distinct bulks, two candidate genes were identified: Glyma.06G204300 encoding the transcription factor TCP5, and Glyma.06G204400 encoding LONGIFOLIA 2 (LNG2). Transcriptome analyses revealed that stress-responsive genes were significantly differentially expressed between high-multifoliolate occurrence lines and low occurrence ones, indicating environmental factors probably influence the appearance of multifoliolate leaves in soybean through stress-responsive genes. Hence, this study offers new insights into the genetic mechanism behind the multifoliolate phenotype in soybean.
Collapse
Affiliation(s)
- Zhili Wang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Yongchao Niu
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Yichun Xie
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Cheng Huang
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Key Laboratory of the Ministry of Education for Crop Physiology and Molecular Biology, College of Agronomy, Hunan Agricultural University, Changsha, 410128, China
| | - Wai-Shing Yung
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China
| | - Man-Wah Li
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Fuk-Ling Wong
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China
| | - Hon-Ming Lam
- Centre for Soybean Research of the State Key Laboratory of Agrobiotechnology and School of Life Sciences, The Chinese University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, China.
- Shenzhen Research Institute, The Chinese University of Hong Kong, Shenzhen, 518057, China.
| |
Collapse
|
3
|
Xing L, Gu T, Shi F, Jin Y, Fu X, Han G, Xu H, Zhou Y, Liu W, He M, An D. Characterization of a Powdery Mildew Resistance Gene in Wheat Breeding Line Jingzi 102 Using Bulk Segregant RNA Sequencing. PLANT DISEASE 2024; 108:3084-3091. [PMID: 38853337 DOI: 10.1094/pdis-02-24-0297-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2024]
Abstract
Wheat (Triticum aestivum L.) is one of the most important crops worldwide. Powdery mildew caused by Blumeria graminis f. sp. tritici is a destructive disease threatening wheat yield and quality. The utilization of resistant genes and cultivars is considered the most economical, environmentally friendly, and effective method to control powdery mildew. Wheat breeding line Jingzi 102 was highly resistant to powdery mildew at both seedling and adult plant stages. Genetic analysis of F1, F2, and F2:3 populations of "Jingzi 102 × Shixin 828" showed that the resistance of Jingzi 102 against powdery mildew isolate E09 at the seedling stage was controlled by a single dominant gene, temporarily designated PmJZ. Using bulked segregant RNA sequencing combined with molecular markers analysis, PmJZ was located on the long arm of chromosome 2B and flanked by markers BJK695-1 and CIT02g-20 with the genetic distances of 1.2 and 0.5 centimorgan, respectively, corresponding to the bread wheat genome of Chinese Spring (International Wheat Genome Sequencing Consortium RefSeq v2.1) 703.8 to 707.6 Mb. PmJZ is most likely different from the documented Pm genes on chromosome 2BL based on their physical positions, molecular markers analysis, and resistance spectrum. Based on the gene annotation information, five genes related to disease resistance could be considered as the candidate genes of PmJZ. To accelerate the application of PmJZ, the flanking markers BJK695-1 and CIT02g-20 can serve for marker-assisted selection of PmJZ in wheat disease-resistance breeding.
Collapse
Affiliation(s)
- Lixian Xing
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyu Shi
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Yuli Jin
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Xiaoyi Fu
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, Hebei, China
| | - Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Hongxing Xu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| | - Yilin Zhou
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Liu
- The State Key Laboratory for Biology of Plant Disease and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Mingqi He
- Shijiazhuang Academy of Agricultural and Forestry Sciences, Shijiazhuang 050041, Hebei, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang 050022, Hebei, China
| |
Collapse
|
4
|
Sun L, Lai M, Ghouri F, Nawaz MA, Ali F, Baloch FS, Nadeem MA, Aasim M, Shahid MQ. Modern Plant Breeding Techniques in Crop Improvement and Genetic Diversity: From Molecular Markers and Gene Editing to Artificial Intelligence-A Critical Review. PLANTS (BASEL, SWITZERLAND) 2024; 13:2676. [PMID: 39409546 PMCID: PMC11478383 DOI: 10.3390/plants13192676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/08/2024] [Accepted: 09/22/2024] [Indexed: 10/20/2024]
Abstract
With the development of new technologies in recent years, researchers have made significant progress in crop breeding. Modern breeding differs from traditional breeding because of great changes in technical means and breeding concepts. Whereas traditional breeding initially focused on high yields, modern breeding focuses on breeding orientations based on different crops' audiences or by-products. The process of modern breeding starts from the creation of material populations, which can be constructed by natural mutagenesis, chemical mutagenesis, physical mutagenesis transfer DNA (T-DNA), Tos17 (endogenous retrotransposon), etc. Then, gene function can be mined through QTL mapping, Bulked-segregant analysis (BSA), Genome-wide association studies (GWASs), RNA interference (RNAi), and gene editing. Then, at the transcriptional, post-transcriptional, and translational levels, the functions of genes are described in terms of post-translational aspects. This article mainly discusses the application of the above modern scientific and technological methods of breeding and the advantages and limitations of crop breeding and diversity. In particular, the development of gene editing technology has contributed to modern breeding research.
Collapse
Affiliation(s)
- Lixia Sun
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Mingyu Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Fozia Ghouri
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| | - Muhammad Amjad Nawaz
- Education Scientific Center of Nanotechnology, Far Eastern Federal University, 690091 Vladivostok, Russia;
| | - Fawad Ali
- School of Tropical Agriculture and Forestry, Hainan University, Sanya 572025, China;
| | - Faheem Shehzad Baloch
- Dapartment of Biotechnology, Faculty of Science, Mersin University, Mersin 33343, Türkiye;
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas 58140, Türkiye; (M.A.N.); (M.A.)
| | - Muhammad Qasim Shahid
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.S.); (M.L.); (F.G.)
- Guangdong Provincial Key Laboratory of Plant Molecular Breeding, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
5
|
Geethanjali S, Kadirvel P, Periyannan S. Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:224. [PMID: 39283360 PMCID: PMC11405505 DOI: 10.1007/s00122-024-04730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE Single nucleotide polymorphism (SNP) markers in wheat and their prospects in breeding with special reference to rust resistance. Single nucleotide polymorphism (SNP)-based markers are increasingly gaining momentum for screening and utilizing vital agronomic traits in wheat. To date, more than 260 million SNPs have been detected in modern cultivars and landraces of wheat. This rapid SNP discovery was made possible through the release of near-complete reference and pan-genome assemblies of wheat and its wild relatives, coupled with whole genome sequencing (WGS) of thousands of wheat accessions. Further, genotyping customized SNP sites were facilitated by a series of arrays (9 to 820Ks), a cost effective substitute WGS. Lately, germplasm-specific SNP arrays have been introduced to characterize novel traits and detect closely linked SNPs for marker-assisted breeding. Subsequently, the kompetitive allele-specific PCR (KASP) assay was introduced for rapid and large-scale screening of specific SNP markers. Moreover, with the advances and reduction in sequencing costs, ample opportunities arise for generating SNPs artificially through mutations and in combination with next-generation sequencing and comparative genomic analyses. In this review, we provide historical developments and prospects of SNP markers in wheat breeding with special reference to rust resistance where over 50 genetic loci have been characterized through SNP markers. Rust resistance is one of the most essential traits for wheat breeding as new strains of the Puccinia fungus, responsible for rust diseases, evolve frequently and globally.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Palchamy Kadirvel
- Crop Improvement Section, Indian Council of Agricultural Research-Indian Institute of Oilseeds Research, Hyderabad, Telangana, 500030, India
| | - Sambasivam Periyannan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
6
|
Ibe CN, Bailey SL, Korolev AV, Brett P, Saunders DGO. Isocitrate lyase promotes Puccinia striiformis f. sp. tritici susceptibility in wheat (Triticum aestivum) by suppressing accumulation of glyoxylate cycle intermediates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:2033-2044. [PMID: 38949911 DOI: 10.1111/tpj.16908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/16/2024] [Accepted: 06/20/2024] [Indexed: 07/03/2024]
Abstract
Plant fungal parasites manipulate host metabolism to support their own survival. Among the many central metabolic pathways altered during infection, the glyoxylate cycle is frequently upregulated in both fungi and their host plants. Here, we examined the response of the glyoxylate cycle in bread wheat (Triticum aestivum) to infection by the obligate biotrophic fungal pathogen Puccinia striiformis f. sp. tritici (Pst). Gene expression analysis revealed that wheat genes encoding the two unique enzymes of the glyoxylate cycle, isocitrate lyase (TaICL) and malate synthase, diverged in their expression between susceptible and resistant Pst interactions. Focusing on TaICL, we determined that the TaICL B homoeolog is specifically upregulated during early stages of a successful Pst infection. Furthermore, disruption of the B homoeolog alone was sufficient to significantly perturb Pst disease progression. Indeed, Pst infection of the TaICL-B disruption mutant (TaICL-BY400*) was inhibited early during initial penetration, with the TaICL-BY400* line also accumulating high levels of malic acid, citric acid, and aconitic acid. Exogenous application of malic acid or aconitic acid also suppressed Pst infection, with trans-aconitic acid treatment having the most pronounced effect by decreasing fungal biomass 15-fold. Thus, enhanced TaICL-B expression during Pst infection may lower accumulation of malic acid and aconitic acid to promote Pst proliferation. As exogenous application of aconitic acid and malic acid has previously been shown to inhibit other critical pests and pathogens, we propose TaICL as a potential target for disruption in resistance breeding that could have wide-reaching protective benefits for wheat and beyond.
Collapse
Affiliation(s)
- Carol N Ibe
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Sarah L Bailey
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | | - Paul Brett
- John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | | |
Collapse
|
7
|
Evans C, Mogg SL, Soraru C, Wallington E, Coates J, Borrill P. Wheat NAC transcription factor NAC5-1 is a positive regulator of senescence. PLANT DIRECT 2024; 8:e620. [PMID: 38962173 PMCID: PMC11217990 DOI: 10.1002/pld3.620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 06/04/2024] [Accepted: 06/10/2024] [Indexed: 07/05/2024]
Abstract
Wheat (Triticum aestivum L.) is an important source of both calories and protein in global diets, but there is a trade-off between grain yield and protein content. The timing of leaf senescence could mediate this trade-off as it is associated with both declines in photosynthesis and nitrogen remobilization from leaves to grain. NAC transcription factors play key roles in regulating senescence timing. In rice, OsNAC5 expression is correlated with increased protein content and upregulated in senescing leaves, but the role of the wheat ortholog in senescence had not been characterized. We verified that NAC5-1 is the ortholog of OsNAC5 and that it is expressed in senescing flag leaves in wheat. To characterize NAC5-1, we combined missense mutations in NAC5-A1 and NAC5-B1 from a TILLING mutant population and overexpressed NAC5-A1 in wheat. Mutation in NAC5-1 was associated with delayed onset of flag leaf senescence, while overexpression of NAC5-A1 was associated with slightly earlier onset of leaf senescence. DAP-seq was performed to locate transcription factor binding sites of NAC5-1. Analysis of DAP-seq and comparison with other studies identified putative downstream target genes of NAC5-1 which could be associated with senescence. This work showed that NAC5-1 is a positive transcriptional regulator of leaf senescence in wheat. Further research is needed to test the effect of NAC5-1 on yield and protein content in field trials, to assess the potential to exploit this senescence regulator to develop high-yielding wheat while maintaining grain protein content.
Collapse
Affiliation(s)
- Catherine Evans
- Department of Crop GeneticsJohn Innes CentreNorwichUK
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | | | | | | | - Juliet Coates
- School of BiosciencesUniversity of BirminghamBirminghamUK
| | | |
Collapse
|
8
|
Yalcin HA, Jacott CN, Ramirez-Gonzalez RH, Steuernagel B, Sidhu GS, Kirby R, Verbeek E, Schoonbeek HJ, Ridout CJ, Wells R. A complex receptor locus confers responsiveness to necrosis and ethylene-inducing like peptides in Brassica napus. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:266-282. [PMID: 38605581 DOI: 10.1111/tpj.16760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 03/02/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Brassica crops are susceptible to diseases which can be mitigated by breeding for resistance. MAMPs (microbe-associated molecular patterns) are conserved molecules of pathogens that elicit host defences known as pattern-triggered immunity (PTI). Necrosis and Ethylene-inducing peptide 1-like proteins (NLPs) are MAMPs found in a wide range of phytopathogens. We studied the response to BcNEP2, a representative NLP from Botrytis cinerea, and showed that it contributes to disease resistance in Brassica napus. To map regions conferring NLP response, we used the production of reactive oxygen species (ROS) induced during PTI across a population of diverse B. napus accessions for associative transcriptomics (AT), and bulk segregant analysis (BSA) on DNA pools created from a cross of NLP-responsive and non-responsive lines. In silico mapping with AT identified two peaks for NLP responsiveness on chromosomes A04 and C05 whereas the BSA identified one peak on A04. BSA delimited the region for NLP-responsiveness to 3 Mbp, containing ~245 genes on the Darmor-bzh reference genome and four co-segregating KASP markers were identified. The same pipeline with the ZS11 genome confirmed the highest-associated region on chromosome A04. Comparative BLAST analysis revealed unannotated clusters of receptor-like protein (RLP) homologues on ZS11 chromosome A04. However, no specific RLP homologue conferring NLP response could be identified. Our results also suggest that BR-SIGNALLING KINASE1 may be involved with modulating the NLP response. Overall, we demonstrate that responsiveness to NLP contributes to disease resistance in B. napus and define the associated genomic location. These results can have practical application in crop improvement.
Collapse
Affiliation(s)
- Hicret Asli Yalcin
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- TUBITAK Marmara Research Centre, Life Sciences, TUBITAK, Gebze, Kocaeli, 41470, Türkiye
| | - Catherine N Jacott
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- Department of Microbiology, Faculty of Biology, University of Seville, Seville, Spain
| | | | | | | | - Rachel Kirby
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Emma Verbeek
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| | - Henk-Jan Schoonbeek
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
- University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | | | - Rachel Wells
- John Innes Centre, Norwich Research Park, Colney Lane, Norwich, NR4 7UH, UK
| |
Collapse
|
9
|
Li Y, Wang M, Hu X, Chen X. Identification of a Locus for High-Temperature Adult-Plant Resistance to Stripe Rust in the Wheat Yr8 Near-Isogenic Line Through Mutagenesis and Molecular Mapping. PLANT DISEASE 2024; 108:1261-1269. [PMID: 37938905 DOI: 10.1094/pdis-10-23-2037-re] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2023]
Abstract
Aegilops species are wheat relatives that harbor valuable disease resistance genes for wheat breeding. The wheat Yr8 near-isogenic line AvSYr8NIL has long been believed to carry only Yr8 for race-specific all-stage resistance to stripe rust, caused by Puccinia striiformis f. sp. tritici, derived from Aegilops comosa. However, AvSYr8NIL has been found to have high-temperature adult-plant (HTAP) resistance in our field and greenhouse tests. To confirm both HTAP and Yr8 resistance, seeds from AvSYr8NIL were treated with ethyl methanesulfonate to generate mutant lines. The mutant lines with only Yr8 (M641) and only HTAP resistance (M488) were crossed with the susceptible recurrent parent Avocet S (AvS). The F1 and F4 lines of AvS/M641 were phenotyped with Yr8-avirulent races in the seedling stage at the low-temperature (4 to 20°C) profile, while the F1, F2, F4, and F5 lines of AvS/M488 were phenotyped with Yr8-virulent races in the adult-plant stage at the high-temperature (10 to 30°C) profile. Both Yr8 and the HTAP resistance gene (YrM488) were recessive. The F4 populations of AvS/M641 and AvS/M488 were genotyped using polymorphic Kompetitive allele-specific PCR markers converted from single-nucleotide polymorphisms. Yr8 was mapped to a 0.66-cM fragment, and YrM488 was mapped to a 1.22-cM interval on chromosome 2D. The physical distance between the two resistance genes was estimated to be more than 500 Mb, indicating their distinct loci. The mutant lines with separated resistance genes would be useful in enhancing our understanding of different types of resistance and in further studying the interactions between wheat and the stripe rust pathogen.
Collapse
Affiliation(s)
- Yuxiang Li
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
| | - Xiaoping Hu
- State Key Laboratory of Crop Stress Biology for Arid Areas and College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164, U.S.A
- U.S. Department of Agriculture, Agricultural Research Service, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164, U.S.A
| |
Collapse
|
10
|
Norman M, Chen C, Miah H, Patpour M, Sørensen C, Hovmøller M, Forrest K, Kumar S, Prasad P, Gangwar OP, Bhardwaj S, Bariana H, Periyannan S, Bansal U. Sr65: a widely effective gene for stem rust resistance in wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 137:1. [PMID: 38071267 DOI: 10.1007/s00122-023-04507-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/15/2023] [Indexed: 12/18/2023]
Abstract
KEY MESSAGE Sr65 in chromosome 1A of Indian wheat landrace Hango-2 is a potentially useful all-stage resistance gene that currently protects wheat from stem rust in Australia, India, Africa and Europe. Stem rust, caused by Puccinia graminis f. sp. tritici (Pgt), threatened global wheat production with the appearance of widely virulent races that included TTKSK and TTRTF. Indian landrace Hango-2 showed resistance to Pgt races in India and Australia. Screening of a Hango-2/Avocet 'S' (AvS) recombinant inbred line population identified two stem rust resistance genes, a novel gene (temporarily named as SrH2) from Hango-2 and Sr26 from AvS. A mapping population segregating for SrH2 alone was developed from two recombinant lines. SrH2 was mapped on the short arm of chromosome 1A, where it was flanked by KASP markers KASP_7944 (proximal) and KASP_12147 (distal). SrH2 was delimited to an interval of 1.8-2.3 Mb on chromosome arm 1AS. The failure to detect candidate genes through MutRenSeq and comparative genomic analysis with the pan-genome dataset indicated the necessity to generate a Hango-2 specific assembly for detecting the gene sequence linked with SrH2 resistance. MutRenSeq however enabled identification of SrH2-linked KASP marker sunCS_265. Markers KASP_12147 and sunCS_265 showed 92% and 85% polymorphism among an Australian cereal cultivar diversity panel and can be used for marker-assisted selection of SrH2 in breeding programs. The effectiveness of SrH2 against Pgt races from Europe, Africa, India, and Australia makes it a valuable resource for breeding stem rust-resistant wheat cultivars. Since no wheat-derived gene was previously located in chromosome arm 1AS, SrH2 represents a new locus and named as SR65.
Collapse
Affiliation(s)
- Michael Norman
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Chunhong Chen
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, ACT, 2601, Australia
| | - Hanif Miah
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
| | - Mehran Patpour
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Chris Sørensen
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Mogens Hovmøller
- Department of Agroecology, Aarhus University, Forsøgsvej 1, 4200, Slagelse, Denmark
| | - Kerrie Forrest
- Agriculture Victoria, Department of Energy, Environment and Climate Action, AgriBio, Centre for AgriBioscience, 5 Ring Rd., Bundoora, VIC, 3083, Australia
| | - Subodh Kumar
- Indian Council of Agricultural Research - Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Pramod Prasad
- Indian Council of Agricultural Research - Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Om Prakash Gangwar
- Indian Council of Agricultural Research - Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Subhash Bhardwaj
- Indian Council of Agricultural Research - Indian Institute of Wheat and Barley Research Regional Station, Flowerdale, Shimla, Himachal Pradesh, 171 002, India
| | - Harbans Bariana
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia
- School of Science, Western Sydney University, Bourke Road, Richmond, NSW, 2753, Australia
| | - Sambasivam Periyannan
- Commonwealth Scientific and Industrial Research Organization Agriculture and Food, Canberra, ACT, 2601, Australia.
- School of Agriculture and Environmental Science, Centre for Crop Health, University of Southern Queensland, West Street, Toowoomba, QLD, 4350, Australia.
| | - Urmil Bansal
- Plant Breeding Institute, School of Life and Environmental Sciences, Faculty of Science, The University of Sydney, 107 Cobbitty Road, Cobbitty, NSW, 2570, Australia.
| |
Collapse
|
11
|
Xu X, Ni Z, Zou X, Zhang Y, Tong J, Xu X, Dong Y, Han B, Li S, Wang D, Xia X, He Z, Hao Y. QTL Mapping Reveals Both All-Stage and Adult-Plant Resistance to Powdery Mildew in Chinese Elite Wheat Cultivars. PLANT DISEASE 2023; 107:3230-3237. [PMID: 37018212 DOI: 10.1094/pdis-02-23-0399-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Powdery mildew caused by Blumeria graminis f. sp. tritici is a threat to wheat production in China. Mapping quantitative trait loci (QTL) for resistance to powdery mildew and developing breeder-friendly markers are important initial steps in breeding resistant cultivars. An all-stage resistance gene and several QTL were identified using a population of 254 recombinant inbred lines developed from a Jingdong 8/Aikang 58 cross. The population was evaluated for powdery mildew resistance across six field environments over three consecutive growing seasons utilizing two different mixtures of B. graminis f. sp. tritici isolates, named #Bgt-HB and #Bgt-BJ. Using genotypic data obtained from the Wheat TraitBreed 50K single-nucleotide polymorphism array, seven stable QTL were identified on chromosome arms 1DL, 2AL, 2DS, 4DL, 5AL, 6BL.1, and 6BL.2. The QTL on 2AL conferred all-stage resistance to B. graminis f. sp. tritici race E20 in greenhouse tests and explained up to 52% of the phenotypic variance in field trials but was resistant only against #Bgt-HB. The gene involved in this QTL was predicted to be Pm4a based on genome location and gene sequence. QPmja.caas-1DL, QPmja.caas-4DL, and QPmja.caas-6BL.1 were identified as potentially new QTL for powdery mildew resistance. QPmja.caas-2DS and QPmja.caas-6BL.1 were effective against both B. graminis f. sp. tritici mixtures, indicating their probable broad-spectrum resistance. A Kompetitive allele-specific PCR marker closely linked to QPmja.caas-2DS was developed and validated in a panel of 286 wheat cultivars. Because both Jingdong 8 and Aikang 58 have been leading cultivars and breeding parents, the QTL and marker reported represent valuable resources for wheat researchers and breeders.
Collapse
Affiliation(s)
- Xiaoting Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhongqiu Ni
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xinyu Zou
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yelun Zhang
- Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences/Hebei Laboratory of Crop Genetics and Breeding, Shijiazhuang 050031, Hebei, China
| | - Jingyang Tong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xiaowan Xu
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Yachao Dong
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Bin Han
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Simin Li
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Desen Wang
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
- International Maize and Wheat Improvement Center (CIMMYT) China Office, Beijing 100081, China
| | - Yuanfeng Hao
- Institute of Crop Sciences, National Wheat Improvement Center, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100081, China
| |
Collapse
|
12
|
Jabran M, Ali MA, Zahoor A, Muhae-Ud-Din G, Liu T, Chen W, Gao L. Intelligent reprogramming of wheat for enhancement of fungal and nematode disease resistance using advanced molecular techniques. FRONTIERS IN PLANT SCIENCE 2023; 14:1132699. [PMID: 37235011 PMCID: PMC10206142 DOI: 10.3389/fpls.2023.1132699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Accepted: 04/19/2023] [Indexed: 05/28/2023]
Abstract
Wheat (Triticum aestivum L.) diseases are major factors responsible for substantial yield losses worldwide, which affect global food security. For a long time, plant breeders have been struggling to improve wheat resistance against major diseases by selection and conventional breeding techniques. Therefore, this review was conducted to shed light on various gaps in the available literature and to reveal the most promising criteria for disease resistance in wheat. However, novel techniques for molecular breeding in the past few decades have been very fruitful for developing broad-spectrum disease resistance and other important traits in wheat. Many types of molecular markers such as SCAR, RAPD, SSR, SSLP, RFLP, SNP, and DArT, etc., have been reported for resistance against wheat pathogens. This article summarizes various insightful molecular markers involved in wheat improvement for resistance to major diseases through diverse breeding programs. Moreover, this review highlights the applications of marker assisted selection (MAS), quantitative trait loci (QTL), genome wide association studies (GWAS) and the CRISPR/Cas-9 system for developing disease resistance against most important wheat diseases. We also reviewed all reported mapped QTLs for bunts, rusts, smuts, and nematode diseases of wheat. Furthermore, we have also proposed how the CRISPR/Cas-9 system and GWAS can assist breeders in the future for the genetic improvement of wheat. If these molecular approaches are used successfully in the future, they can be a significant step toward expanding food production in wheat crops.
Collapse
Affiliation(s)
- Muhammad Jabran
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad, Pakistan
| | - Adil Zahoor
- Department of Biotechnology, Chonnam National University, Yeosu, Republic of Korea
| | - Ghulam Muhae-Ud-Din
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Taiguo Liu
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Wanquan Chen
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Li Gao
- State Key Laboratory for Biology of Plant Diseases, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Han G, Yan H, Gu T, Cao L, Zhou Y, Liu W, Liu D, An D. Identification of a Wheat Powdery Mildew Dominant Resistance Gene in the Pm5 Locus for High-Throughput Marker-Assisted Selection. PLANT DISEASE 2023; 107:450-456. [PMID: 35815965 DOI: 10.1094/pdis-07-22-1545-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), poses a severe threat to wheat yield and quality worldwide. Rapid identification and the accurate transference of effective resistance genes are important to the development of resistant cultivars and the sustainable control of this disease. In the present study, the wheat line AL11 exhibited high levels of resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the AL11 × 'Shixin 733' mapping population revealed that its resistance was controlled by a single dominant gene, tentatively designated PmAL11. Using bulked segregant RNA-Seq and molecular marker analysis, PmAL11 was mapped to the Pm5 locus on chromosome 7B where it cosegregated with the functional marker Pm5e-KASP. Sequence alignment analysis revealed that the Pm5e-homologous sequence in AL11 was identical to the reported recessive gene Pm5e in wheat landrace 'Fuzhuang 30'. It appears that PmAL11 was most probably Pm5e, but it was mediated by a dominant inheritance pattern, so it should provide a valuable resistance resource for both genetic study and wheat breeding. To efficiently use and trace PmAL11 in breeding, a new kompetitive allele-specific PCR marker AL11-K2488 that cosegregated with this gene was developed and confirmed to be applicable in the different wheat backgrounds, thus promoting its use in the marker-assisted selection of PmAL11.
Collapse
Affiliation(s)
- Guohao Han
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Hanwen Yan
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Tiantian Gu
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Lijun Cao
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Dongcheng Liu
- State Key Laboratory of North China Crop Improvement and Regulation, College of Agronomy, Hebei Agricultural University, Baoding, Hebei 071000, China
| | - Diaoguo An
- Center for Agricultural Resources Research, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Shijiazhuang, Hebei 050022, China
- Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
14
|
Benaouda S, Stöcker T, Schoof H, Léon J, Ballvora A. Transcriptome profiling at the transition to the reproductive stage uncovers stage and tissue-specific genes in wheat. BMC PLANT BIOLOGY 2023; 23:25. [PMID: 36631761 PMCID: PMC9835304 DOI: 10.1186/s12870-022-03986-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND The transition from vegetative to floral phase is the result of complex crosstalk of exogenous and endogenous floral integrators. This critical physiological event is the response to environmental interaction, which causes biochemical cascades of reactions at different internal tissues, organs, and releases signals that make the plant moves from vegetative status to a reproductive phase. This network controlling flowering time is not deciphered largely in bread wheat. In this study, a comparative transcriptome analysis at a transition time in combination with genetic mapping was used to identify responsible genes in a stage and tissue-specific manner. For this reason, two winter cultivars that have been bred in Germany showing contrasting and stable heading time in different environments were selected for the analysis. RESULTS In total, 670 and 1075 differentially expressed genes in the shoot apical meristem and leaf tissue, respectively, could be identified in 23 QTL intervals for the heading date. In the transition apex, Histone methylation H3-K36 and regulation of circadian rhythm are both controlled by the same homoeolog genes mapped in QTL TaHd112, TaHd124, and TaHd137. TaAGL14 gene that identifies the floral meristem was mapped in TaHd054 in the double ridge. In the same stage, the homoeolog located on chromosome 7D of FLOWERING TIME LOCUS T mapped on chr 7B, which evolved an antagonist function and acts as a flowering repressor was uncovered. The wheat orthologue of transcription factor ASYMMETRIC LEAVES 1 (AS1) was identified in the late reproductive stage and was mapped in TaHd102, which is strongly associated with heading date. Deletion of eight nucleotides in the AS1 promoter could be identified in the binding site of the SUPPRESSOR OF CONSTANS OVEREXPRESSION 1 (SOC1) gene in the late flowering cultivar. Both proteins AS1 and SOC1 are inducing flowering time in response to gibberellin biosynthesis. CONCLUSION The global transcriptomic at the transition phase uncovered stage and tissue-specific genes mapped in QTL of heading date in winter wheat. In response to Gibberellin signaling, wheat orthologous transcription factor AS1 is expressed in the late reproductive phase of the floral transition. The locus harboring this gene is the strongest QTL associated with the heading date trait in the German cultivars. Consequently, we conclude that this is another indication of the Gibberellin biosynthesis as the mechanism behind the heading variation in wheat.
Collapse
Affiliation(s)
- Salma Benaouda
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Tyll Stöcker
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Heiko Schoof
- Institute for Crop Science and Resource Conservation, Chair of Crop Bioinformatics, University of Bonn, Bonn, Germany
| | - Jens Léon
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| | - Agim Ballvora
- Institute for Crop Science and Resource Conservation, Chair of Plant Breeding, University of Bonn, Bonn, Germany
| |
Collapse
|
15
|
Cheng W, Wang Z, Xu F, Lu G, Su Y, Wu Q, Wang T, Que Y, Xu L. Screening of Candidate Genes Associated with Brown Stripe Resistance in Sugarcane via BSR-seq Analysis. Int J Mol Sci 2022; 23:15500. [PMID: 36555141 PMCID: PMC9778799 DOI: 10.3390/ijms232415500] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/30/2022] [Accepted: 12/03/2022] [Indexed: 12/13/2022] Open
Abstract
Sugarcane brown stripe (SBS), caused by the fungal pathogen Helminthosporium stenospilum, is one of the most serious threats to sugarcane production. However, its outbreaks and epidemics require suitable climatic conditions, resulting in the inefficient improvement of the SBS resistance by phenotype selection. The sugarcane F1 population of SBS-resistant YT93-159 × SBS-susceptible ROC22 was used for constructing the bulks. Bulked segregant RNA-seq (BSR-seq) was then performed on the parents YT93-159 (T01) and ROC22 (T02), and the opposite bulks of 30 SBS-susceptible individuals mixed bulk (T03) and 30 SBS-resistant individuals mixed bulk (T04) collected from 287 F1 individuals. A total of 170.00 Gb of clean data containing 297,921 SNPs and 70,426 genes were obtained. Differentially expressed genes (DEGs) analysis suggested that 7787 and 5911 DEGs were identified in the parents (T01 vs. T02) and two mixed bulks (T03 vs. T04), respectively. In addition, 25,363 high-quality and credible SNPs were obtained using the genome analysis toolkit GATK for SNP calling. Subsequently, six candidate regions with a total length of 8.72 Mb, which were located in the chromosomes 4B and 7C of sugarcane wild species Saccharum spontaneum, were identified, and 279 genes associated with SBS-resistance were annotated by ED algorithm and ΔSNP-index. Furthermore, the expression profiles of candidate genes were verified by quantitative real-time PCR (qRT-PCR) analysis, and the results showed that eight genes (LRR-RLK, DHAR1, WRKY7, RLK1, BLH4, AK3, CRK34, and NDA2) and seven genes (WRKY31, CIPK2, CKA1, CDPK6, PFK4, CBL2, and PR2) of the 20 tested genes were significantly up-regulated in YT93-159 and ROC22, respectively. Finally, a potential molecular mechanism of sugarcane response to H. stenospilum infection is illustrate that the activations of ROS signaling, MAPK cascade signaling, Ca2+ signaling, ABA signaling, and the ASA-GSH cycle jointly promote the SBS resistance in sugarcane. This study provides abundant gene resources for the SBS resistance breeding in sugarcane.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Youxiong Que
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Liping Xu
- National Engineering Research Center for Sugarcane, Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|
16
|
Zhou Y, Yao M, Wang Q, Zhang X, Di H, Zhang L, Dong L, Xu Q, Liu X, Zeng X, Wang Z. Analysis of QTLs and Candidate Genes for Tassel Symptoms in Maize Infected with Sporisorium reilianum. Int J Mol Sci 2022; 23:ijms232214416. [PMID: 36430897 PMCID: PMC9692487 DOI: 10.3390/ijms232214416] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/13/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Heat smut is a fungal soil-borne disease caused by Sporisorium reilianum, and affects the development of male and female tassels. Our previous research found that the tassel symptoms in maize infected with Sporisorium reilianum significantly differed in inbred lines with Sipingtou blood, and exhibited stable heredity over time at multiple locations. In this study, cytological analysis demonstrated that the cellular organization structures of three typical inbred lines (Huangzao4, Jing7, and Chang7-2) showed significant discrepancies at the VT stage. QTLs that control the different symptoms of maize tassels infected with Sporisorium reilianum were located in two F2 populations, which were constructed using three typical inbred lines. The BSA (bulked segregation analysis) method was used to construct mixed gene pools based on typical tassel symptoms. The QTLs of different symptoms of maize tassels infected with Sporisorium reilianum were detected with 869 SSR markers covering the whole maize genome. The mixed gene pools were screened with polymorphic markers between the parents. Additional SSR markers were added near the above marker to detect genotypes in partially single plants in F2 populations. The QTL controlling tassel symptoms in the Huangzao4 and Jing7 lines was located on the bin 1.06 region, between the markers of umc1590 and bnlg1598, and explained 21.12% of the phenotypic variation with an additive effect of 0.6524. The QTL controlling the tassel symptoms of the Jing7 and Chang7-2 lines was located on the bin 2.07 region, between the markers of umc1042 and bnlg1335, and explained 11.26% phenotypic variation with an additive effect of 0.4355. Two candidate genes (ZmABP2 and Zm00001D006403) were identified by a conjoint analysis of label-free quantification proteome sequencings.
Collapse
|
17
|
Wu Q, Su Y, Pan YB, Xu F, Zou W, Que B, Lin P, Sun T, Grisham MP, Xu L, Que Y. Genetic identification of SNP markers and candidate genes associated with sugarcane smut resistance using BSR-Seq. FRONTIERS IN PLANT SCIENCE 2022; 13:1035266. [PMID: 36311133 PMCID: PMC9608552 DOI: 10.3389/fpls.2022.1035266] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 09/27/2022] [Indexed: 06/01/2023]
Abstract
Sugarcane smut caused by Sporisorium scitamineum is one of the most severe fungal diseases worldwide. In this study, a cross was made between a smut-resistant variety YT93-159 and a smut-susceptible variety ROC22, and 312 progenies were obtained. Two bulks of progenies were then constructed, one consisted of 27 highly smut resistant progenies and the other 24 smut susceptible progenies. Total RNAs of the progenies of each bulk, were pooled and subject to bulked segregant RNA-sequence analysis (BSR-Seq). A total of 164.44 Gb clean data containing 2,341,449 SNPs and 64,999 genes were obtained, 7,295 of which were differentially expressed genes (DEGs). These DEGs were mainly enriched in stress-related metabolic pathways, including carbon metabolism, phenylalanine metabolism, plant hormone signal transduction, glutathione metabolism, and plant-pathogen interactions. Besides, 45,946 high-quality, credible SNPs, a 1.27 Mb region at Saccharum spontaneum chromosome Chr5B (68,904,827 to 70,172,982), and 129 candidate genes were identified to be associated with smut resistance. Among them, twenty-four genes, either encoding key enzymes involved in signaling pathways or being transcription factors, were found to be very closely associated with stress resistance. RT-qPCR analysis demonstrated that they played a positive role in smut resistance. Finally, a potential molecular mechanism of sugarcane and S. scitamineum interaction is depicted that activations of MAPK cascade signaling, ROS signaling, Ca2+ signaling, and PAL metabolic pathway and initiation of the glyoxalase system jointly promote the resistance to S. scitamineum in sugarcane. This study provides potential SNP markers and candidate gene resources for smut resistance breeding in sugarcane.
Collapse
Affiliation(s)
- Qibin Wu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yachun Su
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yong-Bao Pan
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA, United States
| | - Fu Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Wenhui Zou
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Beibei Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
- International College, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Peixia Lin
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tingting Sun
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Michael P. Grisham
- USDA-ARS, Southeast Area, Sugarcane Research Unit, Houma, LA, United States
| | - Liping Xu
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Youxiong Que
- Key Laboratory of Sugarcane Biology and Genetic Breeding, Ministry of Agriculture and Rural Affairs, National Engineering Research Center for Sugarcane, College of Agriculture, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
18
|
Corredor-Moreno P, Badgami R, Jones S, Saunders DGO. Temporally coordinated expression of nuclear genes encoding chloroplast proteins in wheat promotes Puccinia striiformis f. sp. tritici infection. Commun Biol 2022; 5:853. [PMID: 35996019 PMCID: PMC9395331 DOI: 10.1038/s42003-022-03780-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Accepted: 07/28/2022] [Indexed: 11/09/2022] Open
Abstract
Targeting host processes that allow pathogens to thrive can be invaluable in resistance breeding. Here, we generated a deep-sequencing transcriptome time course for Puccinia striiformis f. sp. tritici (Pst) infection on wheat and compared datasets from three wheat varieties with different levels of susceptibility to two tested pathogen isolates. We sought genes specifically altered in a susceptible host as candidates that might support colonisation. Host responses differed between Pst-varietal pairs most prominently early during infection. Notably, however, nuclear genes encoding chloroplast-localised proteins (NGCPs) exhibited temporal coordination of expression profiles that differed at later time points in relation to Pst susceptibility. Disrupting one such NGCP, encoding the chloroplast-localised RNA binding protein TaCSP41a, led to lower Pst susceptibility. These analyses thus highlight NGCPs as prime targets for Pst manipulation during infection and point to TaCSP41a disruption as a potential source of Pst resistance for breeding programmes. A transcriptome time course of Puccinia striiformis f. sp. tritici (Pst) infection reveals nuclear genes encoding chloroplast-localized proteins are manipulated during infection and highlights TaCSP41a disruption as a target for resistance breeding.
Collapse
Affiliation(s)
| | | | - Sally Jones
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | |
Collapse
|
19
|
Liang X, Xu H, Zhu S, Zheng Y, Zhong W, Li H, Niu L, Wu L, Zhang L, Song J, He H, Liu C, Ma P. Genetically Dissecting the Novel Powdery Mildew Resistance Gene in Wheat Breeding Line PBDH1607. PLANT DISEASE 2022; 106:2145-2154. [PMID: 35108069 DOI: 10.1094/pdis-12-21-2771-re] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Powdery mildew is one of the most destructive diseases in wheat production. Identifying novel resistance genes and deploying them in new cultivars is the most effective approach to minimize wheat losses caused by powdery mildew. In this study, wheat breeding line PBDH1607 showed high resistance to powdery mildew at both the seedling and adult plant stages. Genetic analysis of the seedling data demonstrated that the resistance was controlled by a single dominant gene, tentatively designated PmPBDH. The ΔSNP index based on bulked segregant RNA sequencing indicated that PmPBDH was associated with an interval of about 30.8 Mb (713.5 to 744.3 Mb) on chromosome arm 4AL. Using newly developed markers, we mapped PmPBDH to a 3.2-cM interval covering 7.1 Mb (719,055,516 to 726,215,121 bp). This interval differed from those of Pm61 (717,963,176 to 719,260,469 bp), MlIW30 (732,769,506 to 732,790,522 bp), and MlNSF10 (729,275,816 to 731,365,462 bp) reported on the same chromosome arm. PmPBDH also differed from Pm61, MlIW30, and MlNSF10 by its response spectrum, origin, or inheritance mode, suggesting that PmPBDH should be a new Pm gene. In the candidate interval, five genes were found to be associated with PmPBDH via time course gene expression analysis, and thus they are candidate genes of PmPBDH. Six closely linked markers, including two kompetitive allele-specific PCR markers, were confirmed to be applicable for tracking PmPBDH in marker-assisted breeding.
Collapse
Affiliation(s)
- Xiao Liang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Shanying Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Yongshen Zheng
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Wen Zhong
- Shandong Seed Administration Station, Jinan, Shandong 250100, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Liping Niu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, Hubei 430072, China
| | - Liru Wu
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Lipei Zhang
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Jiancheng Song
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| | - Huagang He
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, Shandong 250100, China
| | - Pengtao Ma
- College of Life Sciences, Yantai University, Yantai, Shandong 264005, China
| |
Collapse
|
20
|
de la Fuente Cantó C, Vigouroux Y. Evaluation of nine statistics to identify QTLs in bulk segregant analysis using next generation sequencing approaches. BMC Genomics 2022; 23:490. [PMID: 35794552 PMCID: PMC9258084 DOI: 10.1186/s12864-022-08718-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 06/20/2022] [Indexed: 11/22/2022] Open
Abstract
Background Bulk segregant analysis (BSA) combined with next generation sequencing is a powerful tool to identify quantitative trait loci (QTL). The impact of the size of the study population and the percentage of extreme genotypes analysed have already been assessed. But a good comparison of statistical approaches designed to identify QTL regions using next generation sequencing (NGS) technologies for BSA is still lacking. Results We developed an R code to simulate QTLs in bulks of F2 contrasted lines. We simulated a range of recombination rates based on estimations using different crop species. The simulations were used to benchmark the ability of statistical methods identify the exact location of true QTLs. A single QTL led to a shift in allele frequency across a large fraction of the chromosome for plant species with low recombination rate. The smoothed version of all statistics performed best notably the smoothed Euclidean distance-based statistics was always found to be more accurate in identifying the location of QTLs. We propose a simulation approach to build confidence interval statistics for the detection of QTLs. Conclusion We highlight the statistical methods best suited for BSA studies using NGS technologies in crops even when recombination rate is low. We also provide simulation codes to build confidence intervals and to assess the impact of recombination for application to other studies. This computational study will help select NGS-based BSA statistics that are useful to the broad scientific community. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08718-y.
Collapse
|
21
|
Hussain B, Akpınar BA, Alaux M, Algharib AM, Sehgal D, Ali Z, Aradottir GI, Batley J, Bellec A, Bentley AR, Cagirici HB, Cattivelli L, Choulet F, Cockram J, Desiderio F, Devaux P, Dogramaci M, Dorado G, Dreisigacker S, Edwards D, El-Hassouni K, Eversole K, Fahima T, Figueroa M, Gálvez S, Gill KS, Govta L, Gul A, Hensel G, Hernandez P, Crespo-Herrera LA, Ibrahim A, Kilian B, Korzun V, Krugman T, Li Y, Liu S, Mahmoud AF, Morgounov A, Muslu T, Naseer F, Ordon F, Paux E, Perovic D, Reddy GVP, Reif JC, Reynolds M, Roychowdhury R, Rudd J, Sen TZ, Sukumaran S, Ozdemir BS, Tiwari VK, Ullah N, Unver T, Yazar S, Appels R, Budak H. Capturing Wheat Phenotypes at the Genome Level. FRONTIERS IN PLANT SCIENCE 2022; 13:851079. [PMID: 35860541 PMCID: PMC9289626 DOI: 10.3389/fpls.2022.851079] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Recent technological advances in next-generation sequencing (NGS) technologies have dramatically reduced the cost of DNA sequencing, allowing species with large and complex genomes to be sequenced. Although bread wheat (Triticum aestivum L.) is one of the world's most important food crops, efficient exploitation of molecular marker-assisted breeding approaches has lagged behind that achieved in other crop species, due to its large polyploid genome. However, an international public-private effort spanning 9 years reported over 65% draft genome of bread wheat in 2014, and finally, after more than a decade culminated in the release of a gold-standard, fully annotated reference wheat-genome assembly in 2018. Shortly thereafter, in 2020, the genome of assemblies of additional 15 global wheat accessions was released. As a result, wheat has now entered into the pan-genomic era, where basic resources can be efficiently exploited. Wheat genotyping with a few hundred markers has been replaced by genotyping arrays, capable of characterizing hundreds of wheat lines, using thousands of markers, providing fast, relatively inexpensive, and reliable data for exploitation in wheat breeding. These advances have opened up new opportunities for marker-assisted selection (MAS) and genomic selection (GS) in wheat. Herein, we review the advances and perspectives in wheat genetics and genomics, with a focus on key traits, including grain yield, yield-related traits, end-use quality, and resistance to biotic and abiotic stresses. We also focus on reported candidate genes cloned and linked to traits of interest. Furthermore, we report on the improvement in the aforementioned quantitative traits, through the use of (i) clustered regularly interspaced short-palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated gene-editing and (ii) positional cloning methods, and of genomic selection. Finally, we examine the utilization of genomics for the next-generation wheat breeding, providing a practical example of using in silico bioinformatics tools that are based on the wheat reference-genome sequence.
Collapse
Affiliation(s)
- Babar Hussain
- Department of Biological Sciences, Middle East Technical University, Ankara, Turkey
- Department of Biotechnology, Faculty of Life Sciences, University of Central Punjab, Lahore, Pakistan
| | | | - Michael Alaux
- Université Paris-Saclay, INRAE, URGI, Versailles, France
| | - Ahmed M. Algharib
- Department of Environment and Bio-Agriculture, Faculty of Agriculture, Al-Azhar University, Cairo, Egypt
| | - Deepmala Sehgal
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Zulfiqar Ali
- Institute of Plant Breeding and Biotechnology, MNS University of Agriculture, Multan, Pakistan
| | - Gudbjorg I. Aradottir
- Department of Pathology, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Jacqueline Batley
- School of Biological Sciences and Institute of Agriculture, University of Western Australia, Perth, WA, Australia
| | - Arnaud Bellec
- French Plant Genomic Resource Center, INRAE-CNRGV, Castanet Tolosan, France
| | - Alison R. Bentley
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Halise B. Cagirici
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | - Luigi Cattivelli
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Fred Choulet
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - James Cockram
- The John Bingham Laboratory, The National Institute of Agricultural Botany, Cambridge, United Kingdom
| | - Francesca Desiderio
- Council for Agricultural Research and Economics-Research Centre for Genomics and Bioinformatics, Fiorenzuola d’Arda, Italy
| | - Pierre Devaux
- Research & Innovation, Florimond Desprez Group, Cappelle-en-Pévèle, France
| | - Munevver Dogramaci
- USDA, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Fargo, ND, United States
| | - Gabriel Dorado
- Department of Bioquímica y Biología Molecular, Campus Rabanales C6-1-E17, Campus de Excelencia Internacional Agroalimentario (ceiA3), Universidad de Córdoba, Córdoba, Spain
| | | | - David Edwards
- University of Western Australia, Perth, WA, Australia
| | - Khaoula El-Hassouni
- State Plant Breeding Institute, The University of Hohenheim, Stuttgart, Germany
| | - Kellye Eversole
- International Wheat Genome Sequencing Consortium (IWGSC), Bethesda, MD, United States
| | - Tzion Fahima
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Melania Figueroa
- Commonwealth Scientific and Industrial Research Organization, Agriculture and Food, Canberra, ACT, Australia
| | - Sergio Gálvez
- Department of Languages and Computer Science, ETSI Informática, Campus de Teatinos, Universidad de Málaga, Andalucía Tech, Málaga, Spain
| | - Kulvinder S. Gill
- Department of Crop Science, Washington State University, Pullman, WA, United States
| | - Liubov Govta
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Alvina Gul
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Goetz Hensel
- Center of Plant Genome Engineering, Heinrich-Heine-Universität, Düsseldorf, Germany
- Division of Molecular Biology, Centre of Region Haná for Biotechnological and Agriculture Research, Czech Advanced Technology and Research Institute, Palacký University, Olomouc, Czechia
| | - Pilar Hernandez
- Institute for Sustainable Agriculture (IAS-CSIC), Consejo Superior de Investigaciones Científicas (CSIC), Córdoba, Spain
| | | | - Amir Ibrahim
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | | | | | - Tamar Krugman
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Yinghui Li
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Shuyu Liu
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Amer F. Mahmoud
- Department of Plant Pathology, Faculty of Agriculture, Assiut University, Assiut, Egypt
| | - Alexey Morgounov
- Food and Agriculture Organization of the United Nations, Riyadh, Saudi Arabia
| | - Tugdem Muslu
- Molecular Biology, Genetics and Bioengineering, Sabanci University, Istanbul, Turkey
| | - Faiza Naseer
- Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Frank Ordon
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Etienne Paux
- French National Research Institute for Agriculture, Food and the Environment, INRAE, GDEC, Clermont-Ferrand, France
| | - Dragan Perovic
- Institute for Resistance Research and Stress Tolerance, Julius Kühn Institute, Quedlinburg, Germany
| | - Gadi V. P. Reddy
- USDA-Agricultural Research Service, Southern Insect Management Research Unit, Stoneville, MS, United States
| | - Jochen Christoph Reif
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, Mexico
| | - Rajib Roychowdhury
- Institute of Evolution and Department of Environmental and Evolutionary Biology, University of Haifa, Haifa, Israel
| | - Jackie Rudd
- Crop and Soil Science, Texas A&M University, College Station, TX, United States
| | - Taner Z. Sen
- Crop Improvement and Genetics Research, USDA, Agricultural Research Service, Albany, CA, United States
| | | | | | | | - Naimat Ullah
- Institute of Biological Sciences (IBS), Gomal University, D. I. Khan, Pakistan
| | - Turgay Unver
- Ficus Biotechnology, Ostim Teknopark, Ankara, Turkey
| | - Selami Yazar
- General Directorate of Research, Ministry of Agriculture, Ankara, Turkey
| | | | - Hikmet Budak
- Montana BioAgriculture, Inc., Missoula, MT, United States
| |
Collapse
|
22
|
Xin W, Liu H, Yang L, Ma T, Wang J, Zheng H, Liu W, Zou D. BSA-Seq and Fine Linkage Mapping for the Identification of a Novel Locus (qPH9) for Mature Plant Height in Rice (Oryza sativa). RICE (NEW YORK, N.Y.) 2022; 15:26. [PMID: 35596038 PMCID: PMC9123124 DOI: 10.1186/s12284-022-00576-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 05/13/2022] [Indexed: 05/11/2023]
Abstract
BACKGROUND Plant height is a key factor in the determination of rice yield since excessive height can easily cause lodging and reduce yield. Therefore, the identification and analysis of plant height-related genes to elucidate their physiological, biochemical, and molecular mechanisms have significant implications for rice breeding and production. RESULTS High-throughput quantitative trait locus (QTL) sequencing analysis of a 638-individual F2:3 mapping population resulted in the identification of a novel height-related QTL (qPH9), which was mapped to a 2.02-Mb region of Chromosome 9. Local QTL mapping, which was conducted using 13 single nucleotide polymorphism (SNP)-based Kompetitive allele-specific PCR (KASP) markers for the qPH9 region, and traditional linkage analysis, facilitated the localization of qPH9 to a 126-kb region that contained 15 genes. Subsequent haplotype and sequence analyses indicated that OsPH9 was the most probable candidate gene for plant height at this locus, and functional analysis of osph9 CRISPR/Cas9-generated OsPH9 knockout mutants supported this conclusion. CONCLUSION OsPH9 was identified as a novel regulatory gene associated with plant height in rice, along with a height-reducing allele in 'Dongfu-114' rice, thereby representing an important molecular target for rice improvement. The findings of the present study are expected to spur the investigation of genetic mechanisms underlying rice plant height and further the improvement of rice plant height through marker-assisted selection.
Collapse
Affiliation(s)
- Wei Xin
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - HuaLong Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Luomiao Yang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Tianze Ma
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Jingguo Wang
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Hongliang Zheng
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Wenxing Liu
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China
| | - Detang Zou
- Key Laboratory of Germplasm Enhancement, Physiology and Ecology of Food Crops in Cold Region, Ministry of Education, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
23
|
Meng Q, Manghwar H, Hu W. Study on Supergenus Rubus L.: Edible, Medicinal, and Phylogenetic Characterization. PLANTS (BASEL, SWITZERLAND) 2022; 11:1211. [PMID: 35567211 PMCID: PMC9102695 DOI: 10.3390/plants11091211] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 06/15/2023]
Abstract
Rubus L. is one of the most diverse genera belonging to Rosaceae; it consists of more than 700 species with a worldwide distribution. It thus provides an ideal natural "supergenus" for studying the importance of its edible, medicinal, and phylogenetic characteristics for application in our daily lives and fundamental scientific studies. The Rubus genus includes many economically important species, such as blackberry (R. fruticosus L.), red raspberry (R. ideaus L.), black raspberry (R. occidentalis L.), and raspberry (R. chingii Hu), which are widely utilized in the fresh fruit market and the medicinal industry. Although Rubus species have existed in human civilization for hundreds of years, their utilization as fruit and in medicine is still largely inadequate, and many questions on their complex phylogenetic relationships need to be answered. In this review, we briefly summarize the history and progress of studies on Rubus, including its domestication as a source of fresh fruit, its medicinal uses in pharmacology, and its systematic position in the phylogenetic tree. Recent available evidence indicates that (1) thousands of Rubus cultivars were bred via time- and labor-consuming methods from only a few wild species, and new breeding strategies and germplasms were thus limited; (2) many kinds of species in Rubus have been used as medicinal herbs, though only a few species (R. ideaus L., R. chingii Hu, and R. occidentalis L.) have been well studied; (3) the phylogeny of Rubus is very complex, with the main reason for this possibly being the existence of multiple reproductive strategies (apomixis, hybridization, and polyploidization). Our review addresses the utilization of Rubus, summarizing major relevant achievements and proposing core prospects for future application, and thus could serve as a useful roadmap for future elite cultivar breeding and scientific studies.
Collapse
Affiliation(s)
- Qinglin Meng
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| | - Hakim Manghwar
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| | - Weiming Hu
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China; (Q.M.); (H.M.)
| |
Collapse
|
24
|
Saxesena RR, Mishra VK, Chand R, Kumar U, Chowdhury AK, Bhati J, Budhlakoti N, Joshi AK. SNP Discovery Using BSR-Seq Approach for Spot Blotch Resistance in Wheat ( Triticum aestivum L.), an Essential Crop for Food Security. Front Genet 2022; 13:859676. [PMID: 35450212 PMCID: PMC9016274 DOI: 10.3389/fgene.2022.859676] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 02/17/2022] [Indexed: 11/13/2022] Open
Abstract
The pathogenic fungus, Bipolaris sorokiniana, that causes spot blotch (SB) disease of wheat, is a major production constraint in the Eastern Gangetic Plains of South Asia and other warm, humid regions of the world. A recombinant inbred line population was developed and phenotyped at three SB-prone locations in India. The single nucleotide polymorphism (SNP) for SB resistance was identified using a bulked segregant RNA-Seq-based approach, referred to as “BSR-Seq.” Transcriptome sequencing of the resistant parent (YS#24), the susceptible parent (YS#58), and their resistant and susceptible bulks yielded a total of 429.67 million raw reads. The bulk frequency ratio (BFR) of SNPs between the resistant and susceptible bulks was estimated, and selection of SNPs linked to resistance was done using sixfold enrichments in the corresponding bulks (BFR >6). With additional filtering criteria, the number of transcripts was further reduced to 506 with 1055 putative polymorphic SNPs distributed on 21 chromosomes of wheat. Based on SNP enrichment on chromosomal loci, five transcripts were found to be associated with SB resistance. Among the five SB resistance-associated transcripts, four were distributed on the 5B chromosome with putative 52 SNPs, whereas one transcript with eight SNPs was present on chromosome 3B. The SNPs linked to the trait were exposed to a tetra-primer ARMS-PCR assay, and an SNP-based allele-specific marker was identified for SB resistance. The in silico study of these five transcripts showed homology with pathogenesis-related genes; the metabolic pathway also exhibits similar results, suggesting their role in the plant defense mechanism.
Collapse
Affiliation(s)
- Ravi Ranjan Saxesena
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Vinod Kumar Mishra
- Department of Genetics and Plant Breeding, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Ramesh Chand
- Department of Mycology and Plant Pathology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, India
| | - Uttam Kumar
- Borlaug Institute for South Asia (BISA), Ludhiana, India
| | | | - Jyotika Bhati
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Neeraj Budhlakoti
- ICAR-Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Arun Kumar Joshi
- Borlaug Institute for South Asia (BISA), Ludhiana, India.,International Maize and Wheat Improvement Center (CIMMYT) and Borlaug Institute for South Asia (BISA), DPS Marg, New Delhi, India
| |
Collapse
|
25
|
Li Y, Wang M, Teng K, Dong D, Liu Z, Zhang T, Han L. Transcriptome profiling revealed candidate genes, pathways and transcription factors related to nitrogen utilization and excessive nitrogen stress in perennial ryegrass. Sci Rep 2022; 12:3353. [PMID: 35233054 PMCID: PMC8888628 DOI: 10.1038/s41598-022-07329-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 02/10/2022] [Indexed: 11/09/2022] Open
Abstract
Ryegrass (Lolium perenne L.), a high-quality forage grass, is a good nutrient source for herbivorous livestock. However, improving nitrogen use efficiency and avoiding nitrate toxicity caused by excessive nitrogen are continual challenges in ryegrass production. The molecular mechanism underlying the response of ryegrass to nitrogen, especially excessive nitrogen, remains unclear. In this study, the transcriptomic changes under different nitrogen levels were investigated in perennial ryegrass by high-throughput next-generation RNA sequencing. Phenotypic characterization showed that treatment with half of the standard N concentration (N0.5) led to a better growth state than the other three treatments. The treatments with the standard N concentration (N1) and treatments with ten times higher than the standard N concentration (N10) contained excessive nitrogen, which placed stress on plant growth. Analysis of differentially expressed genes indicated that 345 and 104 genes are involved in the regulation of nitrogen utilization and excessive nitrogen stress, respectively. KEGG enrichment analysis suggested that "photosynthesis-antenna proteins" may respond positively to appropriate nitrogen conditions, whereas "steroid biosynthesis", "carotenoid biosynthesis" and "C5-branched dibasic acid metabolism" were identified as the top significantly enriched pathways in response to excessive nitrogen. Additionally, 21 transcription factors (TFs) related to nitrogen utilization were classified into 10 families, especially the AP2-EREBP and MYB TF families. Four TFs related to excessive nitrogen stress were identified, including LOBs, NACs, AP2-EREBPs and HBs. The expression patterns of these selected genes were also analyzed. These results provide new insight into the regulatory mechanism of ryegrass in response to nitrogen utilization and excessive nitrogen stress.
Collapse
Affiliation(s)
- Yinruizhi Li
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Mengdi Wang
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Ke Teng
- Beijing Research and Development Center for Grass and Environment, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Di Dong
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Zhuocheng Liu
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Tiejun Zhang
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China
| | - Liebao Han
- Turfgrass Research Institute, College of Grassland Science, Beijing Forestry University, Beijing, China.
| |
Collapse
|
26
|
Jin Y, Zhou T, Jiang W, Li N, Xu X, Tan S, Shi H, Yang Y, Yuan Z, Wang W, Qin G, Liu S, Gao D, Dunham R, Liu Z. Allelically and Differentially Expressed Genes After Infection of Edwardsiella ictaluri in Channel Catfish as Determined by Bulk Segregant RNA-Seq. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2022; 24:174-189. [PMID: 35166964 DOI: 10.1007/s10126-022-10094-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Identification of genetic markers associated with resistance against enteric septicemia of catfish (ESC) is of great interest for genetic enhancement programs of catfish. In the present study, bulk segregant RNA-Seq analysis was applied to determine differentially expressed genes and alleles after ESC infection. Here we report three genomic regions on LG1, LG12, and LG26, containing significant single-nucleotide polymorphisms (SNPs). These genomic regions aligned well with quantitative trait loci (QTL) previously identified. Within the QTL regions, eleven genes were found to be differentially regulated between phenotypic bulks. Importantly, the QTL on linkage group 1 (LG1) were found to be expressed in the liver, whereas the QTL on LG12 and LG26 were expressed in the intestine, suggesting multiple mechanisms of ESC resistance. It is apparent that apolipoproteins may be important for ESC resistance as the QTL on LG1 included the 14-kDa apolipoprotein genes that are both allelically expressed and differentially expressed between the resistant and susceptible bulks. Traf2 and NCK-interacting protein kinase (TNIK) were found in the QTL on LG12, and it was downregulated in resistant fish, suggesting the importance of NCK downregulation in ESC resistance, as previously reported. In addition, we observed divergent gene expression patterns between the liver and intestine after infection. Immune/inflammatory-related processes were overrepresented from liver DEGs, while those DEGs identified from intestine were enriched for proteolysis and wounding processes. Taken together, the BSR-Seq analysis presented here advanced the knowledge of ESC resistance, providing information of not only positions of QTL but also genes and their differential expression between resistant and susceptible fish, making it one step closer to the identification of the causal genes for ESC resistance.
Collapse
Affiliation(s)
- Yulin Jin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Tao Zhou
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Marine Biology & Biotechnology, College of Ocean and Earth Sciences, Xiamen University, Xiamen, China
| | - Wansheng Jiang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ning Li
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Xiaoyan Xu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Suxu Tan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Huitong Shi
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Yujia Yang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zihao Yuan
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Wenwen Wang
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Guyu Qin
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Shikai Liu
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dongya Gao
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, 13244, USA
| | - Rex Dunham
- The Fish Molecular Genetics and Biotechnology Laboratory, Aquatic Genomics Unit, School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Zhanjiang Liu
- Department of Biology, College of Arts and Sciences, Syracuse University, Syracuse, NY, 13244, USA.
| |
Collapse
|
27
|
Athiyannan N, Abrouk M, Boshoff WHP, Cauet S, Rodde N, Kudrna D, Mohammed N, Bettgenhaeuser J, Botha KS, Derman SS, Wing RA, Prins R, Krattinger SG. Long-read genome sequencing of bread wheat facilitates disease resistance gene cloning. Nat Genet 2022; 54:227-231. [PMID: 35288708 PMCID: PMC8920886 DOI: 10.1038/s41588-022-01022-1] [Citation(s) in RCA: 82] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 01/25/2022] [Indexed: 12/19/2022]
Abstract
The cloning of agronomically important genes from large, complex crop genomes remains challenging. Here we generate a 14.7 gigabase chromosome-scale assembly of the South African bread wheat (Triticum aestivum) cultivar Kariega by combining high-fidelity long reads, optical mapping and chromosome conformation capture. The resulting assembly is an order of magnitude more contiguous than previous wheat assemblies. Kariega shows durable resistance to the devastating fungal stripe rust disease1. We identified the race-specific disease resistance gene Yr27, which encodes an intracellular immune receptor, to be a major contributor to this resistance. Yr27 is allelic to the leaf rust resistance gene Lr13; the Yr27 and Lr13 proteins show 97% sequence identity2,3. Our results demonstrate the feasibility of generating chromosome-scale wheat assemblies to clone genes, and exemplify that highly similar alleles of a single-copy gene can confer resistance to different pathogens, which might provide a basis for engineering Yr27 alleles with multiple recognition specificities in the future.
Collapse
Affiliation(s)
- Naveenkumar Athiyannan
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Michael Abrouk
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Willem H P Boshoff
- Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa
| | - Stéphane Cauet
- INRAE-CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - Nathalie Rodde
- INRAE-CNRGV French Plant Genomic Resource Center, Castanet-Tolosan, France
| | - David Kudrna
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Nahed Mohammed
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Jan Bettgenhaeuser
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | | | | | - Rod A Wing
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
- Arizona Genomics Institute, School of Plant Sciences, University of Arizona, Tucson, AZ, USA
| | - Renée Prins
- CenGen (Pty) Ltd, Worcester, South Africa.
- Department of Genetics, Stellenbosch University, Stellenbosch, South Africa.
| | - Simon G Krattinger
- Center for Desert Agriculture, Biological and Environmental Science and Engineering Division (BESE), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia.
| |
Collapse
|
28
|
Cheng Z, Liu Z, Xu Y, Ma L, Chen J, Gou J, Su L, Wu W, Chen Y, Yu W, Wang P. Fine mapping and identification of the candidate gene BFS for fruit shape in wax gourd (Benincasa hispida). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:3983-3995. [PMID: 34480584 DOI: 10.1007/s00122-021-03942-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 08/18/2021] [Indexed: 05/18/2023]
Abstract
Non-synonymous mutations in the BFS gene, which encodes the IQD protein, are responsible for the shape of wax gourd fruits. Fruit shape is an important agronomic trait in wax gourds. Therefore, in this study, we employed bulked segregant analysis (BSA) to identify a candidate gene for fruit shape in wax gourds within F2 populations derived by crossing GX-71 (long cylindrical fruit, fruit shape index = 4.56) and MY-1 (round fruit, fruit shape index = 1.06) genotypes. According to BSA, the candidate gene is located in the 17.18 Mb region on chromosome 2. Meanwhile, kompetitive allele-specific PCR (KASP) markers were used to reduce it to a 19.6 Kb region. Only one gene was present within the corresponding region of the reference genome, namely Bch02G016830 (designated BFS). Subsequently, BFS was sequenced in six wax gourd varieties with different fruit shapes. Sequence analysis revealed two non-synonymous mutations in the round wax gourd and one non-synonymous mutation in the cylindrical wax gourd. Quantitative real‑time PCR (qRT-PCR) analysis further showed that the expression of BFS in round fruits was significantly higher than in long cylindrical fruits at the ovary formation stage. Therefore, BFS is a candidate gene for determination wax gourd shape. The predicted protein encoded by the BFS gene belongs to the IQ67-domain protein family, which have the structural characteristics of scaffold proteins and coordinate Ca2+ CaM signaling from the membrane to the nucleus. Ultimately, two derived cleaved amplified polymorphic sequence (dCAPS) markers were developed to facilitate marker-assisted selection for wax gourds breeding.
Collapse
Affiliation(s)
- Zhikui Cheng
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Zhengguo Liu
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Yuanchao Xu
- SinoDutch Joint Laboratory of Horticultural Genomics, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Lianlian Ma
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Jieying Chen
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Jiquan Gou
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Liwen Su
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Wenting Wu
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Yong Chen
- Institute for New Rural Development, Guangxi University, Guangxi, 530004, China
| | - Wenjin Yu
- College of Agriculture, Guangxi University, Guangxi, 530004, China
| | - Peng Wang
- College of Agriculture, Guangxi University, Guangxi, 530004, China.
- Institute of Vegetables, Guangxi Academy of Agricultural Sciences, Guangxi, 530004, China.
| |
Collapse
|
29
|
Zhou J, Singh RP, Ren Y, Bai B, Li Z, Yuan C, Li S, Huerta-Espino J, Liu D, Lan C. Identification of Two New Loci for Adult Plant Resistance to Leaf Rust and Stripe Rust in the Chinese Wheat Variety 'Neimai 836'. PLANT DISEASE 2021; 105:3705-3714. [PMID: 33779256 DOI: 10.1094/pdis-12-20-2654-re] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The characterization of leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) resistance genes is the basis for breeding resistant wheat varieties and managing epidemics of these diseases in wheat. A cross between the susceptible wheat variety 'Apav#1' and resistant variety 'Neimai 836' was used to develop a mapping population containing 148 F5 recombinant inbred lines (RILs). Leaf rust phenotyping was done in field trials at Ciudad Obregón, Mexico, in 2017 and 2018, and stripe rust data were generated at Toluca, Mexico, in 2017 and in Mianyang, Ezhou, and Gansu, China, in 2019. Inclusive complete interval mapping (ICIM) was used to create a genetic map and identify significant resistance quantitative trait loci (QTL) with 2,350 polymorphic markers from a 15K wheat single-nucleotide polymorphism (SNP) array and simple-sequence repeats (SSRs). The pleiotropic multipathogen resistance gene Lr46/Yr29 and four QTL were identified, including two new loci, QLr.hzau-3BL and QYr.hzau-5AL, which explained 3 to 16% of the phenotypic variation in resistance to leaf rust and 7 to 14% of that to stripe rust. The flanking SNP markers for the two loci were converted to Kompetitive Allele-Specific PCR (KASP) markers and used to genotype a collection of 153 wheat lines, indicating the Chinese origin of the loci. Our results suggest that Neimai 836, which has been used as a parent for many wheat varieties in China, could be a useful source of high-level resistance to both leaf rust and stripe rust.
Collapse
Affiliation(s)
- Jingwei Zhou
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT), 06600 Mexico D.F., Mexico
| | - Yong Ren
- Mianyang Academy of Agricultural Science/Mianyang Branch of National Wheat Improvement Center, Mianyang 621023, Sichuan, P.R. China
| | - Bin Bai
- Wheat Research Institute, Gansu Academy of Agricultural Sciences, No. 1 Nongkeyuanxincun, Lanzhou 730070, Gansu Province, P.R. China
| | - Zhikang Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Chan Yuan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Shunda Li
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| | - Julio Huerta-Espino
- Campo Experimental Valle de Mexico Instituto Nacional de Investigaciones Forestales Agricolas y Pecuarias (INIFAP), 56230 Chapingo, Edo. de Mexico, Mexico
| | - Demei Liu
- Northwest Institute of Plateau Biology, Chinese Academy of Sciences and Qinghai Provincial Key Laboratory of Crop Molecular Breeding and China and Qinghai Provincial Key Laboratory of Crop Molecular Breeding Northwest Institute of Plateau Biology, Innovation Academy for Seed Design, Xining 810008, P.R. China
| | - Caixia Lan
- Huazhong Agricultural University, College of Plant Science & Technology, No. 1, Hongshan District, Wuhan 430070, Hubei Province, P.R. China
| |
Collapse
|
30
|
Zhan H, Wang Y, Zhang D, Du C, Zhang X, Liu X, Wang G, Zhang S. RNA-seq bulked segregant analysis combined with KASP genotyping rapidly identified PmCH7087 as responsible for powdery mildew resistance in wheat. THE PLANT GENOME 2021; 14:e20120. [PMID: 34309200 DOI: 10.1002/tpg2.20120] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/18/2021] [Indexed: 06/13/2023]
Abstract
Powdery mildew causes considerable yield losses in common wheat (Triticum aestivum L.) production. Mapping and cloning powdery mildew-resistant quantitative trait loci can benefit stable yield production by facilitating the breeding of resistant varieties. In this study, we used the powdery mildew resistance introgression line 'CH7087' (harboring the resistance gene PmCH7087) and developed a large F2 population and a corresponding F2:3 segregation population containing 2,000 family lines for molecular mapping of PmCH7087. Genetic analysis demonstrated that the resistance phenotype was controlled by a single dominant gene. According to the performance exhibited by the F2:3 lines, 50 resistant lines and 50 susceptible lines without phenotype segregation were chosen for pooling and bulked segregant RNA sequencing (BSR-Seq) analysis. A region spanning 42.77 Mb was identified, and genotyping of an additional 183 F2:3 lines with extreme phenotypes using 20 kompetitive allele-specific polymerase chain reaction (KASP) markers in the BSR-Seq mapping regions confirmed this region and narrowed it to 9.68 Mb, in which 45 genes were identified and annotated. Five of these transcripts harbored nonsynonymous single nucleotide polymorphisms between the two parents, with the transcripts of TraesCS2B01G302800 being involved in signal transduction. Furthermore, TraesCS2B01G302800.2 was annotated as the closest homologue of serine/threonine-protein kinase PBS1, a typical participant in the plant disease immune response, indicating that TraesCS2B01G302800 was the candidate gene of PmCH7087. Our results may facilitate future research attempting to improve powdery mildew resistance in wheat and to identify candidate genes for further verification and gene cloning.
Collapse
Affiliation(s)
- Haixian Zhan
- Institute of Pharmaceutical & Food Engineering, Shanxi Univ. of Chinese Medicine, Jingzhong, 030619, China
| | - Yingli Wang
- Institute of Pharmaceutical & Food Engineering, Shanxi Univ. of Chinese Medicine, Jingzhong, 030619, China
| | - Dan Zhang
- Institute of Pharmaceutical & Food Engineering, Shanxi Univ. of Chinese Medicine, Jingzhong, 030619, China
| | - Chenhui Du
- Institute of Pharmaceutical & Food Engineering, Shanxi Univ. of Chinese Medicine, Jingzhong, 030619, China
| | - Xiaojun Zhang
- College of Agriculture, Shanxi Agricultural Univ., Taiyuan, 030032, China
| | - Xiaoli Liu
- Institute of Pharmaceutical & Food Engineering, Shanxi Univ. of Chinese Medicine, Jingzhong, 030619, China
| | - Guangyuan Wang
- College of Agriculture, Shanxi Agricultural Univ., Taiyuan, 030032, China
| | - Shuosheng Zhang
- Institute of Pharmaceutical & Food Engineering, Shanxi Univ. of Chinese Medicine, Jingzhong, 030619, China
| |
Collapse
|
31
|
Ji G, Xu Z, Fan X, Zhou Q, Yu Q, Liu X, Liao S, Feng B, Wang T. Identification of a major and stable QTL on chromosome 5A confers spike length in wheat ( Triticum aestivum L.). MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2021; 41:56. [PMID: 37309397 PMCID: PMC10236030 DOI: 10.1007/s11032-021-01249-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 08/29/2021] [Indexed: 06/14/2023]
Abstract
Spike length (SL) is the key determinant of plant architecture and yield potential. In this study, 193 recombinant inbred lines (RILs) derived from a cross between 13F10 and Chuanmai 42 (CM42) were evaluated for spike length in six environments. Sixty RILs consisting of 30 high and 30 low SLs were genotyped using the bulked segregant analysis exome sequencing (BSE-Seq) analysis for preliminary quantitative trait locus (QTL) mapping. A 6.69 Mb (518.43-525.12 Mb) region on chromosome 5AL was found to have a significant effect on the SL trait. Fifteen competitive allele-specific PCR (KASP) markers were successfully converted from the single nucleotide polymorphisms (SNPs) in the SL target region. Combined with four novel simple sequence repeat (SSR) markers, a genetic linkage map spanning 21.159 cM was constructed. The mapping result confirmed the identity of a major and stable QTL named QSl.cib-5A in the targeted region that explained 7.88-26.60% of the phenotypic variation in SL. QSl.cib-5A was narrowed to a region of 4.84 cM interval corresponding to a 4.67 Mb (516.60-521.27 Mb) physical region in the Chinese Spring RefSeq v2.0 containing 17 high-confidence genes with 25 transcripts. In addition, this QTL exhibited pleiotropic effects on spikelet density (SD), with the phenotypic variances proportion ranging from 11.34 to 19.92%. This study provides a foundational step for cloning the QSl.cib-5A, which is involved in the regulation of spike morphology in common wheat. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-021-01249-6.
Collapse
Affiliation(s)
- Guangsi Ji
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhibin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Xiaoli Fan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Qiang Zhou
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Qin Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Xiaofeng Liu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Simin Liao
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Bo Feng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
| | - Tao Wang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, 610041 China
- The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101 China
| |
Collapse
|
32
|
RNA-Seq-based DNA marker analysis of the genetics and molecular evolution of Triticeae species. Funct Integr Genomics 2021; 21:535-542. [PMID: 34405283 DOI: 10.1007/s10142-021-00799-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 01/08/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
The release of high-quality chromosome-level genome sequences of members of the Triticeae tribe has greatly facilitated genetic and genomic analyses of important crops such as wheat (Triticum aestivum) and barley (Hordeum vulgare). Due to the large diploid genome size of Triticeae plants (ca. 5 Gbp), transcript analysis is an important method for identifying genetic and genomic differences among Triticeae species. In this review, we summarize our results of RNA-Seq analyses of diploid wheat accessions belonging to the genera Aegilops and Triticum. We also describe studies of the molecular relationships among these accessions and provide insight into the evolution of common hexaploid wheat. DNA markers based on polymorphisms within species can be used to map loci of interest. Even though the genome sequence of diploid Aegilops tauschii, the D-genome donor of common wheat, has been released, the diploid barley genome continues to provide key information about the physical structures of diploid wheat genomes. We describe how a series of RNA-Seq analyses of wheat relatives has helped uncover the structural and evolutionary features of genomic and genetic systems in wild and cultivated Triticeae species.
Collapse
|
33
|
Corredor-Moreno P, Minter F, Davey PE, Wegel E, Kular B, Brett P, Lewis CM, Morgan YML, Macías Pérez LA, Korolev AV, Hill L, Saunders DGO. The branched-chain amino acid aminotransferase TaBCAT1 modulates amino acid metabolism and positively regulates wheat rust susceptibility. THE PLANT CELL 2021; 33:1728-1747. [PMID: 33565586 PMCID: PMC8254495 DOI: 10.1093/plcell/koab049] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/02/2021] [Indexed: 05/21/2023]
Abstract
Plant pathogens suppress defense responses to evade recognition and promote successful colonization. Although identifying the genes essential for pathogen ingress has traditionally relied on screening mutant populations, the post-genomic era provides an opportunity to develop novel approaches that accelerate identification. Here, RNA-seq analysis of 68 pathogen-infected bread wheat (Triticum aestivum) varieties, including three (Oakley, Solstice and Santiago) with variable levels of susceptibility, uncovered a branched-chain amino acid aminotransferase (termed TaBCAT1) as a positive regulator of wheat rust susceptibility. We show that TaBCAT1 is required for yellow and stem rust infection and likely functions in branched-chain amino acid (BCAA) metabolism, as TaBCAT1 disruption mutants had elevated BCAA levels. TaBCAT1 mutants also exhibited increased levels of salicylic acid (SA) and enhanced expression of associated defense genes, indicating that BCAA regulation, via TaBCAT1, has a key role in SA-dependent defense activation. We also identified an association between the levels of BCAAs and resistance to yellow rust infection in wheat. These findings provide insight into SA-mediated defense responses in wheat and highlight the role of BCAA metabolism in the defense response. Furthermore, TaBCAT1 could be manipulated to potentially provide resistance to two of the most economically damaging diseases of wheat worldwide.
Collapse
Affiliation(s)
| | | | | | - Eva Wegel
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Baldeep Kular
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Paul Brett
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Clare M Lewis
- John Innes Centre, Norwich Research Park, Norwich, UK
| | | | - Luis A Macías Pérez
- John Innes Centre, Norwich Research Park, Norwich, UK
- Aix Marseille Université, CNRS, IRD, College de France, CEREGE, Aix-en-Provence, France
| | | | - Lionel Hill
- John Innes Centre, Norwich Research Park, Norwich, UK
| | - Diane G O Saunders
- John Innes Centre, Norwich Research Park, Norwich, UK
- Author for correspondence: (D.G.O.S.)
| |
Collapse
|
34
|
Mores A, Borrelli GM, Laidò G, Petruzzino G, Pecchioni N, Amoroso LGM, Desiderio F, Mazzucotelli E, Mastrangelo AM, Marone D. Genomic Approaches to Identify Molecular Bases of Crop Resistance to Diseases and to Develop Future Breeding Strategies. Int J Mol Sci 2021; 22:5423. [PMID: 34063853 PMCID: PMC8196592 DOI: 10.3390/ijms22115423] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/30/2021] [Accepted: 05/15/2021] [Indexed: 12/16/2022] Open
Abstract
Plant diseases are responsible for substantial crop losses each year and affect food security and agricultural sustainability. The improvement of crop resistance to pathogens through breeding represents an environmentally sound method for managing disease and minimizing these losses. The challenge is to breed varieties with a stable and broad-spectrum resistance. Different approaches, from markers to recent genomic and 'post-genomic era' technologies, will be reviewed in order to contribute to a better understanding of the complexity of host-pathogen interactions and genes, including those with small phenotypic effects and mechanisms that underlie resistance. An efficient combination of these approaches is herein proposed as the basis to develop a successful breeding strategy to obtain resistant crop varieties that yield higher in increasing disease scenarios.
Collapse
Affiliation(s)
- Antonia Mores
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Grazia Maria Borrelli
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giovanni Laidò
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Giuseppe Petruzzino
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Nicola Pecchioni
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | | | - Francesca Desiderio
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Elisabetta Mazzucotelli
- Council for Agricultural Research and Economics, Genomics and Bioinformatics Research Center, Via San Protaso 302, 29017 Fiorenzuola d’Arda, Italy; (F.D.); (E.M.)
| | - Anna Maria Mastrangelo
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| | - Daniela Marone
- Council for Agricultural Research and Economics, Research Centre for Cereal and Industrial Crops, S.S. 673, Km 25,200, 71122 Foggia, Italy; (A.M.); (G.M.B.); (G.L.); (G.P.); (N.P.); (A.M.M.)
| |
Collapse
|
35
|
Liu JJ, Sniezko RA, Zamany A, Williams H, Omendja K, Kegley A, Savin DP. Comparative Transcriptomics and RNA-Seq-Based Bulked Segregant Analysis Reveals Genomic Basis Underlying Cronartium ribicola vcr2 Virulence. Front Microbiol 2021; 12:602812. [PMID: 33776951 PMCID: PMC7990074 DOI: 10.3389/fmicb.2021.602812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/01/2021] [Indexed: 12/25/2022] Open
Abstract
Breeding programs of five-needle pines have documented both major gene resistance (MGR) and quantitative disease resistance (QDR) to Cronartium ribicola (Cri), a non-native, invasive fungal pathogen causing white pine blister rust (WPBR). WPBR is one of the most deadly forest diseases in North America. However, Cri virulent pathotypes have evolved and can successfully infect and kill trees carrying resistance (R) genes, including vcr2 that overcomes MGR conferred by the western white pine (WWP, Pinus monticola) R gene (Cr2). In the absence of a reference genome, the present study generated a vcr2 reference transcriptome, consisting of about 20,000 transcripts with 1,014 being predicted to encode secreted proteins (SPs). Comparative profiling of transcriptomes and secretomes revealed vcr2 was significantly enriched for several gene ontology (GO) terms relating to oxidation-reduction processes and detoxification, suggesting that multiple molecular mechanisms contribute to pathogenicity of the vcr2 pathotype for its overcoming Cr2. RNA-seq-based bulked segregant analysis (BSR-Seq) revealed genome-wide DNA variations, including about 65,617 single nucleotide polymorphism (SNP) loci in 7,749 polymorphic genes shared by vcr2 and avirulent (Avcr2) pathotypes. An examination of the distribution of minor allele frequency (MAF) uncovered a high level of genomic divergence between vcr2 and Avcr2 pathotypes. By integration of extreme-phenotypic genome-wide association (XP-GWAS) analysis and allele frequency directional difference (AFDD) mapping, we identified a set of vcr2-associated SNPs within functional genes, involved in fungal virulence and other molecular functions. These included six SPs that were top candidate effectors with putative activities of reticuline oxidase, proteins with common in several fungal extracellular membrane (CFEM) domain or ferritin-like domain, polysaccharide lyase, rds1p-like stress responsive protein, and two Cri-specific proteins without annotation. Candidate effectors and vcr2-associated genes provide valuable resources for further deciphering molecular mechanisms of virulence and pathogenicity by functional analysis and the subsequent development of diagnostic tools for monitoring the virulence landscape in the WPBR pathosystems.
Collapse
Affiliation(s)
- Jun-Jun Liu
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Richard A Sniezko
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Arezoo Zamany
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Holly Williams
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Kangakola Omendja
- Canadian Forest Service, Natural Resources Canada, Victoria, BC, Canada
| | - Angelia Kegley
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| | - Douglas P Savin
- USDA Forest Service, Dorena Genetic Resource Center, Cottage Grove, OR, United States
| |
Collapse
|
36
|
Colasuonno P, Marcotuli I, Gadaleta A, Soriano JM. From Genetic Maps to QTL Cloning: An Overview for Durum Wheat. PLANTS (BASEL, SWITZERLAND) 2021; 10:315. [PMID: 33562160 PMCID: PMC7914919 DOI: 10.3390/plants10020315] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 01/26/2021] [Accepted: 02/02/2021] [Indexed: 12/17/2022]
Abstract
Durum wheat is one of the most important cultivated cereal crops, providing nutrients to humans and domestic animals. Durum breeding programs prioritize the improvement of its main agronomic traits; however, the majority of these traits involve complex characteristics with a quantitative inheritance (quantitative trait loci, QTL). This can be solved with the use of genetic maps, new molecular markers, phenotyping data of segregating populations, and increased accessibility to sequences from next-generation sequencing (NGS) technologies. This allows for high-density genetic maps to be developed for localizing candidate loci within a few Kb in a complex genome, such as durum wheat. Here, we review the identified QTL, fine mapping, and cloning of QTL or candidate genes involved in the main traits regarding the quality and biotic and abiotic stresses of durum wheat. The current knowledge on the used molecular markers, sequence data, and how they changed the development of genetic maps and the characterization of QTL is summarized. A deeper understanding of the trait architecture useful in accelerating durum wheat breeding programs is envisioned.
Collapse
Affiliation(s)
- Pasqualina Colasuonno
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Ilaria Marcotuli
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Agata Gadaleta
- Department of Agricultural and Environmental Science, University of Bari ‘Aldo Moro’, Via G. Amendola 165/A, 70126 Bari, Italy; (P.C.); (I.M.)
| | - Jose Miguel Soriano
- Sustainable Field Crops Programme, IRTA (Institute for Food and Agricultural Research and Technology), 25198 Lleida, Spain
| |
Collapse
|
37
|
Modern Approaches for Transcriptome Analyses in Plants. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1346:11-50. [DOI: 10.1007/978-3-030-80352-0_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
38
|
Torres Ascurra Y, Lin X, Wolters PJ, Vleeshouwers VGAA. Identification of Solanum Immune Receptors by Bulked Segregant RNA-Seq and High-Throughput Recombinant Screening. Methods Mol Biol 2021; 2354:315-330. [PMID: 34448167 DOI: 10.1007/978-1-0716-1609-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The identification, understanding, and deployment of immune receptors are crucial to achieve high-level and durable resistance for crops against pathogens. In potato, many R genes have been identified using map-based cloning strategies. However, this is a challenging and laborious task that involves the development of a high number of molecular markers for the initial mapping, and the screening of thousands of plants for fine mapping. Bulked segregant RNA-Seq (BSR-Seq) has proven to be an efficient technique for the mapping of resistance genes. The RNA from two bulks of plants with contrasting phenotypes is sequenced and analyzed to identify single-nucleotide polymorphism (SNPs) markers linked to the target gene. Subsequently, the SNP markers that are identified can be used to delimit the mapping interval. Additionally, we designed an in vitro recombinant screening strategy that is advantageous for analyzing a large number of plants, in terms of time, space, and cost. Tips and detailed protocols, including BSR-Seq, bioinformatic analysis, and recombinant screening, are provided in this chapter.
Collapse
Affiliation(s)
- Yerisf Torres Ascurra
- Wageningen UR Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Xiao Lin
- Wageningen UR Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | - Pieter J Wolters
- Wageningen UR Plant Breeding, Wageningen University and Research, Wageningen, The Netherlands
| | | |
Collapse
|
39
|
Ma P, Wu L, Xu Y, Xu H, Zhang X, Wang W, Liu C, Wang B. Bulked Segregant RNA-Seq Provides Distinctive Expression Profile Against Powdery Mildew in the Wheat Genotype YD588. FRONTIERS IN PLANT SCIENCE 2021; 12:764978. [PMID: 34925412 PMCID: PMC8677838 DOI: 10.3389/fpls.2021.764978] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Accepted: 11/03/2021] [Indexed: 05/07/2023]
Abstract
Wheat powdery mildew, caused by the fungal pathogen Blumeria graminis f. sp. tritici (Bgt), is a destructive disease leading to huge yield losses in production. Host resistance can greatly contribute to the control of the disease. To explore potential genes related to the powdery mildew (Pm) resistance, in this study, we used a resistant genotype YD588 to investigate the potential resistance components and profiled its expression in response to powdery mildew infection. Genetic analysis showed that a single dominant gene, tentatively designated PmYD588, conferred resistance to powdery mildew in YD588. Using bulked segregant RNA-Seq (BSR-Seq) and single nucleotide polymorphism (SNP) association analysis, two high-confidence candidate regions were detected in the chromosome arm 2B, spanning 453,752,054-506,356,791 and 584,117,809-664,221,850 bp, respectively. To confirm the candidate region, molecular markers were developed using the BSR-Seq data and mapped PmYD588 to an interval of 4.2 cM by using the markers YTU588-004 and YTU588-008. The physical position was subsequently locked into the interval of 647.1-656.0 Mb, which was different from those of Pm6, Pm33, Pm51, Pm52, Pm63, Pm64, PmQ, PmKN0816, MlZec1, and MlAB10 on the same chromosome arm in its position, suggesting that it is most likely a new Pm gene. To explore the potential regulatory genes of the R gene, 2,973 differentially expressed genes (DEGs) between the parents and bulks were analyzed using gene ontology (GO), clusters of orthologous group (COG), and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis. Based on the data, we selected 23 potential regulated genes in the enriched pathway of plant-pathogen interaction and detected their temporal expression patterns using an additional set of wheat samples and time-course analysis postinoculation with Bgt. As a result, six disease-related genes showed distinctive expression profiles after Bgt invasion and can serve as key candidates for the dissection of resistance mechanisms and improvement of durable resistance to wheat powdery mildew.
Collapse
Affiliation(s)
- Pengtao Ma
- School of Life Sciences, Yantai University, Yantai, China
- *Correspondence: Pengtao Ma,
| | - Liru Wu
- School of Life Sciences, Yantai University, Yantai, China
| | - Yufei Xu
- School of Life Sciences, Yantai University, Yantai, China
| | - Hongxing Xu
- School of Life Sciences, Henan University, Kaifeng, China
| | - Xu Zhang
- School of Life Sciences, Yantai University, Yantai, China
- School of Life Sciences, Henan University, Kaifeng, China
| | - Wenrui Wang
- School of Life Sciences, Yantai University, Yantai, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
- Cheng Liu,
| | - Bo Wang
- School of Life Sciences, Yantai University, Yantai, China
- Bo Wang,
| |
Collapse
|
40
|
A haplotype-led approach to increase the precision of wheat breeding. Commun Biol 2020; 3:712. [PMID: 33239669 PMCID: PMC7689427 DOI: 10.1038/s42003-020-01413-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Crop productivity must increase at unprecedented rates to meet the needs of the growing worldwide population. Exploiting natural variation for the genetic improvement of crops plays a central role in increasing productivity. Although current genomic technologies can be used for high-throughput identification of genetic variation, methods for efficiently exploiting this genetic potential in a targeted, systematic manner are lacking. Here, we developed a haplotype-based approach to identify genetic diversity for crop improvement using genome assemblies from 15 bread wheat (Triticum aestivum) cultivars. We used stringent criteria to identify identical-by-state haplotypes and distinguish these from near-identical sequences (~99.95% identity). We showed that each cultivar shares ~59 % of its genome with other sequenced cultivars and we detected the presence of extended haplotype blocks containing hundreds to thousands of genes across all wheat chromosomes. We found that genic sequence alone was insufficient to fully differentiate between haplotypes, as were commonly used array-based genotyping chips due to their gene centric design. We successfully used this approach for focused discovery of novel haplotypes from a landrace collection and documented their potential for trait improvement in modern bread wheat. This study provides a framework for defining and exploiting haplotypes to increase the efficiency and precision of wheat breeding towards optimising the agronomic performance of this crucial crop. Brinton, Uauy and colleagues utilize genomic data from the 10+ Wheat Genome Project to develop a useful tool for studying and generating new wheat cultivars. This framework uses advanced exploitation of wheat haplotypes to bring newfound precision and efficiency to wheat breeding.
Collapse
|
41
|
Evidence for the Accumulation of Nonsynonymous Mutations and Favorable Pleiotropic Alleles During Wheat Breeding. G3-GENES GENOMES GENETICS 2020; 10:4001-4011. [PMID: 32900902 PMCID: PMC7642940 DOI: 10.1534/g3.120.401269] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Plant breeding leads to the genetic improvement of target traits by selecting a small number of genotypes from among typically large numbers of candidate genotypes after careful evaluation. In this study, we first investigated how mutations at conserved nucleotide sites normally viewed as deleterious, such as nonsynonymous sites, accumulated in a wheat, Triticum aestivum, breeding lineage. By comparing a 150 year old ancestral and modern cultivar, we found recent nucleotide polymorphisms altered amino acids and occurred within conserved genes at frequencies expected in the absence of purifying selection. Mutations that are deleterious in other contexts likely had very small or no effects on target traits within the breeding lineage. Second, we investigated if breeders selected alleles with favorable effects on some traits and unfavorable effects on others and used different alleles to compensate for the latter. An analysis of a segregating population derived from the ancestral and modern parents provided one example of this phenomenon. The recent cultivar contains the Rht-B1b green revolution semi-dwarfing allele and compensatory alleles that reduce its negative effects. However, improvements in traits other than plant height were due to pleiotropic loci with favorable effects on traits and to favorable loci with no detectable pleiotropic effects. Wheat breeding appears to tolerate mutations at conserved nucleotide sites and to only select for alleles with both favorable and unfavorable effects on traits in exceptional situations.
Collapse
|
42
|
Zhao D, Yang L, Xu K, Cao S, Tian Y, Yan J, He Z, Xia X, Song X, Zhang Y. Identification and validation of genetic loci for tiller angle in bread wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2020; 133:3037-3047. [PMID: 32685984 DOI: 10.1007/s00122-020-03653-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 07/08/2020] [Indexed: 05/26/2023]
Abstract
KEY MESSAGE Two major QTL for tiller angle were identified on chromosomes 1AL and 5DL, and TaTAC-D1 might be the candidate gene for QTA.caas-5DL. An ideal plant architecture is important for achieving high grain yield in crops. Tiller angle (TA) is an important factor influencing yield. In the present study, 266 recombinant inbred lines (RILs) derived from a cross between Zhongmai 871 (ZM871) and its sister line Zhongmai 895 (ZM895) was used to map TA by extreme pool-genotyping and inclusive composite interval mapping (ICIM). Two quantitative trait loci (QTL) on chromosomes 1AL and 5DL were identified with reduced tiller angle alleles contributed by ZM895. QTA.caas-1AL was detected in six environments, explaining 5.4-11.2% of the phenotypic variances. The major stable QTL, QTA.caas-5DL, was identified in all eight environments, accounting for 13.8-24.8% of the phenotypic variances. The two QTL were further validated using BC1F4 populations derived from backcrosses ZM871/ZM895//ZM871 (121 lines) and ZM871/ZM895//ZM895 (175 lines). Gene TraesCS5D02G322600, located in the 5DL QTL and designated TaTAC-D1, had a SNP in the third exon with 'A' and 'G' in ZM871 and ZM895, respectively, resulting in a Thr169Ala amino acid change. A KASP marker based on this SNP was validated in two sets of germplasm, providing further evidence for the significant effects of TaTAC-D1 on TA. Thus extreme pool-genotyping can be employed to detect QTL for plant architecture traits and KASP markers tightly linked with the QTL can be used in wheat breeding programs targeting improved plant architecture.
Collapse
Affiliation(s)
- Dehui Zhao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi province, China
| | - Li Yang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Kaijie Xu
- Institute of Cotton Research, CAAS, 38 Huanghe Dadao, Anyang, 455000, Henan province, China
| | - Shuanghe Cao
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Yubing Tian
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Jun Yan
- Institute of Cotton Research, CAAS, 38 Huanghe Dadao, Anyang, 455000, Henan province, China
| | - Zhonghu He
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
- CIMMYT-China Office, c/o CAAS, 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xianchun Xia
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China
| | - Xiyue Song
- College of Agronomy, Northwest A&F University, Yangling, 712100, Shaanxi province, China.
| | - Yong Zhang
- Institute of Crop Sciences, National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), 12 Zhongguancun South Street, Beijing, 100081, China.
| |
Collapse
|
43
|
Yang Q, Wan X, Wang J, Zhang Y, Zhang J, Wang T, Yang C, Ye Z. The loss of function of HEL, which encodes a cellulose synthase interactive protein, causes helical and vine-like growth of tomato. HORTICULTURE RESEARCH 2020; 7:180. [PMID: 33328443 PMCID: PMC7603515 DOI: 10.1038/s41438-020-00402-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 05/08/2023]
Abstract
Helical growth is an economical way for plant to obtain resources. The classic microtubule-microfibril alignment model of Arabidopsis helical growth involves restriction of the appropriate orientation of cellulose microfibrils appropriately in the cell walls. However, the molecular mechanism underlying tomato helical growth remains unknown. Here, we identified a spontaneous tomato helical (hel) mutant with right-handed helical cotyledons and petals but left-handed helical stems and true leaves. Genetic analysis revealed that the hel phenotype was controlled by a single recessive gene. Using map-based cloning, we cloned the HEL gene, which encodes a cellulose interacting protein homologous to CSI1 of Arabidopsis. We identified a 27 bp fragment replacement that generated a premature stop codon. Transgenic experiments showed that the helical growth phenotype could be restored by the allele of this gene from wild-type Pyriforme. In contrast, the knockout mutation of HEL in Pyriforme via CRISPR/Cas9 resulted in helical growth. These findings shed light on the molecular control of the helical growth of tomato.
Collapse
Affiliation(s)
- Qihong Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaoshuai Wan
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiaying Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yuyang Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Junhong Zhang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Taotao Wang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Changxian Yang
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Zhibiao Ye
- Key Laboratory of Horticultural Plant Biology, Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
44
|
Xie J, Guo G, Wang Y, Hu T, Wang L, Li J, Qiu D, Li Y, Wu Q, Lu P, Chen Y, Dong L, Li M, Zhang H, Zhang P, Zhu K, Li B, Deal KR, Huo N, Zhang Y, Luo MC, Liu S, Gu YQ, Li H, Liu Z. A rare single nucleotide variant in Pm5e confers powdery mildew resistance in common wheat. THE NEW PHYTOLOGIST 2020; 228:1011-1026. [PMID: 32569398 DOI: 10.1111/nph.16762] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 06/02/2020] [Indexed: 05/18/2023]
Abstract
Powdery mildew poses severe threats to wheat production. The most sustainable way to control this disease is through planting resistant cultivars. We report the map-based cloning of the powdery mildew resistance allele Pm5e from a Chinese wheat landrace. We applied a two-step bulked segregant RNA sequencing (BSR-Seq) approach in developing tightly linked or co-segregating markers to Pm5e. The first BSR-Seq used phenotypically contrasting bulks of recombinant inbred lines (RILs) to identify Pm5e-linked markers. The second BSR-Seq utilized bulks of genetic recombinants screened from a fine-mapping population to precisely quantify the associated genomic variation in the mapping interval, and identified the Pm5e candidate genes. The function of Pm5e was validated by transgenic assay, loss-of-function mutants and haplotype association analysis. Pm5e encodes a nucleotide-binding domain leucine-rich-repeat-containing (NLR) protein. A rare nonsynonymous single nucleotide variant (SNV) within the C-terminal leucine rich repeat (LRR) domain is responsible for the gain of powdery mildew resistance function of Pm5e, an allele endemic to wheat landraces of Shaanxi province of China. Results from this study demonstrate the value of landraces in discovering useful genes for modern wheat breeding. The key SNV associated with powdery mildew resistance will be useful for marker-assisted selection of Pm5e in wheat breeding programs.
Collapse
Affiliation(s)
- Jingzhong Xie
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Guanghao Guo
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yong Wang
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Tiezhu Hu
- College of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, Henan, 4530003, China
| | - Lili Wang
- China Agricultural University, Beijing, 100193, China
| | - Jingting Li
- College of Chemistry and Environment Engineering, Pingdingshan University, Pingdingshan, 467000, China
| | - Dan Qiu
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yahui Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Qiuhong Wu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Ping Lu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yongxing Chen
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lingli Dong
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Miaomiao Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
| | - Huaizhi Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Panpan Zhang
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Keyu Zhu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Beibei Li
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Karin R Deal
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Naxin Huo
- USDA-ARS West Regional Research Center, Albany, CA, 94710, USA
| | - Yan Zhang
- China Agricultural University, Beijing, 100193, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, CA, 95616, USA
| | - Sanzhen Liu
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA
| | - Yong Qiang Gu
- USDA-ARS West Regional Research Center, Albany, CA, 94710, USA
| | - Hongjie Li
- The National Engineering Laboratory of Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
45
|
Mao T, Zhu H, Liu Y, Bao M, Zhang J, Fu Q, Xiong C, Zhang J. Weeping candidate genes screened using comparative transcriptomic analysis of weeping and upright progeny in an F1 population of Prunus mume. PHYSIOLOGIA PLANTARUM 2020; 170:318-334. [PMID: 32754906 PMCID: PMC7693177 DOI: 10.1111/ppl.13179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 07/07/2020] [Accepted: 08/02/2020] [Indexed: 05/15/2023]
Abstract
Weeping is a specific plant architecture with high ornamental value. Despite the considerable importance of the weeping habit to landscaping applications and knowledge of plant architecture biology, little is known regarding the underlying molecular mechanisms. In this study, growth and phytohormone content were analyzed among the progeny of different branch types in an F1 mapping population of Prunus mume with varying plant architecture. Bulked segregant RNA sequencing was conducted to compare differences among progeny at a transcriptional level. The weeping habit appears to be a complex process regulated by a series of metabolic pathways, with photosynthesis and flavonoid biosynthesis highly enriched in differentially expressed genes between weeping and upright progeny. Based on functional annotation and homologous analyses, we identified 30 candidate genes related to weeping that merit further analysis, including 10 genes related to IAA and GA3 biosynthesis, together with 6 genes related to secondary branch growth. The results of this study will facilitate further studies of the molecular mechanisms underlying the weeping habit in P. mume.
Collapse
Affiliation(s)
- Tian‐Yu Mao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Huan‐Huan Zhu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Yao‐Yao Liu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Man‐Zhu Bao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Jun‐Wei Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Qiang Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| | - Cai‐Feng Xiong
- Moshan Administrative OfficeWuhan East Lake Eco‐tourism Scenic SpotWuhanChina
| | - Jie Zhang
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), College of Horticulture and Forestry ScienceHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
46
|
Xu X, Liu W, Liu Z, Fan J, Zhou Y. Mapping Powdery Mildew Resistance Gene pmYBL on Chromosome 7B of Chinese Wheat ( Triticum aestivum L.) Landrace Youbailan. PLANT DISEASE 2020; 104:2411-2417. [PMID: 32658634 DOI: 10.1094/pdis-01-20-0118-re] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Chinese wheat landrace Youbailan has excellent resistance to powdery mildew caused by Blumeria graminis f. sp. tritici. In the present study, genetic analysis indicated that a recessive gene, tentatively designated pmYBL, was responsible for the powdery mildew resistance of Youbailan. pmYBL was located in the 695-to-715-Mb genomic region of chromosome 7BL, with 19 gene-linked single-nucleotide polymorphism (SNP) markers. It was flanked by SNP1-12 and SNP1-2 with genetic distances of 0.6 and 1.8 centimorgans, respectively. The disease reaction patterns of Youbailan and four cultivars (lines) carrying the powdery mildew (Pm) genes located on chromosome arm 7BL indicated that pmYBL may be allelic or closely linked to these genes. All of the SNP markers linked to pmYBL were diagnostic, indicating that these markers will be useful for pyramiding pmYBL using marker-assisted selection.
Collapse
Affiliation(s)
- Xiaodan Xu
- Heilongjiang Provincial Key Laboratory of Crop-Pest Interaction Biology and Ecological Control, Heilongjiang Bayi Agricultural University, Daqing, Heilongjiang 163319, China
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Wei Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Zhiyong Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Jieru Fan
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yilin Zhou
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| |
Collapse
|
47
|
Lin X, Armstrong M, Baker K, Wouters D, Visser RGF, Wolters PJ, Hein I, Vleeshouwers VGAA. RLP/K enrichment sequencing; a novel method to identify receptor-like protein (RLP) and receptor-like kinase (RLK) genes. THE NEW PHYTOLOGIST 2020; 227:1264-1276. [PMID: 32285454 PMCID: PMC7383770 DOI: 10.1111/nph.16608] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Accepted: 03/27/2020] [Indexed: 05/29/2023]
Abstract
The identification of immune receptors in crop plants is time-consuming but important for disease control. Previously, resistance gene enrichment sequencing (RenSeq) was developed to accelerate mapping of nucleotide-binding domain and leucine-rich repeat containing (NLR) genes. However, resistances mediated by pattern recognition receptors (PRRs) remain less utilized. Here, our pipeline shows accelerated mapping of PRRs. Effectoromics leads to precise identification of plants with target PRRs, and subsequent RLP/K enrichment sequencing (RLP/KSeq) leads to detection of informative single nucleotide polymorphisms that are linked to the trait. Using Phytophthora infestans as a model, we identified Solanum microdontum plants that recognize the apoplastic effectors INF1 or SCR74. RLP/KSeq in a segregating Solanum population confirmed the localization of the INF1 receptor on chromosome 12, and led to the rapid mapping of the response to SCR74 to chromosome 9. By using markers obtained from RLP/KSeq in conjunction with additional markers, we fine-mapped the SCR74 receptor to a 43-kbp G-LecRK locus. Our findings show that RLP/KSeq enables rapid mapping of PRRs and is especially beneficial for crop plants with large and complex genomes. This work will enable the elucidation and characterization of the nonNLR plant immune receptors and ultimately facilitate informed resistance breeding.
Collapse
Affiliation(s)
- Xiao Lin
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Miles Armstrong
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Katie Baker
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
| | - Doret Wouters
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Richard G. F. Visser
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Pieter J. Wolters
- Plant BreedingWageningen University and ResearchDroevendaalsesteeg 16708PBWageningenthe Netherlands
| | - Ingo Hein
- Cell and Molecular SciencesThe James Hutton InstituteDundeeDD2 5DAUK
- Division of Plant SciencesSchool of Life SciencesUniversity of Dundee at the James Hutton InstituteDundeeDD2 5DAUK
| | | |
Collapse
|
48
|
Liu L, Wang M, Zhang Z, See DR, Chen X. Identification of Stripe Rust Resistance Loci in U.S. Spring Wheat Cultivars and Breeding Lines Using Genome-Wide Association Mapping and Yr Gene Markers. PLANT DISEASE 2020; 104:2181-2192. [PMID: 32511046 DOI: 10.1094/pdis-11-19-2402-re] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), poses a major threat to wheat production worldwide, especially in the United States. To identify loci for effective stripe rust resistance in U.S. wheat, a genome-wide association study (GWAS) was conducted using a panel of 616 spring wheat cultivars and breeding lines. The accessions in this panel were phenotyped for stripe rust response in the greenhouse at seedling stage with five predominant and highly virulent races of Pst and in different field environments at adult-plant stage in 2017 and 2018. In total, 2,029 single-nucleotide polymorphism markers that cover the whole genome were generated with genotyping by multiplexed sequencing and used in GWAS. In addition, 23 markers of previously reported resistance genes or quantitative trait loci (QTLs) were used to genotype the population. This spring panel was grouped into three subpopulations based on principal component analysis. A total of 37 genes or QTLs including 10 potentially new QTLs for resistance to stripe rust were detected by GWAS and linked marker tests. The frequencies of the resistance genes or QTLs in various nurseries were determined, indicating different intensities of these genes or QTLs used in breeding programs of different regions. These resistance loci and the information on their markers, effectiveness, and distributions should be useful for improving stripe rust resistance in wheat cultivars.
Collapse
Affiliation(s)
- Lu Liu
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Meinan Wang
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
| | - Zhiwu Zhang
- Department of Crop and Soil Sciences, Washington State University, Pullman, WA 99164
| | - Deven R See
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164
| | - Xianming Chen
- Department of Plant Pathology, Washington State University, Pullman, WA 99164
- USDA-ARS Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164
| |
Collapse
|
49
|
Zhu T, Wu L, He H, Song J, Jia M, Liu L, Wang X, Han R, Niu L, Du W, Zhang X, Wang W, Liang X, Li H, Liu J, Xu H, Liu C, Ma P. Bulked Segregant RNA-Seq Reveals Distinct Expression Profiling in Chinese Wheat Cultivar Jimai 23 Responding to Powdery Mildew. Front Genet 2020; 11:474. [PMID: 32536936 PMCID: PMC7268692 DOI: 10.3389/fgene.2020.00474] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Accepted: 04/16/2020] [Indexed: 11/13/2022] Open
Abstract
Wheat powdery mildew, caused by Blumeria graminis f. sp. tritici (Bgt), is one of the most destructive fungal diseases threatening global wheat production. Host resistance is well known to be the most efficient method to control this disease. However, the molecular mechanism of wheat powdery mildew resistance (Pm) is still unclear. To analyze the molecular mechanism of Pm, we used the resistant wheat cultivar Jimai 23 to investigate its potential resistance components and profiled its expression in response to powdery mildew infection using bulked segregant RNA-Seq (BSR-Seq). We showed that the Pm of Jimai 23 was provided by a single dominant gene, tentatively designated PmJM23, and assigned it to the documented Pm2 region of chromosome 5DS. 3,816 consistently different SNPs were called between resistant and susceptible parents and the bulked pools derived from the combinations between the resistant parent Jimai23 and the susceptible parent Tainong18. 58 of the SNPs were assigned to the candidate region of PmJM23. Subsequently, 3,803 differentially expressed genes (DEGs) between parents and bulks were analyzed by GO, COG and KEGG pathway enrichment. The temporal expression patterns of associated genes following Bgt inoculation were further determined by RT-qPCR. Expression of six disease-related genes was investigated during Bgt infection and might serve as valuable genetic resources for the improvement of durable resistance to Bgt.
Collapse
Affiliation(s)
- Tong Zhu
- School of Life Sciences, Yantai University, Yantai, China
| | - Liru Wu
- School of Life Sciences, Yantai University, Yantai, China
| | - Huagang He
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, China
| | - Jiancheng Song
- School of Life Sciences, Yantai University, Yantai, China
| | - Mengshu Jia
- School of Life Sciences, Yantai University, Yantai, China
| | - Liancheng Liu
- Beijing Biomics Technology Company Limited, Beijing, China
| | - Xiaolu Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Ran Han
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Liping Niu
- State Key Laboratory of Hybrid Rice, College of Life Sciences, Wuhan University, Wuhan, China
| | - Wenxiao Du
- School of Life Sciences, Yantai University, Yantai, China
| | - Xu Zhang
- School of Life Sciences, Yantai University, Yantai, China
| | - Wenrui Wang
- School of Life Sciences, Yantai University, Yantai, China
| | - Xiao Liang
- School of Life Sciences, Yantai University, Yantai, China
| | - Haosheng Li
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Jianjun Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Hongxing Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Cheng Liu
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, China
| | - Pengtao Ma
- School of Life Sciences, Yantai University, Yantai, China
| |
Collapse
|
50
|
Dissanayake R, Braich S, Cogan NOI, Smith K, Kaur S. Characterization of Genetic and Allelic Diversity Amongst Cultivated and Wild Lentil Accessions for Germplasm Enhancement. Front Genet 2020; 11:546. [PMID: 32587602 PMCID: PMC7298104 DOI: 10.3389/fgene.2020.00546] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 05/06/2020] [Indexed: 12/13/2022] Open
Abstract
Intensive breeding of cultivated lentil has resulted in a relatively narrow genetic base, which limits the options to increase crop productivity through selection. Assessment of genetic diversity in the wild gene pool of lentil, as well as characterization of useful and novel alleles/genes that can be introgressed into elite germplasm, presents new opportunities and pathways for germplasm enhancement, followed by successful crop improvement. In the current study, a lentil collection consisting of 467 wild and cultivated accessions that originated from 10 diverse geographical regions was assessed, to understand genetic relationships among different lentil species/subspecies. A total of 422,101 high-confidence SNP markers were identified against the reference lentil genome (cv. CDC Redberry). Phylogenetic analysis clustered the germplasm collection into four groups, namely, Lens culinaris/Lens orientalis, Lens lamottei/Lens odemensis, Lens ervoides, and Lens nigricans. A weak correlation was observed between geographical origin and genetic relationship, except for some accessions of L. culinaris and L. ervoides. Genetic distance matrices revealed a comparable level of variation within the gene pools of L. culinaris (Nei’s coefficient 0.01468–0.71163), L. ervoides (Nei’s coefficient 0.01807–0.71877), and L. nigricans (Nei’s coefficient 0.02188–1.2219). In order to understand any genic differences at species/subspecies level, allele frequencies were calculated from a subset of 263 lentil accessions. Among all cultivated and wild lentil species, L. nigricans exhibited the greatest allelic differentiation across the genome compared to all other species/subspecies. Major differences were observed on six genomic regions with the largest being on Chromosome 1 (c. 1 Mbp). These results indicate that L. nigricans is the most distantly related to L. culinaris and additional structural variations are likely to be identified from genome sequencing studies. This would provide further insights into evolutionary relationships between cultivated and wild lentil germplasm, for germplasm improvement and introgression.
Collapse
Affiliation(s)
- Ruwani Dissanayake
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shivraj Braich
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| | - Noel O I Cogan
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia.,School of Applied Systems Biology, La Trobe University, Melbourne, VIC, Australia
| | - Kevin Smith
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Agriculture Victoria, Hamilton, VIC, Australia
| | - Sukhjiwan Kaur
- Agriculture Victoria, AgriBio, Centre for AgriBioscience, Bundoora, VIC, Australia
| |
Collapse
|