1
|
Liu L, Luo T, Yuan R, Hui X, Xu Z, Zhang C, Guo G, Tang X, Heng W, Wei S, Jia B. Resistance to iron deficiency is mediated through rhizosphere acidification and ferric chelate reductase activity in Pyrus betulaefolia. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2025; 358:112554. [PMID: 40345552 DOI: 10.1016/j.plantsci.2025.112554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 05/01/2025] [Accepted: 05/06/2025] [Indexed: 05/11/2025]
Abstract
Iron (Fe) deficiency stress seriously impacts the yield and quality of pear fruit. Nevertheless, the mechanism of Fe absorption in pears (Pyrus betulaefolia) remains unclear. ARFs are a class of transcription factors that are widely involved in plant stress response. However, their function in iron absorption in pears remains unknown. In this study, we identified an auxin response factor in P. betulaefolia (PbeARF2) which was significantly induced by Fe deficiency stress. The Fe absorption capacities of PbeARF2 overexpressed Arabidopsis and P. betulaefolia seedlings were significantly enhanced. Compared to wild type (WT) plants, PbeARF2 overexpressed plants showed significantly enhanced rhizosphere acidification and ferric chelate reductase (FCR) activity. Furthermore, we found that PbeARF2 can activate the expression of PbeAHA12 and PbeFRO2 by directly binding to the promoters of these two genes. In conclusion, this study reveals a novel mechanism of Fe absorption in P. betulaefolia regulated by PbeARF2, and provided an important and new theoretical basis for the genetic improvement of Fe deficiency resistance in pears rootstock.
Collapse
Affiliation(s)
- Lun Liu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Tingyue Luo
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Ruikang Yuan
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xueqing Hui
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Zhou Xu
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Chen Zhang
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Guoling Guo
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Xiaomei Tang
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Wei Heng
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China
| | - Shuwei Wei
- Shandong Fresh Pear Cultivation and Breeding Engineering Technology Research Center, Shandong Institute of Pomology, Taian 271000, China.
| | - Bing Jia
- College of Horticulture, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
2
|
Liu S, Liu B, Tan Y, Zhou H, Yang J, Ren P, Yu H, Geng C, Wang R, Yan X, Huang L. BAR11, a Ferritin Protein From Saccharothrix yanglingensis Enhances Disease Resistance in Malus domestica by Disrupting Iron Homoeostasis. PLANT, CELL & ENVIRONMENT 2025. [PMID: 40230310 DOI: 10.1111/pce.15542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/19/2025] [Accepted: 03/30/2025] [Indexed: 04/16/2025]
Abstract
Previously, we identified BAR11, an uncharacterized protein from the biocontrol actinomycete Saccharothrix yanglingensis Hhs.015, as an elicitor of plant immunity. BAR11 pretreatment significantly suppressed Valsa mali infection in apple (Malus domestica); however, its molecular function remained unclear, as did the mechanisms governing the response of the apples to BAR11 treatment. Here, we demonstrate that BAR11 functions as a ferritin, defined by a conserved four-helical bundle structure, and enhances oxidative stress tolerance in actinomycetes. Confocal microscopy revealed that BAR11 was secreted and delivered into apple cells, where it sequestered labile ferrous iron (Fe2+) and inhibited iron uptake. Notably, BAR11 treatment and iron deficiency induced nearly identical transcriptional reprogramming of iron homoeostasis-related genes in apple roots and similar resistance phenotypes, suggesting that BAR11 triggers a low iron-mimicry state, which potentiates apple immunity. Transcriptomic analysis further supported that BAR11 disrupted the expression of iron homoeostasis-related genes while activating that of defence-related ones. Moreover, the apple WRKY family transcription factor MdWRKY40 responded robustly to BAR11 and low-iron treatments and positively modulated BAR11-induced resistance against V. mali. Our findings reveal a paradigm wherein actinomycete ferritins act as cross-kingdom immune elicitors by disrupting iron homoeostasis in apple, providing a mechanistic foundation for iron-targeted biocontrol strategies.
Collapse
Affiliation(s)
- Shang Liu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Boya Liu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Yuqin Tan
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Hanqi Zhou
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Jinhui Yang
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Peng Ren
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Hongjia Yu
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Chang Geng
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Ruolin Wang
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Xia Yan
- College of Life Science, Northwest A&F University, Yangling, China
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
| | - Lili Huang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, China
- College of Plant Protection, Northwest A&F University, Yangling, China
| |
Collapse
|
3
|
Lv J, Wu Y, Jiang L, Huang Y, Xie Y, Zhao J, Wu T, Zhang X, Wang Y, Han Z. MdWRKY71 positively regulates drought tolerance in apple plants by interplaying with MdARF3 and promoting superoxide dismutase biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 122:e70157. [PMID: 40287955 DOI: 10.1111/tpj.70157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 01/16/2025] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
With the ongoing rise in global temperatures, drought stress has become a significant threat to the normal growth and development of horticultural crops. Identifying the regulatory genes is the key to genetic improvement. Extensive research has highlighted the pivotal role of WRKY transcription factors in orchestrating plant responses to both biotic and abiotic stresses. However, their precise involvement in drought tolerance and the related molecular mechanisms have yet to be fully elucidated. In this study, we demonstrated that MdWRKY71 functioned as a positive regulator of drought tolerance in apple. Overexpressing MdWRKY71 in apple improved drought tolerance, while silencing it had the opposite effect. Additionally, under drought stress, compared with the control, chlorophyll fluorescence values, superoxide dismutase (SOD), and peroxidase levels were elevated in MdWRKY71-overexpressing apple and tobacco transgenic materials. Interaction analysis showed that MdWRKY71 directly binds to the W-box element of the MdFeSOD promoter and activates its transcription. We used yeast two-hybrid screening to identify potential interactors of MdWRKY71 and confirmed the interaction between MdWRKY71 and MdARF3 using Pull-down, bimolecular fluorescence complementation, and luciferase complementation imaging assays. Interestingly, MdARF3 enhanced MdWRKY71-mediated transcriptional activation of MdFeSOD through their interaction. In summary, our findings revealed that the MdWRKY71-MdARF3 module synergistically upregulates the expression of MdFeSOD and SOD enzyme activity in response to drought stress. This research uncovers a new mechanism of plant drought tolerance and presents a feasible strategy to enhance plant drought tolerance through stabilizing the biosynthesis of superoxide dismutase.
Collapse
Affiliation(s)
- Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Lizhong Jiang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yimei Huang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yifu Xie
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Jirong Zhao
- Shaanxi Key Laboratory of Research and Utilization of Resource Plants on the Loess Plateau, College of Life Sciences, Yan'an University, Yan'an, Shaanxi, 716000, P.R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, P.R. China
| |
Collapse
|
4
|
Li Y, Chen P, Zeng F, Wang H, Ma W, Wu A, Ma Z, Mao J, Chen B. Transcriptome and metabolome analysis reveal the mechanisms of iron absorption differences in apple rootstocks under alkaline condition. PHYSIOLOGIA PLANTARUM 2025; 177:e70134. [PMID: 39994109 DOI: 10.1111/ppl.70134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 02/02/2025] [Accepted: 02/04/2025] [Indexed: 02/26/2025]
Abstract
Iron (Fe) is an essential micronutrient for plant growth and development. Fe deficiency leads to growth restriction, developmental disorders, chlorosis, and yield loss of fruit trees. This study investigated the molecular and biochemical mechanisms underlying the differences in Fe absorption among various apple rootstocks under alkaline conditions. Results showed that 'Oregon Spur II' grafted onto Qingzhen No.2 (OS/Q2) exhibited foliage etiolation, while 'Oregon Spur II' grafted onto Qingzhen No.1 (OS/Q1) did not display such etiolation under alkaline conditions. Physiological experiments revealed that total Fe, ferrous Fe, and chlorophyll content in OS/Q2 were significantly lower than those in OS/Q1, whereas the Fe reductase activity in OS/Q2 was higher than that in OS/Q1. Additionally, a total of 7,025 and 9,102 differentially expressed genes (DEGs), including 488 transcription factors (TFs), were identified in OS/Q1L vs. OS/Q2L and OS/Q1R vs. OS/Q2R, respectively. Subsequently, the pathways associated with "phenylpropanoid biosynthesis", "plant hormone signal transduction", "hydrogen ion export across plasma membrane", "heme binding", and "iron binding" were identified as critical for responding to Fe deficiency under alkaline conditions. Furthermore, a total of 244 differentially accumulated metabolites (DAMs) were identified in OS/Q1R vs. OS/Q2R. A combined analysis of the transcriptome and metabolome revealed that "ABC transporters", "biosynthesis of amino acids", and "carbon fixation in photosynthetic organisms" were significantly overrepresented in the KEGG pathways of both DEGs and DAMs. These newly acquired genes and metabolites involved in Fe metabolism will enhance our capacity to employ genetic engineering technologies to maintain Fe homeostasis in plants in the future.
Collapse
Affiliation(s)
- Yanmei Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Peng Chen
- Fruit Industry Service Center, Jingning, PR China
| | - Fanwei Zeng
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Han Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Weifeng Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Aiyuan Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Zonghuan Ma
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Juan Mao
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| | - Baihong Chen
- College of Horticulture, Gansu Agricultural University, Lanzhou, PR China
| |
Collapse
|
5
|
Huang Z, Xiang X, Xu W, Song L, Tang R, Chen D, Li Q, Zhou Y, Jiang CZ. The transcription factor MfbHLH104 from Myrothamnus flabellifolia promotes drought tolerance of Arabidopsis thaliana by enhancing stability of the photosynthesis system. J Biotechnol 2024; 396:89-103. [PMID: 39481548 DOI: 10.1016/j.jbiotec.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 10/07/2024] [Accepted: 10/25/2024] [Indexed: 11/02/2024]
Abstract
The resurrection plant Myrothamnus flabellifolia can survive extreme drought and desiccation conditions, and quickly recover after rewatering. However, little is known about the mechanism underlying the drought tolerance of M. flabellifolia. In this study, MfbHLH104 was cloned and introduced into Arabidopsis thaliana due to the lack of a transgenic system for M. flabellifolia. MfbHLH104 is localized in the nucleus. Its N-terminal region has transactivation ability in yeast, and the C-terminal region may inhibit the transactivation ability. Overexpressing MfbHLH104 significantly increased drought and salt tolerance of A. thaliana at both seedling and adult stages. It enhanced leaf water retention capacity by decreasing water loss rate and increasing drought- and abscisic acid (ABA) -induced stomatal closure. Additionally, it boosted osmolyte accumulation and ROS scavenging ability by up-regulating genes associated with osmolyte biosynthesis and antioxidant enzymes, and enhancing antioxidant enzyme activities. The expression of ABA-responsive genes were also promoted by MfbHLH104. Remarkably, RNA-seq analysis indicated that MfbHLH104 significantly up-regulated 32 genes (FDR < 0.05 and fold change ≥1.5) involved in photosynthesis related pathways (KEGG pathway No: ko00195, ko00196) under drought, which account for 18.7 % of the total up-regulated genes and the most enriched KEGG pathways. This result suggested that it may help to maintain the stability of the photosynthesis system under drought conditions.
Collapse
Affiliation(s)
- Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Xiangying Xiang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Wenxin Xu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Li Song
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Rong Tang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Duoer Chen
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Qiao Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Yujue Zhou
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan 611130, China.
| | - Cai-Zhong Jiang
- Department of Plant Sciences, University of California Davis, Davis, CA 95616, USA; Crops Pathology and Genetics Research Unit, United States Department of Agriculture, Agricultural Research Service, Davis, CA 95616, USA.
| |
Collapse
|
6
|
Chen L, Tan X, Ming R, Huang D, Tan Y, Li L, Huang R, Yao S. Genome-Wide Identification of the bHLH Gene Family in Callerya speciosa Reveals Its Potential Role in the Regulation of Isoflavonoid Biosynthesis. Int J Mol Sci 2024; 25:11900. [PMID: 39595970 PMCID: PMC11593548 DOI: 10.3390/ijms252211900] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/18/2024] [Accepted: 11/02/2024] [Indexed: 11/28/2024] Open
Abstract
Callerya speciosa (Champ. ex Benth.) Schot is a significant leguminous plant valued for its edible tuberous roots, which are a plentiful source of isoflavonoids. Basic helix-loop-helix (bHLH) transcription factors (TFs) have been reported to regulate secondary metabolism in plants, especially flavonoid biosynthesis. However, the bHLH genes in C. speciosa have not yet been reported, and their regulatory role in isoflavonoid biosynthesis remains unexplored. Here, 146 CsbHLH genes were identified in the C. speciosa genome, classifying them into 23 subfamilies based on the gene structures and phylogenetic relationships. All the CsbHLH proteins contained both motifs 1 and 2, whereas motif 8 was only distributed in subgroup III (d + e). Collinearity analysis demonstrated that fragmental replications are the primary driver of CsbHLH evolution, with the majority of duplicated CsbHLH gene pairs experiencing selective pressure. Nine candidate CsbHLH genes were found to play a potential role in regulating isoflavonoid biosynthesis through a combination of gene-to-metabolite correlation analysis and weighted gene co-expression network analysis (WGCNA). Additionally, the cis-regulatory elements and response to MeJA of these nine genes were characterized and confirmed through quantitative real-time PCR (qRT-PCR) analysis. Among them, three CsbHLHs (CsbHLH9, CsbHLH89, and CsbHLH95) were selected for further investigation. Yeast two-hybrid (Y2H), dual-luciferase (LUC) assays, bimolecular fluorescence complementation (BiFC) assays, and transient transformation demonstrated that CsbHLH9 acted as a transcriptional activator through its interaction with CsMYB36 and binding to the promoters of isoflavonoid biosynthesis genes in a MeJA-induced manner, such as CsIFR2, CsI3'H2, and CsCHS4, to promote isoflavonoid (calycosin, calycosin-7-o-glucoside, and formononetin) accumulation. Our results establish a basis for the functional analysis of bHLH genes and investigations into the molecular mechanisms underlying isoflavonoid biosynthesis in C. speciosa.
Collapse
Affiliation(s)
- Liuping Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
| | - Xiaoming Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Yong Tan
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
| | - Shaochang Yao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530200, China; (L.C.); (X.T.); (D.H.)
- Guangxi Key Laboratory of Zhuang and Yao Ethnic Medicine, Guangxi University of Chinese Medicine, Nanning 530200, China
| |
Collapse
|
7
|
Ma H, Fu M, Xu Z, Chu Z, Tian J, Wang Y, Zhang X, Han Z, Wu T. Allele-specific expression of AP2-like ABA repressor 1 regulates iron uptake by modulating rhizosphere pH in apple. PLANT PHYSIOLOGY 2024; 196:2121-2136. [PMID: 39197038 DOI: 10.1093/plphys/kiae452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/11/2024] [Accepted: 08/09/2024] [Indexed: 08/30/2024]
Abstract
Genetic variation within a species can result in allelic expression for natural selection or breeding efforts. Here, we identified an iron (Fe) deficiency-inducible gene, AP2-like ABA repressor 1 (MdABR1), in apple (Malus domestica). MdABR1 exhibited differential expression at the allelic level (MdABR131A and MdABR131G) in response to Fe deficiency. The W-box insertion in the promoter of MdABR131A is essential for its induced expression and its positive role under Fe deficiency stress. MdABR1 binds to the promoter of basic helix-loop-helix 105 (MdbHLH105), participating in the Fe deficiency response, and activates its transcription. MdABR131A exerts a more pronounced transcriptional activation effect on MdbHLH105. Suppression of MdABR1 expression leads to reduced rhizosphere acidification in apple, and MdABR131A exhibits allelic expression under Fe deficiency stress, which is substantially upregulated and then activates the expression of MdbHLH105, promoting the accumulation of plasma membrane proton ATPase 8 (MdAHA8) transcripts in response to proton extrusion, thereby promoting rhizosphere acidification. Therefore, variation in the ABR1 alleles results in variable gene expression and enables apple plants to exhibit a wider tolerance capability and Fe deficiency response. These findings also shed light on the molecular mechanisms of allele-specific expression in woody plants.
Collapse
Affiliation(s)
- Huaying Ma
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Mengmeng Fu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhen Xu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zicheng Chu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing 102206, China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing 100193, China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing 100193, China
| |
Collapse
|
8
|
Huang J, Xuan X, Xu D, Wen Y. Dual-Mediated Roles of H +-ATPase in Alleviating the Phytotoxicity of Imazethapyr to Nontarget Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:19333-19341. [PMID: 39183467 DOI: 10.1021/acs.jafc.4c06062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
The regulation solutions and mechanisms of reducing pesticide phytotoxicity to nontarget plants are not well-defined and detailed. Here, we have proposed a new detoxification strategy to control the toxic effects of herbicide imazethapyr (IM) induced in wheat seedlings from the perspective of the plasma membrane (PM) H+-ATPase. We found that the changes in PM H+-ATPase activity have a regulatory effect on the phytotoxic effects induced by IM in plants. Treatment with PM H+-ATPase activators restored the reduced auxin content and photosynthetic efficiency caused by IM, thereby promoting plant growth. Application of a PM H+-ATPase inhibitor further reduced phosphorus content and significantly increased 2,4-dihydroxy-7-methoxy-2H,1,4-benzoxazin-3(4H)one (DIMBOA) and jasmonic acid levels. These effects indicate that auxin and DIMBOA may regulate plant growth trends and detoxification effects mediated by PM H+-ATPase. This work opens a new strategy for regulating herbicide toxicity to nontarget plants from the PM H+-ATPase.
Collapse
Affiliation(s)
- Jinye Huang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
9
|
Zeng H, Chen H, Zhang M, Ding M, Xu F, Yan F, Kinoshita T, Zhu Y. Plasma membrane H +-ATPases in mineral nutrition and crop improvement. TRENDS IN PLANT SCIENCE 2024; 29:978-994. [PMID: 38582687 DOI: 10.1016/j.tplants.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/08/2024]
Abstract
Plasma membrane H+-ATPases (PMAs) pump H+ out of the cytoplasm by consuming ATP to generate a membrane potential and proton motive force for the transmembrane transport of nutrients into and out of plant cells. PMAs are involved in nutrient acquisition by regulating root growth, nutrient uptake, and translocation, as well as the establishment of symbiosis with arbuscular mycorrhizas. Under nutrient stresses, PMAs are activated to pump more H+ and promote organic anion excretion, thus improving nutrient availability in the rhizosphere. Herein we review recent progress in the physiological functions and the underlying molecular mechanisms of PMAs in the efficient acquisition and utilization of various nutrients in plants. We also discuss perspectives for the application of PMAs in improving crop production and quality.
Collapse
Affiliation(s)
- Houqing Zeng
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China.
| | - Huiying Chen
- College of Life and Environmental Sciences, Kharkiv Institute at Hangzhou Normal University, Hangzhou Normal University, Hangzhou 311121, China
| | - Maoxing Zhang
- International Research Centre for Environmental Membrane Biology, Department of Horticulture, Foshan University, Foshan 528000, China
| | - Ming Ding
- College of Bioscience and Biotechnology, Yangzhou University, Yangzhou, 225009, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of JunCao Science and Ecology (College of Carbon Neutrality), Fujian Agriculture and Forestry University, Fuzhou, China
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Toshinori Kinoshita
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Nagoya 4660824, Japan.
| | - Yiyong Zhu
- College of Resource and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
10
|
Wang X, Zhang Z, Dong Y, Wang Y. Functional Identification of MhPYL4 Involved in Iron-Deficiency Stress in Malus Halliana Koehne. PLANTS (BASEL, SWITZERLAND) 2024; 13:2317. [PMID: 39204753 PMCID: PMC11360065 DOI: 10.3390/plants13162317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/13/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024]
Abstract
The PYL protein family are crucial sensors of the core signals of abscisic acid (ABA) and significantly influence the plant's response to ABA-mediated abiotic stresses as well as its growth and development. However, research on the role of the MhPYL4 gene in iron (Fe) deficiency in apple trees is limited. Studies have shown that the MhPYL4 gene, when exposed to Fe-deficiency stress, exhibits more rapid transcriptional upregulation than other genes' quickly elevated transcription. However, the precise mechanism by which it alleviates this stress remains unclear. The MhPYL4 gene (ID:103432868), isolated from Malus halliana, was analyzed to elucidate its function. Arabidopsis plants engineered to overexpress the MhPYL4 gene exhibited increased leaf chlorosis and slower growth in response to Fe stress compared to the unmodified controls. The transgenic plants also exhibited elevated levels of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT) activities, as well as ferric chelate reductase (FCR) activities. Levels of malondialdehyde (MDA), hydrogen peroxide (H2O2), and superoxide anion (O2-) were increased. In addition, these transgenic plants had lower concentrations of proline (Pro) and Fe2+, which indicated that their stress tolerance was reduced. Similarly, the overexpression of MhPYL4 in apple calli resulted in inhibited growth and increased susceptibility under Fe stress conditions. Physiological evaluations indicated that the overexpression of MhPYL4 in Arabidopsis reduced its Fe stress tolerance by inhibiting chlorophyll synthesis. In apple calli, it altered pH levels, antioxidant enzyme activity, and Fe-reducing capabilities under the same stress conditions. In summary, the elevated expression of the MhPYL4 gene reduced the tolerance of both Arabidopsis and apple calli to Fe stress, suggesting that MhPYL4 acts as a negative regulator in response to Fe deficiency.
Collapse
Affiliation(s)
| | | | | | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China; (X.W.); (Z.Z.); (Y.D.)
| |
Collapse
|
11
|
Yan T, Shu X, Ning C, Li Y, Wang Z, Wang T, Zhuang W. Functions and Regulatory Mechanisms of bHLH Transcription Factors during the Responses to Biotic and Abiotic Stresses in Woody Plants. PLANTS (BASEL, SWITZERLAND) 2024; 13:2315. [PMID: 39204751 PMCID: PMC11360703 DOI: 10.3390/plants13162315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Environmental stresses, including abiotic and biotic stresses, have complex and diverse effects on the growth and development of woody plants, which have become a matter of contention due to concerns about the outcomes of climate change on plant resources, genetic diversity, and world food safety. Plant basic helix-loop-helix (bHLH) transcription factors (TFs) are involved in a variety of physiological processes and play an important role in biotic and abiotic stress responses of woody plants. In recent years, an increasing body of studies have been conducted on the bHLH TFs in woody plants, and the roles of bHLH TFs in response to various stresses are increasingly clear and precise. Therefore, it is necessary to conduct a systematic and comprehensive review of the progress of the research of woody plants. In this review, the structural characteristics, research history and roles in the plant growth process of bHLH TFs are summarized, the gene families of bHLH TFs in woody plants are summarized, and the roles of bHLH TFs in biotic and abiotic stresses in woody plants are highlighted. Numerous studies mentioned in this review have shown that bHLH transcription factors play a crucial role in the response of woody plants to biotic and abiotic stresses. This review serves as a reference for further studies about enhancing the stress resistance and breeding of woody plants. Also, the future possible research directions of bHLH TFs in response to various stresses in woody plants will be discussed.
Collapse
Affiliation(s)
- Tengyue Yan
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Xiaochun Shu
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Chuanli Ning
- Yantai Agricultural Technology Extension Center, Yantai 264001, China
| | - Yuhang Li
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Zhong Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Tao Wang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| | - Weibing Zhuang
- Jiangsu Key Laboratory for the Research and Utilization of Plant Resources, Institute of Botany, Jiangsu Province and Chinese Academy of Sciences (Nanjing Botanical Garden Memorial Sun Yat-Sen), Nanjing 210014, China; (T.Y.)
| |
Collapse
|
12
|
Dong W, Liu L, Sun Y, Xu X, Guo G, Heng W, Jiao H, Wei S, Jia B. PbbHLH155 enhances iron deficiency tolerance in pear by directly activating PbFRO2 and PbbHLH38. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 213:108786. [PMID: 38878387 DOI: 10.1016/j.plaphy.2024.108786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/28/2024] [Accepted: 05/29/2024] [Indexed: 07/07/2024]
Abstract
Iron (Fe) deficiency is a general stress for many horticulture crops, causing leaf chlorosis and stunted growth. The basic-helix-loop-helix (bHLH) transcription factor (TF) was reported to function in Fe absorption; however, the regulatory mechanism of bHLH genes on iron absorption remains largely unclear in pear. In this study, we found that PbbHLH155 was significantly induced by Fe deficiency. Overexpression of PbbHLH155 in Arabidopsis thaliana and pear calli significantly increases resistance to Fe deficiency. The PbbHLH155-overexpressed Arabidopsis lines exhibited greener leaf color, higher Fe content, stronger Fe chelate reductase (FCR) and root acidification activity. The PbbHLH155 knockout pear calli showed lower Fe content and weaker FCR activity. Interestingly, PbbHLH155 inhibited the expressions of PbFRO2 and PbbHLH38, which were positive regulators in Fe-deficiency responses (FDR). Furthermore, yeast one-hybrid (Y1H) and Dual-Luciferase Reporter (DLR) assays revealed that PbbHLH155 directly binds to the promoters of PbFRO2 and PbbHLH38, thus activating their expression. Overall, our results showed that PbbHLH155 directly promote the expression of PbFRO2 and PbbHLH38 to activate FCR activity for iron absorption. This study provided valuable information for pear breeding.
Collapse
Affiliation(s)
- Weiyu Dong
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Lun Liu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Yu Sun
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Xiaoqian Xu
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Guoling Guo
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Wei Heng
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| | - Huijun Jiao
- Shandong Fresh Pear Cultivation and Breeding Engineering Technology Research Center, Shandong Institute of Pomology, Taian, 271000, China.
| | - Shuwei Wei
- Shandong Fresh Pear Cultivation and Breeding Engineering Technology Research Center, Shandong Institute of Pomology, Taian, 271000, China.
| | - Bing Jia
- School of Horticulture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
13
|
Lei P, Jiang Y, Zhao Y, Jiang M, Ji X, Ma L, Jin G, Li J, Zhang S, Kong D, Zhao X, Meng F. Functions of Basic Helix-Loop-Helix (bHLH) Proteins in the Regulation of Plant Responses to Cold, Drought, Salt, and Iron Deficiency: A Comprehensive Review. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10692-10709. [PMID: 38712500 DOI: 10.1021/acs.jafc.3c09665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
Abiotic stresses including cold, drought, salt, and iron deficiency severely impair plant development, crop productivity, and geographic distribution. Several bodies of research have shed light on the pleiotropic functions of BASIC HELIX-LOOP-HELIX (bHLH) proteins in plant responses to these abiotic stresses. In this review, we mention the regulatory roles of bHLH TFs in response to stresses such as cold, drought, salt resistance, and iron deficiency, as well as in enhancing grain yield in plants, especially crops. The bHLH proteins bind to E/G-box motifs in the target promoter and interact with various other factors to form a complex regulatory network. Through this network, they cooperatively activate or repress the transcription of downstream genes, thereby regulating various stress responses. Finally, we present some perspectives for future research focusing on the molecular mechanisms that integrate and coordinate these abiotic stresses. Understanding these molecular mechanisms is crucial for the development of stress-tolerant crops.
Collapse
Affiliation(s)
- Pei Lei
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Yaxuan Jiang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Yong Zhao
- College of Life Sciences, Baicheng Normal University, Baicheng 137099, China
| | - Mingquan Jiang
- Jilin Province Product Quality Supervision and Inspection Institute, Changchun 130022, China
| | - Ximei Ji
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Le Ma
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Guangze Jin
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Jianxin Li
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Subin Zhang
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Dexin Kong
- College of Life Science, Northeast Forestry University, Hexing Road 26, Harbin 150040, China
| | - Xiyang Zhao
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| | - Fanjuan Meng
- Jilin Provincial Key Laboratory of Tree and Grass Genetics and Breeding, College of Forestry and Grassland Science, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
14
|
Liu XJ, Liu X, Zhao Q, Dong YH, Liu Q, Xue Y, Yao YX, You CX, Kang H, Wang XF. Calmodulin-like protein MdCML15 interacts with MdBT2 to modulate iron homeostasis in apple. HORTICULTURE RESEARCH 2024; 11:uhae081. [PMID: 38766530 PMCID: PMC11101318 DOI: 10.1093/hr/uhae081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 03/12/2024] [Indexed: 05/22/2024]
Abstract
BTB and TAZ domain proteins (BTs) function as specialized adaptors facilitating substrate recognition of the CUL3-RING ubiquitin ligase (CRL3) complex that targets proteins for ubiquitination in reaction to diverse pressures. Nonetheless, knowledge of the molecular mechanisms by which the apple scaffold protein MdBT2 responds to external and internal signals is limited. Here we demonstrate that a putative Ca 2+ sensor, calmodulin-like 15 (MdCML15), acts as an upstream regulator of MdBT2 to negatively modulate its functions in plasma membrane H+-ATPase regulation and iron deficiency tolerance. MdCML15 was identified to be substantially linked to MdBT2, and to result in the ubiquitination and degradation of the MdBT2 target protein MdbHLH104. Consequently, MdCML15 repressed the MdbHLH104 target, MdAHA8's expression, reducing levels of a specific membrane H+-ATPase. Finally, the phenotype of transgenic apple plantlets and calli demonstrated that MdCML15 modulates membrane H+-ATPase-produced rhizosphere pH lowering alongside iron homeostasis through an MdCML15-MdBT2-MdbHLH104-MdAHA8 pathway. Our results provide new insights into the relationship between Ca2+ signaling and iron homeostasis.
Collapse
Affiliation(s)
- Xiao-Juan Liu
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Xin Liu
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- Institute of Forestry and Pomology, Academy of Agriculture and Forestry Sciences, Beijing 100093, China
| | - Qiang Zhao
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
- College of Horticulture, Qingdao Agricultural University, Qingdao 266109, China
| | - Yuan-Hua Dong
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Qiangbo Liu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai-An, 271018, China
| | - Yuan Xue
- State Key Laboratory of Tree Genetics and Breeding, Chinese Academy of Forestry, Beijing 100091, China
| | - Yu-Xin Yao
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Chun-Xiang You
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Hui Kang
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| | - Xiao-Fei Wang
- National Key Laboratory of Wheat Improvement, Apple Technology Innovation Center of Shandong Province, Shandong Green Fertilizer Technology Innovation Center, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai-An, 271018, Shandong, China
| |
Collapse
|
15
|
Qiao Q, Huang Y, Dong H, Xing C, Han C, Lin L, Wang X, Su Z, Qi K, Xie Z, Huang X, Zhang S. The PbbHLH62/PbVHA-B1 module confers salt tolerance through modulating intracellular Na +/K + homeostasis and reactive oxygen species removal in pear. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108663. [PMID: 38678947 DOI: 10.1016/j.plaphy.2024.108663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 04/20/2024] [Accepted: 04/23/2024] [Indexed: 05/01/2024]
Abstract
The vacuolar H+-ATPase (V-ATPase) is a multi-subunit membrane protein complex, which plays pivotal roles in building up an electrochemical H+-gradient across tonoplast, energizing Na+ sequestration into the central vacuole, and enhancing salt stress tolerance in plants. In this study, a B subunit of V-ATPase gene, PbVHA-B1 was discovered and isolated from stress-induced P. betulaefolia combining with RT-PCR method. The RT-qPCR analysis revealed that the expression level of PbVHA-B1 was upregulated by salt, drought, cold, and exogenous ABA treatment. Subcellular localization analyses showed that PbVHA-B1 was located in the cytoplasm and nucleus. Moreover, overexpression of PbVHA-B1 gene noticeably increased the ATPase activity and the tolerance to salt in transgenic Arabidopsis plants. In contrast, knockdown of PbVHA-B1 gene in P.betulaefolia by virus-induced gene silencing had reduced resistance to salt stress. In addition, using yeast one-hybride (Y1H) and yeast two-hybride (Y2H) screens, PbbHLH62, a bHLH transcription factor, was identified as a partner of the PbVHA-B1 promoter and protein. Then, we also found that PbbHLH62 positively regulate the expression of PbVHA-B1 and the ATPase activity after salt stress treatment. These findings provide evidence that PbbHLH62 played a critical role in the salt response. Collectively, our results demonstrate that a PbbHLH62/PbVHA-B1 module plays a positive role in salt tolerance by maintain intracellular ion and ROS homeostasis in pear.
Collapse
Affiliation(s)
- Qinghai Qiao
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Life Science, Nanjing Agricultural University, Nanjing210095, China.
| | - Yongdan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Huizhen Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Caihua Xing
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Chenyang Han
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Likun Lin
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xin Wang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhiyuan Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kaijie Qi
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Zhihua Xie
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Xiaosan Huang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Shaoling Zhang
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Nanjing Agricultural University, Nanjing, 210095, China; College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China; College of Life Science, Nanjing Agricultural University, Nanjing210095, China.
| |
Collapse
|
16
|
Fan C, Li J, Dai S, Xuan X, Xu D, Wen Y. Plasma Membrane (PM) H +-ATPase Mediates Rhizosphere Acidification and Regulates Herbicide Imazethapyr Toxicity in Wheat. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38623691 DOI: 10.1021/acs.jafc.4c00313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The plasma membrane (PM) H+-ATPase is crucial for a plant defense system. However, there is currently no consensus on whether the PM H+-ATPase plays a role in alleviating the toxic effects of herbicides on nontarget plants. We found that under the herbicide imazethapyr (IM) exposure, PM H+-ATPase activity in wheat roots increased by approximately 69.53%, leading to rhizosphere acidification. When PM H+-ATPase activity is inhibited, the toxicity of IM significantly increases: When exposed to IM alone, the total Fe content of wheat roots decreased by 29.07%, the relative Fe2+ content increased by 27.75%, and the ROS content increased by 27.74%. When the PM H+-ATPase activity was inhibited, the corresponding data under IM exposure were 37.36%, 215%, and 57.68%, respectively. This work delves into the role of PM H+-ATPase in mediating the detoxification mechanism in plants exposed to herbicides, offering new insights into enhancing crop resistance against herbicides.
Collapse
Affiliation(s)
- Chenyang Fan
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jun Li
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Siyuan Dai
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuan Xuan
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Dongmei Xu
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Yuezhong Wen
- MOE Key Laboratory of Environmental Remediation & Ecosystem Health, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Yu X, Hu K, Geng X, Cao L, Zhou T, Lin X, Liu H, Chen J, Luo C, Qu S. The Mh-miR393a-TIR1 module regulates Alternaria alternata resistance of Malus hupehensis mainly by modulating the auxin signaling. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 341:112008. [PMID: 38307352 DOI: 10.1016/j.plantsci.2024.112008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 01/12/2024] [Accepted: 01/29/2024] [Indexed: 02/04/2024]
Abstract
miRNAs govern gene expression and regulate plant defense. Alternaria alternata is a destructive fungal pathogen that damages apple. The wild apple germplasm Malus hupehensis is highly resistant to leaf spot disease caused by this fungus. Herein, we elucidated the regulatory and functional role of miR393a in apple resistance against A. alternata by targeting Transport Inhibitor Response 1. Mature miR393 accumulation in infected M. hupehensis increased owing to the transcriptional activation of MIR393a, determined to be a positive regulator of A. alternata resistance to either 'Orin' calli or 'Gala' leaves. 5' RLM-RACE and co-transformation assays showed that the target of miR393a was MhTIR1, a gene encoding a putative F-box auxin receptor that compromised apple immunity. RNA-seq analysis of transgenic calli revealed that MhTIR1 upregulated auxin signaling gene transcript levels and influenced phytohormone pathways and plant-pathogen interactions. miR393a compromised the sensitivity of several auxin-signaling genes to A. alternata infection, whereas MhTIR1 had the opposite effect. Using exogenous indole-3-acetic acid or the auxin synthesis inhibitor L-AOPP, we clarified that auxin enhances apple susceptibility to this pathogen. miR393a promotes SA biosynthesis and impedes pathogen-triggered ROS bursts by repressing TIR1-mediated auxin signaling. We uncovered the mechanism underlying the miR393a-TIR1 module, which interferes with apple defense against A. alternata by modulating the auxin signaling pathway.
Collapse
Affiliation(s)
- Xinyi Yu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Kaixu Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xiaoyue Geng
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China; Xuzhou Institute of Agricultural Sciences in Jiangsu Xuhuai District, Xuzhou, Jiangsu 221131, PR China
| | - Lifang Cao
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Tingting Zhou
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Xinxin Lin
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Hongcheng Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Jingrui Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China
| | - Changguo Luo
- Institute of Fruit Science, Guizhou Academy of Agricultural Science, Guiyang, Guizhou 550006, PR China.
| | - Shenchun Qu
- College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu 210095, PR China.
| |
Collapse
|
18
|
Zhang Z, Yuan L, Dang J, Zhang Y, Wen Y, Du Y, Liang Y, Wang Y, Liu T, Li T, Hu X. 5-Aminolevulinic acid improves cold resistance through regulation of SlMYB4/SlMYB88-SlGSTU43 module to scavenge reactive oxygen species in tomato. HORTICULTURE RESEARCH 2024; 11:uhae026. [PMID: 38495031 PMCID: PMC10940124 DOI: 10.1093/hr/uhae026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 01/14/2024] [Indexed: 03/19/2024]
Abstract
Cold stress severely affects the growth and quality of tomato. 5-Aminolevulinic acid (ALA) can effectively improve tomato's cold stress tolerance. In this study, a tomato glutathione S-transferase gene, SlGSTU43, was identified. Results showed that ALA strongly induced the expression of SlGSTU43 under cold stress. SlGSTU43-overexpressing lines showed increased resistance to cold stress through an enhanced ability to scavenge reactive oxygen species. On the contrary, slgstu43 mutant lines were sensitive to cold stress, and ALA did not improve their cold stress tolerance. Thus, SlGSTU43 is a key gene in the process of ALA improving tomato cold tolerance. Through yeast library screening, SlMYB4 and SlMYB88 were preliminarily identified as transcription factors that bind to the SlGSTU43 promoter. Electrophoretic mobility shift, yeast one-hybrid, dual luciferase, and chromatin immunoprecipitation assays experiments verified that SlMYB4 and SlMYB88 can bind to the SlGSTU43 promoter. Further experiments showed that SlMYB4 and SlMYB88 are involved in the process of ALA-improving tomato's cold stress tolerance and they positively regulate the expression of SlGSTU43. The findings provide new insights into the mechanism by which ALA improves cold stress tolerance. SlGSTU43, as a valuable gene, could be added to the cold-responsive gene repository. Subsequently, it could be used in genetic engineering to enhance the cold tolerance of tomato.
Collapse
Affiliation(s)
- Zhengda Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Luqiao Yuan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Jiao Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yuhui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yongshuai Wen
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| | - Yu Du
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yufei Liang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Ya Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Tao Liu
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Protected Horticulture Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, China
- Shaanxi Protected Agriculture Research Centre, Yangling, Shaanxi 712100, China
| |
Collapse
|
19
|
Fan Z, Zhu Y, Kuang W, Leng J, Wang X, Qiu L, Nie J, Yuan Y, Zhang RF, Wang Y, Zhao Q. The 14-3-3 protein GRF8 modulates salt stress tolerance in apple via the WRKY18-SOS pathway. PLANT PHYSIOLOGY 2024; 194:1906-1922. [PMID: 37987562 DOI: 10.1093/plphys/kiad621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/26/2023] [Accepted: 10/13/2023] [Indexed: 11/22/2023]
Abstract
Salinity is a severe abiotic stress that limits plant survival, growth, and development. 14-3-3 proteins are phosphopeptide-binding proteins that are involved in numerous signaling pathways, such as metabolism, development, and stress responses. However, their roles in salt tolerance are unclear in woody plants. Here, we characterized an apple (Malus domestica) 14-3-3 gene, GENERAL REGULATORY FACTOR 8 (MdGRF8), the product of which promotes salinity tolerance. MdGRF8 overexpression improved salt tolerance in apple plants, whereas MdGRF8-RNA interference (RNAi) weakened it. Yeast 2-hybrid, bimolecular fluorescence complementation, pull-down, and coimmunoprecipitation assays revealed that MdGRF8 interacts with the transcription factor MdWRKY18. As with MdGRF8, overexpressing MdWRKY18 enhanced salt tolerance in apple plants, whereas silencing MdWRKY18 had the opposite effect. We also determined that MdWRKY18 binds to the promoters of the salt-related genes SALT OVERLY SENSITIVE 2 (MdSOS2) and MdSOS3. Moreover, we showed that the 14-3-3 protein MdGRF8 binds to the phosphorylated form of MdWRKY18, enhancing its stability and transcriptional activation activity. Our findings reveal a regulatory mechanism by the MdGRF8-MdWRKY18 module for promoting the salinity stress response in apple.
Collapse
Affiliation(s)
- Zihao Fan
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yuqing Zhu
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Wei Kuang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jun Leng
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Xue Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Linlin Qiu
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Jiyun Nie
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Yongbing Yuan
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Rui-Fen Zhang
- Academy of Agricultural Sciences of Qingdao, Qingdao, Shandong 266100, China
| | - Yongzhang Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| | - Qiang Zhao
- College of Horticulture, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Laboratory of Quality & Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao Agricultural University, Qingdao, Shandong 266109, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
20
|
Mao K, Yang J, Sun Y, Guo X, Qiu L, Mei Q, Li N, Ma F. MdbHLH160 is stabilized via reduced MdBT2-mediated degradation to promote MdSOD1 and MdDREB2A-like expression for apple drought tolerance. PLANT PHYSIOLOGY 2024; 194:1181-1203. [PMID: 37930306 DOI: 10.1093/plphys/kiad579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 11/07/2023]
Abstract
Drought stress is a key environmental factor limiting the productivity, quality, and geographic distribution of crops worldwide. Abscisic acid (ABA) plays an important role in plant drought stress responses, but the molecular mechanisms remain unclear. Here, we report an ABA-responsive bHLH transcription factor, MdbHLH160, which promotes drought tolerance in Arabidopsis (Arabidopsis thaliana) and apple (Malus domestica). Under drought conditions, MdbHLH160 is directly bound to the MdSOD1 (superoxide dismutase 1) promoter and activated its transcription, thereby triggering reactive oxygen species (ROS) scavenging and enhancing apple drought tolerance. MdbHLH160 also promoted MdSOD1 enzyme activity and accumulation in the nucleus through direct protein interactions, thus inhibiting excessive nuclear ROS levels. Moreover, MdbHLH160 directly upregulated the expression of MdDREB2A-like, a DREB (dehydration-responsive element binding factor) family gene that promotes apple drought tolerance. Protein degradation and ubiquitination assays showed that drought and ABA treatment stabilized MdbHLH160. The BTB protein MdBT2 was identified as an MdbHLH160-interacting protein that promoted MdbHLH160 ubiquitination and degradation, and ABA treatment substantially inhibited this process. Overall, our findings provide insights into the molecular mechanisms of ABA-modulated drought tolerance at both the transcriptional and post-translational levels via the ABA-MdBT2-MdbHLH160-MdSOD1/MdDREB2A-like cascade.
Collapse
Affiliation(s)
- Ke Mao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Jie Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Yunxia Sun
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Xin Guo
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Lina Qiu
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Quanlin Mei
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Na Li
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A & F University, Yangling 712100, Shaanxi, China
| |
Collapse
|
21
|
Cao X, Wen Z, Shen T, Cai X, Hou Q, Shang C, Qiao G. Overexpression of PavbHLH28 from Prunus avium enhances tolerance to cold stress in transgenic Arabidopsis. BMC PLANT BIOLOGY 2023; 23:652. [PMID: 38110865 PMCID: PMC10726552 DOI: 10.1186/s12870-023-04666-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 12/06/2023] [Indexed: 12/20/2023]
Abstract
BACKGROUND The basic helix-loop-helix (bHLH) gene family is one of plants' largest transcription factor families. It plays an important role in regulating plant growth and abiotic stress response. RESULTS In this study, we determined that the PavbHLH28 gene participated in cold resistance. The PavbHLH28 gene was located in the nucleus and could be induced by low temperature. Under the treatment of ABA, PEG, and GA3, the transcript level of PavbHLH28 was affected. At low temperature, overexpression of the PavbHLH28 gene enhanced the cold resistance of plants with higher proline content, lower electrolyte leakage (EL) and malondialdehyde (MDA) content. Compared with the WT plants, the transgenic plants accumulated fewer reactive oxygen species (ROS), and the activity and expression levels of antioxidant enzymes were significantly increased. The expression of proline synthesis enzyme genes was up-regulated, and the transcripts levels of degradation genes were significantly down-regulated. The transcripts abundance of the cold stressed-related genes in the C-repeat binding factor (CBF) pathway was not significantly different between WT plants and transgenic plants after cold stress. Moreover, the PavbHLH28 could directly bind to the POD2 gene promoter and promote its gene expression. CONCLUSIONS Overall, PavbHLH28 enhanced the cold resistance of transgenic plants through a CBF-independent pathway, which may be partly related to ROS scavenging.
Collapse
Affiliation(s)
- Xuejiao Cao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Zhuang Wen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Tianjiao Shen
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Xiaowei Cai
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Qiandong Hou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Chunqiong Shang
- College of Forestry, Guizhou University, Guiyang, Guizhou Province, 550025, China
| | - Guang Qiao
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang, Guizhou Province, 550025, China.
| |
Collapse
|
22
|
Zhang Z, Cheng J, Wang W, Gao Y, Xian X, Li C, Wang Y. Transcription factors dealing with Iron-deficiency stress in plants: focus on the bHLH transcription factor family. PHYSIOLOGIA PLANTARUM 2023; 175:e14091. [PMID: 38148182 DOI: 10.1111/ppl.14091] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/16/2023] [Accepted: 10/24/2023] [Indexed: 12/28/2023]
Abstract
Iron (Fe), as an important micronutrient element necessary for plant growth and development, not only participates in multiple physiological and biochemical reactions in cells but also exerts a crucial role in respiration and photosynthetic electron transport. Since Fe is mainly present in the soil in the form of iron hydroxide, Fe deficiency exists universally in plants and has become an important factor triggering crop yield reduction and quality decline. It has been shown that transcription factors (TFs), as an important part of plant signaling pathways, not only coordinate the internal signals of different interaction partners during plant development, but also participate in plant responses to biological and abiotic stresses, such as Fe deficiency stress. Here, the role of bHLH transcription factors in the regulation of Fe homeostasis (mainly Fe uptake) is discussed with emphasis on the functions of MYB, WRKY and other TFs in the maintenance of Fe homeostasis. This review provides a theoretical basis for further studies on the regulation of TFs in Fe deficiency stress response.
Collapse
Affiliation(s)
- Zhongxing Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Jiao Cheng
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Wanxia Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanlong Gao
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Xulin Xian
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Cailong Li
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| | - Yanxiu Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
23
|
Li X, Cao H, Yu D, Xu K, Zhang Y, Shangguan X, Zheng X, Yang Z, Li C, Pan X, Cui Y, Zhang Z, Han M, Zhang Y, Sun Q, Guo H, Zhao J, Li L, Li C. SlbHLH152, a bHLH transcription factor positively regulates iron homeostasis in tomato. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111821. [PMID: 37558055 DOI: 10.1016/j.plantsci.2023.111821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/03/2023] [Accepted: 08/05/2023] [Indexed: 08/11/2023]
Abstract
The maintain of iron (Fe) homeostasis is essential for plant survival. In tomato, few transcription factors have been identified as regulators of Fe homeostasis, among which SlbHLH068 induced by iron deficiency, plays an important role. However, the upstream regulator(s) responsible for activating the expression of SlbHLH068 remain(s) unknown. In this study, the bHLH (basic helix-loop-helix) transcription factor SlbHLH152 was identified as an upstream regulator of SlbHLH068 using yeast one-hybrid screening. Deletion of SlbHLH152 led to a significant decline in Fe concentration, which was accompanied by reduced expression of Fe-deficiency-responsive genes. In contrast, SlbHLH152 overexpression plants displayed tolerance to iron deficiency, increased Fe accumulation, and elevated expression of Fe-deficiency-responsive genes. Further analysis indicated that SlbHLH152 directly activates the transcription of SlbHLH068. Taken together, our results suggest that SlbHLH152 may be involved in the regulation of iron homeostasis by directly activating the transcription of SlbHLH068 in tomato.
Collapse
Affiliation(s)
- Xiaoli Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Haohao Cao
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Deshui Yu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Kedong Xu
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Yi Zhang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xinxin Shangguan
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Xiaohong Zheng
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Zhongzhou Yang
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China
| | - Chaoqiong Li
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Xingchen Pan
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yiming Cui
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Zhiqing Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Mengru Han
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Yiqing Zhang
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Qimeng Sun
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Huiling Guo
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Jingyi Zhao
- College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China
| | - Lili Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Life Science and Agronomy, Zhoukou Normal University, Zhoukou 466001, China.
| | - Chengwei Li
- Key Laboratory of Plant Genetics and Molecular Breeding, Zhoukou Normal University, Zhoukou 466001, China; Henan Key Laboratory of Crop Molecular Breeding & Bioreactor, Zhoukou 466001, China; College of Bioengineering, Henan University of Technology, Zhengzhou 450001, China.
| |
Collapse
|
24
|
Sun Q, Zhao D, Gao M, Wu Y, Zhai L, Sun S, Wu T, Zhang X, Xu X, Han Z, Wang Y. MxMPK6-2-mediated phosphorylation enhances the response of apple rootstocks to Fe deficiency by activating PM H + -ATPase MxHA2. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:69-86. [PMID: 37340905 DOI: 10.1111/tpj.16360] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/12/2023] [Accepted: 06/16/2023] [Indexed: 06/22/2023]
Abstract
Iron (Fe) deficiency significantly affects the growth and development, fruit yield and quality of apples. Apple roots respond to Fe deficiency stress by promoting H+ secretion, which acidifies the soil. In this study, the plasma membrane (PM) H+ -ATPase MxHA2 promoted H+ secretion and root acidification of apple rootstocks under Fe deficiency stress. H+ -ATPase MxHA2 is upregulated in Fe-efficient apple rootstock of Malus xiaojinensis at the transcription level. Fe deficiency also induced kinase MxMPK6-2, a positive regulator in Fe absorption that can interact with MxHA2. However, the mechanism involving these two factors under Fe deficiency stress is unclear. MxMPK6-2 overexpression in apple roots positively regulated PM H+ -ATPase activity, thus enhancing root acidification under Fe deficiency stress. Moreover, co-expression of MxMPK6-2 and MxHA2 in apple rootstocks further enhanced PM H+ -ATPase activity under Fe deficiency. MxMPK6-2 phosphorylated MxHA2 at the Ser909 site of C terminus, Thr320 and Thr412 sites of the Central loop region. Phosphorylation at the Ser909 and Thr320 promoted PM H+ -ATPase activity, while phosphorylation at Thr412 inhibited PM H+ -ATPase activity. MxMPK6-2 also phosphorylated the Fe deficiency-induced transcription factor MxbHLH104 at the Ser169 site, which then could bind to the promoter of MxHA2, thus enhancing MxHA2 upregulation. In conclusion, the MAP kinase MxMPK6-2-mediated phosphorylation directly and indirectly regulates PM H+ -ATPase MxHA2 activity at the protein post-translation and transcription levels, thus synergistically enhancing root acidification under Fe deficiency stress.
Collapse
Affiliation(s)
- Qiran Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Danrui Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Min Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Yue Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Shan Sun
- State Key Laboratory of Membrane Biology, Beijing Frontier Research Center for Biological Structure, Beijing Advanced Innovation Center for Structural Biology, School of Life Sciences, Tsinghua University, Beijing, 100084, People's Republic of China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, People's Republic of China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, People's Republic of China
| |
Collapse
|
25
|
Li Q, Wang G, Zhang L, Zhu S. AcbHLH144 transcription factor negatively regulates phenolic biosynthesis to modulate pineapple internal browning. HORTICULTURE RESEARCH 2023; 10:uhad185. [PMID: 37899952 PMCID: PMC10611554 DOI: 10.1093/hr/uhad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/03/2023] [Indexed: 10/31/2023]
Abstract
Internal browning (IB), a major physiological disorder of pineapples, usually happens in postharvest processes, but the underlying mechanism remains elusive. The bHLH transcription factors are involved in regulating various biological processes, but whether they could regulate tissue browning in fruit during storage remains unknown. Here we showed that the phenolic biosynthesis pathway was activated in pineapples showing IB following 9 days of storage. AcbHLH144 expression was the highest of the 180 transcription factors identified, downregulated in pineapple with IB, and negatively correlated with the major phenolic biosynthetic genes. AcbHLH144 was shown to be localized in the nucleus and its transient overexpression in pineapples and overexpression in Arabidopsis decreased phenolic biosynthesis. The yeast one-hybrid assay and electrophoretic mobility shift assay showed that AcbHLH144 directly bound to the Ac4CL5 promoter and the dual-luciferase reporter assay showed that it inactivated Ac4CL5 transcription. These results strongly suggest AcbHLH144 as a repressor for phenolic biosynthesis. Abscisic acid (ABA) alleviated IB, reduced phenolic accumulation, and downregulated phenolic biosynthetic genes, including Ac4CL5. Transcriptomic analysis showed that AcbHLH144 was the most upregulated of all 39 bHLHs in response to ABA. ABA enhanced AcbHLH144 expression, reduced phenolic contents, and downregulated phenolic biosynthetic genes in pineapples transiently overexpressing AcbHLH144. Moreover, ABA enhanced enzyme activity of GUS driven by the AcbHLH144 promoter. These results showed that AcbHLH144 as a repressor for phenolic biosynthesis could be activated by ABA. Collectively, the work demonstrated that AcbHLH144 negatively regulated phenolic biosynthesis via inactivating Ac4CL5 transcription to modulate pineapple IB. The findings provide novel insight into the role of AcbHLH144 in modulating pineapple IB during postharvest processes.
Collapse
Affiliation(s)
- Qian Li
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Guang Wang
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Ling Zhang
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| | - Shijiang Zhu
- Guangdong Province Key Laboratory of Postharvest Physiology and Technology of Fruit and Vegetables, College of Horticulture, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
26
|
Gao Q, Li X, Xiang C, Li R, Xie H, Liu J, Li X, Zhang G, Yang S, Liang Y, Zhai C, Zhao Y. EbbHLH80 Enhances Salt Responses by Up-Regulating Flavonoid Accumulation and Modulating ROS Levels. Int J Mol Sci 2023; 24:11080. [PMID: 37446256 DOI: 10.3390/ijms241311080] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/24/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
bHLH transcription factors are involved in multiple aspects of plant biology, such as the response to abiotic stress. Erigeron breviscapus is a composite plant, and its rich flavonoids have strong preventive and therapeutic effects on cardio cerebral vascular disease. EbbHLH80, a gene from E. breviscapus that positively regulates flavonoid synthesis, was previously characterized. However, it is unclear whether EbbHLH80 increases flavonoid accumulation, which affects salt tolerance. The function of EbbHLH80 in transgenic tobacco seeds was identified by phylogenetic analysis and metabolome-transcriptome analysis. We investigated the role of EbbHLH80 in salt stress response. Our results showed that the expression of EbbHLH80 increased following salt treatment. Integrating the metabolome and transcriptome analysis of EbbHLH80-OE and Yunyan 87 (WT) seeds, we identified several genes and metabolites related to flavonoid biosynthesis and salt stress. Moreover, EbbHLH80-OE plants displayed higher salt tolerance than wild-type plants during seed germination and seedling growth. After salt treatment, transgenic tobacco had significantly lower levels of reactive oxygen species (ROS) than WT, with enhanced levels of antioxidant enzyme expression. Altogether, our results demonstrated that EbbHLH80 might be a positive regulator, promoting salt tolerance by modulating ROS scavenging and increasing stress-responsive genes.
Collapse
Affiliation(s)
- Qingqing Gao
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Li
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Chunfan Xiang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Ruolan Li
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Hongchun Xie
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Jia Liu
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Xiaoning Li
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Guanghui Zhang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Shengchao Yang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
| | - Yanli Liang
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| | - Chenxi Zhai
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14850, USA
| | - Yan Zhao
- National-Local Joint Engineering Research Center on Gemplasm Innovation & Utilization of Chinese Medicinal Materials in Southwest, The Key Laboratory of Medicinal Plant Biology of Yunnan Province, Yunnan Agricultural University, Kunming 650201, China
- College of Agronomy & Biotechnology, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
27
|
Zhang Z, Fang J, Zhang L, Jin H, Fang S. Genome-wide identification of bHLH transcription factors and their response to salt stress in Cyclocarya paliurus. FRONTIERS IN PLANT SCIENCE 2023; 14:1117246. [PMID: 36968403 PMCID: PMC10035414 DOI: 10.3389/fpls.2023.1117246] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
As a highly valued and multiple function tree species, the leaves of Cyclocarya paliurus are enriched in diverse bioactive substances with healthy function. To meet the requirement for its leaf production and medical use, the land with salt stress would be a potential resource for developing C. paliurus plantations due to the limitation of land resources in China. The basic helix-loop-helix (bHLH) transcription factor protein family, the second largest protein family in plants, has been found to play essential roles in the response to multiple abiotic stresses, especially salt stress. However, the bHLH gene family in C.paliurus has not been investigated. In this study, 159 CpbHLH genes were successfully identified from the whole-genome sequence data, and were classified into 26 subfamilies. Meanwhile, the 159 members were also analyzed from the aspects of protein sequences alignment, evolution, motif prediction, promoter cis-acting elements analysis and DNA binding ability. Based on transcriptome profiling under a hydroponic experiment with four salt concentrations (0%, 0.15%, 0.3%, and 0.45% NaCl), 9 significantly up- or down-regulated genes were screened, while 3 genes associated with salt response were selected in term of the GO annotation results. Totally 12 candidate genes were selected in response to salt stress. Moreover, based on expression analysis of the 12 candidate genes sampled from a pot experiment with three salt concentrations (0%, 0.2% and 0.4% NaCl), CpbHLH36/68/146 were further verified to be involved in the regulation of salt tolerance genes, which is also confirmed by protein interaction network analysis. This study was the first analysis of the transcription factor family at the genome-wide level of C. paliurus, and our findings would not only provide insight into the function of the CpbHLH gene family members involved in salt stress but also drive progress in genetic improvement for the salt tolerance of C. paliurus.
Collapse
Affiliation(s)
- Zijie Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Jie Fang
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Lei Zhang
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| | - Huiyin Jin
- College of Forestry, Nanjing Forestry University, Nanjing, China
| | - Shengzuo Fang
- College of Forestry, Nanjing Forestry University, Nanjing, China
- Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing, China
| |
Collapse
|
28
|
Genome-Wide Identification and Analysis of bHLH Transcription Factors Related to Anthocyanin Biosynthesis in Cymbidium ensifolium. Int J Mol Sci 2023; 24:ijms24043825. [PMID: 36835234 PMCID: PMC9963586 DOI: 10.3390/ijms24043825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/05/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factors are widely distributed across eukaryotic kingdoms and participate in various physiological processes. To date, the bHLH family has been identified and functionally analyzed in many plants. However, systematic identification of bHLH transcription factors has yet to be reported in orchids. Here, 94 bHLH transcription factors were identified from the Cymbidium ensifolium genome and divided into 18 subfamilies. Most CebHLHs contain numerous cis-acting elements associated with abiotic stress responses and phytohormone responses. A total of 19 pairs of duplicated genes were found in the CebHLHs, of which 13 pairs were segmentally duplicated genes and six pairs were tandemly duplicated genes. Expression pattern analysis based on transcriptome data revealed that 84 CebHLHs were differentially expressed in four different color sepals, especially CebHLH13 and CebHLH75 of the S7 subfamily. The expression profiles of CebHLH13 and CebHLH75 in sepals, which are considered potential genes regulating anthocyanin biosynthesis, were confirmed through the qRT-PCR technique. Furthermore, subcellular localization results showed that CebHLH13 and CebHLH75 were located in the nucleus. This research lays a foundation for further exploration of the mechanism of CebHLHs in flower color formation.
Collapse
|
29
|
Sun Z, Zou Y, Xie C, Han L, Zheng X, Tian Y, Ma C, Liu X, Wang C. Brassinolide improves the tolerance of Malus hupehensis to alkaline stress. FRONTIERS IN PLANT SCIENCE 2022; 13:1032646. [PMID: 36507405 PMCID: PMC9731795 DOI: 10.3389/fpls.2022.1032646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Malus hupehensis is one of the most widely used apple rootstocks in china but is severely damaged by alkaline soil. Alkaline stress can cause more serious harmful effects on apple plants than salt stress because it also induces high pH stress except for ion toxicity, osmotic stress, and oxidative damage. Brassinolide (BL) plays important roles in plant responses to salt stress. However, its role and function mechanism in apple plants in response to alkaline stress has never been reported. This study showed that applying exogenous 0.2 mg/L BL significantly enhanced the resistance of M. hupehensis seedlings to alkaline stress. The main functional mechanisms were also explored. First, exogenous BL could decrease the rhizosphere pH and promote Ca2+ and Mg2+ absorption by regulating malic acid and citric acid contents and increasing H+ excretion. Second, exogenous BL could alleviate ion toxicity caused by alkaline stress through enhancing Na+ efflux and inhibiting K+ expel and vacuole compartmentalization. Last, exogenous BL could balance osmotic stress by accumulating proline and reduce oxidative damage through increasing the activities of antioxidant enzymes and antioxidants contents. This study provides an important theoretical basis for further analyzing the mechanism of exogenous BL in improving alkaline tolerance of apple plants.
Collapse
Affiliation(s)
- Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, China
| | - Yawen Zou
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Cheng Xie
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Lei Han
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, China
| |
Collapse
|
30
|
Molecular cloning and functional characterization of MhHEC2-like genes in Malus halliana reveals it enhances Fe (iron) deficiency tolerance. Funct Integr Genomics 2022; 22:1283-1295. [DOI: 10.1007/s10142-022-00917-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Revised: 11/08/2022] [Accepted: 11/08/2022] [Indexed: 11/19/2022]
|
31
|
Gao M, Sun Q, Zhai L, Zhao D, Lv J, Han Z, Wu T, Zhang X, Xu X, Wang Y. Genome-wide identification of apple PPI genes and a functional analysis of the response of MxPPI1 to Fe deficiency stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 189:94-103. [PMID: 36063740 DOI: 10.1016/j.plaphy.2022.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 08/14/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Iron (Fe) deficiency affects plant growth and development. The proton pump interactor (PPI) in plants responds to multiple abiotic stresses, although it has not been well characterized under Fe deficiency stress. In this study, we systematically identified and analyzed the PPI gene family in apple. Three PPI candidate genes were found, and they contained 318-1349 amino acids and 3-7 introns. Under Fe deficiency stress, we analyzed the expression of all the PPI genes in roots of apple rootstock Malus xiaojinensis. Expression of the gene MD11G1247800, designated PPI1, is obviously induced by Fe deficiency treatment in M. xiaojinensis. We first cloned MxPPI1 from M. xiaojinensis and determined its subcellular localization, which indicated that it is localized in the cell membrane and nucleus in tobacco. We found that the level of expression of the MxPPI1 protein increased significantly under Fe deficiency stress in apple calli. Moreover, overexpressing MxPPI1 in apple calli enhanced the activities of ferric chelate reductase and H+-ATPase, H+ secretion, MxHA2 gene expression and total Fe content when compared with the wild type calli. We further found that MxPPI1 interacted with MxHA2 using bimolecular fluorescence complementation and luciferase complementation assays. Overall, we demonstrated that MxPPI1 interacts with MxHA2 to enhance the activity of H+-ATPase to regulate Fe absorption in M. xiaojinensis.
Collapse
Affiliation(s)
- Min Gao
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Qiran Sun
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Danrui Zhao
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Jiahong Lv
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, 100193, PR China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture and Rural Affairs, Beijing, 100193, PR China.
| |
Collapse
|
32
|
Jian L, Kang K, Choi Y, Suh MC, Paek NC. Mutation of OsMYB60 reduces rice resilience to drought stress by attenuating cuticular wax biosynthesis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 112:339-351. [PMID: 35984735 DOI: 10.1111/tpj.15947] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 08/07/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
The cuticular wax layer on leaf surfaces limits non-stomatal water loss to the atmosphere and protects against pathogen invasion. Although many genes associated with wax biosynthesis and wax transport in plants have been identified, their regulatory mechanisms remain largely unknown. Here, we show that the MYB transcription factor OsMYB60 positively regulates cuticular wax biosynthesis and this helps rice (Oryza sativa) plants tolerate drought stress. Compared with the wild type (japonica cultivar 'Dongjin'), osmyb60 null mutants (osmyb60-1 and osmyb60-2) exhibited increased drought sensitivity, with more chlorophyll leaching and higher rates of water loss. Quantitative reverse-transcription PCR showed that the loss of function of OsMYB60 led to downregulation of wax biosynthesis genes, leading to reduced amounts of total wax components on leaf surfaces under normal conditions. Yeast one-hybrid, luciferase transient transcriptional activity, and chromatin immunoprecipitation assays revealed that OsMYB60 directly binds to the promoter of OsCER1 (a key gene involved in very-long-chain alkane biosynthesis) and upregulates its expression. Taken together, these results demonstrate that OsMYB60 enhances rice resilience to drought stress by promoting cuticular wax biosynthesis on leaf surfaces.
Collapse
Affiliation(s)
- Lei Jian
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Kiyoon Kang
- Division of Life Sciences, Incheon National University, Incheon, 22012, Republic of Korea
| | - Yumin Choi
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| | - Mi Chung Suh
- Department of Life Sciences, Sogang University, Seoul, 04107, Republic of Korea
| | - Nam-Chon Paek
- Department of Agriculture, Forestry and Bioresources, Plant Genomics and Breeding Institute, Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, 08826, Republic of Korea
| |
Collapse
|
33
|
Sun Z, Guo D, Lv Z, Bian C, Ma C, Liu X, Tian Y, Wang C, Zheng X. Brassinolide alleviates Fe deficiency-induced stress by regulating the Fe absorption mechanism in Malus hupehensis Rehd. PLANT CELL REPORTS 2022; 41:1863-1874. [PMID: 35781542 DOI: 10.1007/s00299-022-02897-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
Exogenous brassinolide promotes Fe absorption through mechanism I strategy, thus improving the tolerance of Malus hupehensis seedlings to Fe deficiency stress. Iron (Fe) deficiency is a common nutritional disorder that results in decreased yield and poor fruit quality in apple production. As a highly active synthetic analog of brassinosteroids, brassinolide (BL) plays numerous roles in plant responses to abiotic stresses. However, its role in Fe deficiency stress in apple plants has never been reported. Herein, we found that the exogenous application of 0.2 mg L-1 BL could significantly enhance the tolerance of apple seedlings to Fe deficiency stress and result in a low etiolation rate and a high photosynthetic rate. The functional mechanisms of this effect were also explored. We found that first, exogenous BL could improve Fe absorption through the mechanism I strategy. BL induced the activity of H+-ATPase and the expression of MhAHA family genes, resulting in rhizosphere acidification. Moreover, BL could enhance the activity of Fe chelate reductase and absorb Fe through direct binding with the E-box of the MhIRT1 or MhFRO2 promoter via the transcription factors MhBZR1 and MhBZR2. Second, exogenous BL alleviated osmotic stress by increasing the contents of osmolytes (proline, solution proteins, and solution sugar) and scavenged reactive oxygen species by improving the activities of antioxidant enzymes. Lastly, exogenous BL could cooperate with other endogenous plant hormones, such as indole-3-acetic acid, isopentenyl adenosine, and gibberellic acid 4, that respond to Fe deficiency stress indirectly. This work provided a theoretical basis for the application of exogenous BL to alleviate Fe deficiency stress in apple plants.
Collapse
Affiliation(s)
- Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Dianming Guo
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Zhichao Lv
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Chuanjie Bian
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xiaoli Liu
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China
| | - Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China.
- Engineering Laboratory of Genetic Improvement of Horticultural Crops of Shandong Province, Qingdao, 266109, China.
| |
Collapse
|
34
|
Noor I, Sohail H, Sun J, Nawaz MA, Li G, Hasanuzzaman M, Liu J. Heavy metal and metalloid toxicity in horticultural plants: Tolerance mechanism and remediation strategies. CHEMOSPHERE 2022; 303:135196. [PMID: 35659937 DOI: 10.1016/j.chemosphere.2022.135196] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/30/2022] [Accepted: 05/31/2022] [Indexed: 05/27/2023]
Abstract
Heavy metal/metalloids (HMs) are among the primary soil pollutants that limit crop production worldwide. Plants grown in HM contaminated soils exhibit reduced growth and development, resulting in a decrease in crop production. The exposure to HMs induces plant oxidative stress due to the formation of free radicals, which alter plant morphophysiological and biochemical mechanisms at cellular and tissue levels. When exposed to HM toxicity, plants evolve sophisticated physiological and cellular defense strategies, such as sequestration and transportation of metals, to ensure their survival. Plants also have developed efficient strategies by activating signaling pathways, which induce the expression of HM transporters. Plants either avoid the uptake of HMs from the soil or activate the detoxifying mechanism to tolerate HM stress, which involves the production of antioxidants (enzymatic and non-enzymatic) for the scavenging of reactive oxygen species. The metal-binding proteins including phytochelatins and metallothioneins also participate in metal detoxification. Furthermore, phytohormones and their signaling pathways also help to regulate cellular activities to counteract HM stress. The excessive levels of HMs in the soil can contribute to plant morpho-physiological, biochemical, and molecular alterations, which have a detrimental effect on the quality and productivity of crops. To maintain the commercial value of fruits and vegetables, various measures should be considered to remove HMs from the metal-polluted soils. Bioremediation is a promising approach that involves the use of tolerant microorganisms and plants to manage HMs pollution. The understanding of HM toxicity, signaling pathways, and tolerance mechanisms will facilitate the development of new crop varieties that help in improving phytoremediation.
Collapse
Affiliation(s)
- Iqra Noor
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Hamza Sohail
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Jingxian Sun
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Muhammad Azher Nawaz
- Department of Horticulture, College of Agriculture, University of Sargodha, Sargodha, 40100, Pakistan
| | - Guohuai Li
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China
| | - Mirza Hasanuzzaman
- Department of Agronomy, Faculty of Agriculture, Sher-e-Bangla Agricultural University, Dhaka, 1207, Bangladesh.
| | - Junwei Liu
- Key Laboratory of Horticultural Plant Biology-Ministry of Education, College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan, 430070, PR China.
| |
Collapse
|
35
|
Hu X, Xiao X, Zhang CL, Wang GL, Zhang YL, Li YY, You CX. Organization and regulation of the apple SUMOylation system under salt and ABA. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 182:22-35. [PMID: 35460932 DOI: 10.1016/j.plaphy.2022.03.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 03/13/2022] [Accepted: 03/27/2022] [Indexed: 06/14/2023]
Abstract
Small ubiquitin-related modifier (SUMO)-mediated post-translational protein modification is widely conserved among eukaryotes. SUMOylation refers to the covalent attachment of SUMO to target proteins that alters their function, location, and protein-protein interactions when plants are under abiotic stress. We identified 37 genes in the apple genome that encoded members of the SUMOylation pathway. In addition, RNA-Seq data shows their expression levels between different tissues. We can find that there are mainly expressed genes between each component to ensure that the entire pathway works in the plant. We found that the expression levels of 12 genes were significantly changed under NaCl and ABA treatment through qRT-PCR. MdSIZ1a strongly expression responded to NaCl and ABA treatment. Subsequently, MdSIZ1a was cloned and transformed into apple callus, further verifying the important role of the SUMOylation pathway under stress conditions. The interaction between MdSIZ1a and MdSCEa was verified by yeast two-hybrid, confirming that MdSIZ1a acts as bridge enzyme on MdSCEa and target substrates. Finally, we predicted and analyzed the functional interaction network of E3 ligase to shed light on protein interactions and gene regulatory networks associated with DNA damage repair under abiotic stress in apples.
Collapse
Affiliation(s)
- Xing Hu
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xu Xiao
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chun-Ling Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Gui-Luan Wang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Ya-Li Zhang
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yuan-Yuan Li
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China.
| |
Collapse
|
36
|
Zhou Z, Zhang L, Shu J, Wang M, Li H, Shu H, Wang X, Sun Q, Zhang S. Root Breeding in the Post-Genomics Era: From Concept to Practice in Apple. PLANTS (BASEL, SWITZERLAND) 2022; 11:1408. [PMID: 35684181 PMCID: PMC9182997 DOI: 10.3390/plants11111408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 05/05/2022] [Accepted: 05/23/2022] [Indexed: 06/15/2023]
Abstract
The development of rootstocks with a high-quality dwarf-type root system is a popular research topic in the apple industry. However, the precise breeding of rootstocks is still challenging, mainly because the root system is buried deep underground, roots have a complex life cycle, and research on root architecture has progressed slowly. This paper describes ideas for the precise breeding and domestication of wild apple resources and the application of key genes. The primary goal of this research is to combine the existing rootstock resources with molecular breeding and summarize the methods of precision breeding. Here, we reviewed the existing rootstock germplasm, high-quality genome, and genetic resources available to explain how wild resources might be used in modern breeding. In particular, we proposed the 'from genotype to phenotype' theory and summarized the difficulties in future breeding processes. Lastly, the genetics governing root diversity and associated regulatory mechanisms were elaborated on to optimize the precise breeding of rootstocks.
Collapse
Affiliation(s)
- Zhou Zhou
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Lei Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Jing Shu
- College of Forestry Engineering, Shandong Agriculture and Engineering University, Jinan 250100, China;
| | - Mengyu Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Han Li
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Huairui Shu
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Xiaoyun Wang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Qinghua Sun
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| | - Shizhong Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Tai’an 271018, China; (Z.Z.); (L.Z.); (M.W.); (H.L.); (H.S.); (X.W.)
| |
Collapse
|
37
|
Abstract
H+-ATPases, including the phosphorylated intermediate-type (P-type) and vacuolar-type (V-type) H+-ATPases, are important ATP-driven proton pumps that generate membrane potential and provide proton motive force for secondary active transport. P- and V-type H+-ATPases have distinct structures and subcellular localizations and play various roles in growth and stress responses. A P-type H+-ATPase is mainly regulated at the posttranslational level by phosphorylation and dephosphorylation of residues in its autoinhibitory C terminus. The expression and activity of both P- and V-type H+-ATPases are highly regulated by hormones and environmental cues. In this review, we summarize the recent advances in understanding of the evolution, regulation, and physiological roles of P- and V-type H+-ATPases, which coordinate and are involved in plant growth and stress adaptation. Understanding the different roles and the regulatory mechanisms of P- and V-type H+-ATPases provides a new perspective for improving plant growth and stress tolerance by modulating the activity of H+-ATPases, which will mitigate the increasing environmental stress conditions associated with ongoing global climate change.
Collapse
Affiliation(s)
- Ying Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
| | - Houqing Zeng
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| | - Feiyun Xu
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| | - Feng Yan
- Institute of Agronomy and Plant Breeding, Justus Liebig University of Giessen, Giessen, Germany
| | - Weifeng Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, College of Agriculture, Yangzhou University, Yangzhou, China
- Center for Plant Water-Use and Nutrition Regulation, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China;
| |
Collapse
|
38
|
Hao P, Lv X, Fu M, Xu Z, Tian J, Wang Y, Zhang X, Xu X, Wu T, Han Z. Long-distance mobile mRNA CAX3 modulates iron uptake and zinc compartmentalization. EMBO Rep 2022; 23:e53698. [PMID: 35254714 PMCID: PMC9066076 DOI: 10.15252/embr.202153698] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/25/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Iron deficiency in plants can lead to excessive absorption of zinc; however, important details of this mechanism have yet to be elucidated. Here, we report that MdCAX3 mRNA is transported from the leaf to the root, and that MdCAX3 is then activated by MdCXIP1. Suppression of MdCAX3 expression leads to an increase in the root apoplastic pH, which is associated with the iron deficiency response. Notably, overexpression of MdCAX3 does not affect the apoplastic pH in a MdCXIP1 loss-of-function Malus baccata (Mb) mutant that has a deletion in the MdCXIP1 promoter. This deletion in Mb weakens MdCXIP1 expression. Co-expression of MdCAX3 and MdCXIP1 in Mb causes a decrease in the root apoplastic pH. Furthermore, suppressing MdCAX3 in Malus significantly reduces zinc vacuole compartmentalization. We also show that MdCAX3 activated by MdCXIP1 is not only involved in iron uptake, but also in regulating zinc detoxification by compartmentalizing zinc in vacuoles to avoid iron starvation-induced zinc toxicity. Thus, mobile MdCAX3 mRNA is involved in the regulation of iron and zinc homeostasis in response to iron starvation.
Collapse
Affiliation(s)
- Pengbo Hao
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xinmin Lv
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Mengmeng Fu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhen Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Ji Tian
- Plant Science and Technology College, Beijing University of Agriculture, Beijing, China
| | - Yi Wang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xinzhong Zhang
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Xuefeng Xu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Ting Wu
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| | - Zhenhai Han
- State Key Laboratory of Agrobiotechnology, College of Horticulture, China Agricultural University, Beijing, China
| |
Collapse
|
39
|
Feng ZQ, Li T, Wang X, Sun WJ, Zhang TT, You CX, Wang XF. Identification and characterization of apple MdNLP7 transcription factor in the nitrate response. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2022; 316:111158. [PMID: 35151440 DOI: 10.1016/j.plantsci.2021.111158] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Nitrogen is an essential nutrient for plant growth and development. Low utilization of nitrogen fertilizer during agricultural production causes a series of environmental problems, such as water eutrophication, soil acidity, and air pollution. Investigating the patterns and mechanisms of crop NO3- absorption and utilization therefore key to fully improving crop nitrogen utilization rates and promoting sustainable agricultural development. Apple is one of the most important horticultural crops in the world. Its nitrogen demand by apple during the growth period is very high, but few studies have been performed on apple genes, that regulate the NO3- response. Here, we found that the apple transcription factor MdNLP7 promoted nitrogen absorption and assimilation by activating the expression of MdNIA2 and MdNRT1.1. MdNLP7 also regulated H2O2 content by increasing catalase activity, which may also influence nitrate utilization. Our findings provide insight into the mechanisms by which MdNLP7 controls nitrate utilization in apple.
Collapse
Affiliation(s)
- Zi-Quan Feng
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Tong Li
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Wei-Jian Sun
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Ting-Ting Zhang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, National Research Center for Apple Engineering and Technology, Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production, Shandong Agricultural University, Tai'an, 271018, Shandong, China.
| |
Collapse
|
40
|
Zhang ZX, Zhang R, Wang SC, Zhang D, Zhao T, Liu B, Wang YX, Wu YX. Identification of Malus halliana R2R3-MYB gene family under iron deficiency stress and functional characteristics of MhR2R3-MYB4 in Arabidopsis thaliana. PLANT BIOLOGY (STUTTGART, GERMANY) 2022; 24:344-355. [PMID: 34921493 DOI: 10.1111/plb.13373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 11/14/2021] [Indexed: 06/14/2023]
Abstract
Iron (Fe) is an essential element for plant growth and development. Fe deficiency can trigger leaf chlorosis and reduce fruit yield. Therefore, it is necessary to explore transcription factors in response to Fe deficiency stress. A total of 29 MhR2R3-MYB transcription factors were identified based on the transcriptome of Malus halliana under Fe deficiency stress. A comprehensive analysis of physical and chemical properties, gene structures, conserved motif composition, evolutionary relationship and chromosome distribution was performed. Subsequently, based on the transcriptome, 14 genes with the most significant expression under Fe deficiency stress were screened for qRT-PCR verification. Among them,the functional characteristics of MhR2R3-MYB4 (MD05G1089600) were further studied in Arabidopsis thaliana. Expression of 13 out of these 14 genes was upregulated, only one was downregulated. Maximum upregulation of MhR2R3-MYB4 under Fe deficiency was 36.39-fold and 58.21-fold compared with day 0 in leaves and roots, respectively. Overexpression of MhR2R3-MYB4 enhanced tolerance to Fe deficiency in A. thaliana and led to multiple biochemical changes: transgenic lines have higher chl a, chl b and Fe2+ content, higher enzyme activity (SOD, POD, CAT and FCR) and lower chlorosis than the wild type in Fe deficiency conditions. We suggest that MhR2R3-MYB4 plays an important part in Fe deficiency stress, which may contribute to improve Fe deficiency tolerance of apple in future.
Collapse
Affiliation(s)
- Z-X Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - R Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - S-C Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - D Zhang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - T Zhao
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - B Liu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Y-X Wang
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| | - Y-X Wu
- College of Horticulture, Gansu Agricultural University, Lanzhou, 730070, China
| |
Collapse
|
41
|
Fan Z, Wu Y, Zhao L, Fu L, Deng L, Deng J, Ding D, Xiao S, Deng X, Peng S, Pan Z. MYB308-mediated transcriptional activation of plasma membrane H + -ATPase 6 promotes iron uptake in citrus. HORTICULTURE RESEARCH 2022; 9:uhac088. [PMID: 35685222 PMCID: PMC9171118 DOI: 10.1093/hr/uhac088] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Accepted: 03/30/2022] [Indexed: 05/15/2023]
Abstract
Iron-deficiency chlorosis is a common nutritional disorder in crops grown on alkaline or calcareous soils. Although the acclimation mechanism to iron deficiency has been investigated, the genetic regulation of iron acquisition is still unclear. Here, by comparing the iron uptake process between the iron-poor-soil-tolerant citrus species Zhique (ZQ) and the iron-poor-soil-sensitive citrus species trifoliate orange (TO), we discovered that enhanced root H + efflux is crucial for the tolerance to iron deficiency in ZQ. The H+ efflux is mainly regulated by a plasma membrane-localized H+-ATPase, HA6, the expression of which is upregulated in plants grown in soil with low iron content, and significantly higher in the roots of ZQ than TO. Overexpression of the HA6 gene in the Arabidopsis thaliana aha2 mutant, defective in iron uptake, recovered the wild-type phenotype. In parallel, overexpression of the HA6 gene in TO significantly increased iron content of plants. Moreover, an iron deficiency-induced transcription factor, MYB308, was revealed to bind the promoter and activate the expression of HA6 in ZQ in yeast one-hybrid, electrophoretic mobility shift, and dual-luciferase assays. Overexpression of MYB308 in ZQ roots significantly increased the expression level of the HA6 gene. However, MYB308 cannot bind or activate the HA6 promoter in TO due to the sequence variation of the corresponding MYB308 binding motif. Taking these results together, we propose that the MYB308 could activate HA6 to promote root H+ efflux and iron uptake, and that the distinctive MYB308-HA6 transcriptional module may be, at least in part, responsible for the iron deficiency tolerance in citrus.
Collapse
Affiliation(s)
- Zhengyan Fan
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Yifang Wu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Liuying Zhao
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lina Fu
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Lile Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiarui Deng
- Chenggu Fruit Industry Technical Guidance Station, Shaanxi 723200, China
| | - Dekuan Ding
- Chenggu Fruit Industry Technical Guidance Station, Shaanxi 723200, China
| | - Shunyuan Xiao
- Institute for Bioscience and Biotechnology Research & Department of Plant Sciences and Landscape Architecture, University of Maryland College Park, Rockville, MD 20850, USA
| | - Xiuxin Deng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Shu’ang Peng
- Key Laboratory of Horticultural Plant Biology (Ministry of Education), Key Laboratory of Horticultural Crop Biology and Genetic Improvement (Central Region, Ministry of Agriculture), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | | |
Collapse
|
42
|
Sharmin RA, Karikari B, Chang F, Al Amin GM, Bhuiyan MR, Hina A, Lv W, Chunting Z, Begum N, Zhao T. Genome-wide association study uncovers major genetic loci associated with seed flooding tolerance in soybean. BMC PLANT BIOLOGY 2021; 21:497. [PMID: 34715792 PMCID: PMC8555181 DOI: 10.1186/s12870-021-03268-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Accepted: 09/29/2021] [Indexed: 06/01/2023]
Abstract
BACKGROUND Seed flooding stress is one of the threatening environmental stressors that adversely limits soybean at the germination stage across the globe. The knowledge on the genetic basis underlying seed-flooding tolerance is limited. Therefore, we performed a genome-wide association study (GWAS) using 34,718 single nucleotide polymorphism (SNPs) in a panel of 243 worldwide soybean collections to identify genetic loci linked to soybean seed flooding tolerance at the germination stage. RESULTS In the present study, GWAS was performed with two contrasting models, Mixed Linear Model (MLM) and Multi-Locus Random-SNP-Effect Mixed Linear Model (mrMLM) to identify significant SNPs associated with electrical conductivity (EC), germination rate (GR), shoot length (ShL), and root length (RL) traits at germination stage in soybean. With MLM, a total of 20, 40, 4, and 9 SNPs associated with EC, GR, ShL and RL, respectively, whereas in the same order mrMLM detected 27, 17, 13, and 18 SNPs. Among these SNPs, two major SNPs, Gm_08_11971416, and Gm_08_46239716 were found to be consistently connected with seed-flooding tolerance related traits, namely EC and GR across two environments. We also detected two SNPs, Gm_05_1000479 and Gm_01_53535790 linked to ShL and RL, respectively. Based on Gene Ontology enrichment analysis, gene functional annotations, and protein-protein interaction network analysis, we predicted eight candidate genes and three hub genes within the regions of the four SNPs with Cis-elements in promoter regions which may be involved in seed-flooding tolerance in soybeans and these warrant further screening and functional validation. CONCLUSIONS Our findings demonstrate that GWAS based on high-density SNP markers is an efficient approach to dissect the genetic basis of complex traits and identify candidate genes in soybean. The trait associated SNPs could be used for genetic improvement in soybean breeding programs. The candidate genes could help researchers better understand the molecular mechanisms underlying seed-flooding stress tolerance in soybean.
Collapse
Affiliation(s)
- Ripa Akter Sharmin
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
- Jagannath University, Dhaka, 1100, Bangladesh
| | - Benjamin Karikari
- Department of Crop Science, Faculty of Agriculture, Food and Consumer Sciences, University for Development Studies, Tamale, Ghana
| | - Fangguo Chang
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - G M Al Amin
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Mashiur Rahman Bhuiyan
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Aiman Hina
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Wenhuan Lv
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhang Chunting
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Naheeda Begum
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China
| | - Tuanjie Zhao
- National Center for Soybean Improvement, Key Laboratory of Biology and Genetics and Breeding for Soybean, Ministry of Agriculture, State Key Laboratory of Crop Genetics and Germplasm Enhancement, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
43
|
Huang XY, Wang CK, Zhao YW, Sun CH, Hu DG. Mechanisms and regulation of organic acid accumulation in plant vacuoles. HORTICULTURE RESEARCH 2021; 8:227. [PMID: 34697291 PMCID: PMC8546024 DOI: 10.1038/s41438-021-00702-z] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/09/2021] [Accepted: 09/24/2021] [Indexed: 06/13/2023]
Abstract
In fleshy fruits, organic acids are the main source of fruit acidity and play an important role in regulating osmotic pressure, pH homeostasis, stress resistance, and fruit quality. The transport of organic acids from the cytosol to the vacuole and their storage are complex processes. A large number of transporters carry organic acids from the cytosol to the vacuole with the assistance of various proton pumps and enzymes. However, much remains to be explored regarding the vacuolar transport mechanism of organic acids as well as the substances involved and their association. In this review, recent advances in the vacuolar transport mechanism of organic acids in plants are summarized from the perspectives of transporters, channels, proton pumps, and upstream regulators to better understand the complex regulatory networks involved in fruit acid formation.
Collapse
Affiliation(s)
- Xiao-Yu Huang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Chu-Kun Wang
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Yu-Wen Zhao
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China
| | - Cui-Hui Sun
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| | - Da-Gang Hu
- National Key Laboratory of Crop Biology; Shandong Collaborative Innovation Center of Fruit & Vegetable Quality and Efficient Production; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, Shandong, 271018, China.
| |
Collapse
|
44
|
Zheng X, Chen H, Su Q, Wang C, Sha G, Ma C, Sun Z, Yang X, Li X, Tian Y. Resveratrol improves the iron deficiency adaptation of Malus baccata seedlings by regulating iron absorption. BMC PLANT BIOLOGY 2021; 21:433. [PMID: 34556040 PMCID: PMC8459475 DOI: 10.1186/s12870-021-03215-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND Resveratrol (Res), a phytoalexin, has been widely reported to participate in plant resistance to fungal infections. However, little information is available on its role in abiotic stress, especially in iron deficiency stress. Malus baccata is widely used as apple rootstock in China, but it is sensitive to iron deficiency. RESULTS In this study, we investigated the role of exogenous Res in M. baccata seedings under iron deficiency stress. Results showed that applying 100 μM exogenous Res could alleviate iron deficiency stress. The seedlings treated with Res had a lower etiolation rate and higher chlorophyll content and photosynthetic rate compared with the apple seedlings without Res treatment. Exogenous Res increased the iron content in the roots and leaves by inducing the expression of MbAHA genes and improving the H+-ATPase activity. As a result, the rhizosphere pH decreased, iron solubility increased, the expression of MbFRO2 and MbIRT1 was induced, and the ferric-chelated reductase activity was enhanced to absorb large amounts of Fe2+ into the root cells under iron deficiency conditions. Moreover, exogenous Res application increased the contents of IAA, ABA, and GA3 and decreased the contents of DHZR and BL for responding to iron deficiency stress indirectly. In addition, Res functioned as an antioxidant that strengthened the activities of antioxidant enzymes and thus eliminated reactive oxygen species production induced by iron deficiency stress. CONCLUSION Resveratrol improves the iron deficiency adaptation of M. baccata seedlings mainly by regulating iron absorption.
Collapse
Affiliation(s)
- Xiaodong Zheng
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Huifang Chen
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Qiufang Su
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Caihong Wang
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Guangli Sha
- Qingdao Academy of Agricultrual Science, Qingdao, 266109, China
| | - Changqing Ma
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China
| | - Zhijuan Sun
- College of Life Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xueqing Yang
- College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Xiangyang Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Guiyang, 550025, China
| | - Yike Tian
- College of Horticulture, Qingdao Agricultural University, No. 700 Changcheng Road, Qingdao, 266109, China.
- Qingdao Key Laboratory of Genetic Improvement and Breeding in Horticulture Plants, Qingdao, 266109, China.
| |
Collapse
|
45
|
Qian Y, Zhang T, Yu Y, Gou L, Yang J, Xu J, Pi E. Regulatory Mechanisms of bHLH Transcription Factors in Plant Adaptive Responses to Various Abiotic Stresses. FRONTIERS IN PLANT SCIENCE 2021; 12:677611. [PMID: 34220896 PMCID: PMC8250158 DOI: 10.3389/fpls.2021.677611] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Accepted: 05/19/2021] [Indexed: 05/05/2023]
Abstract
Basic helix-loop-helix proteins (bHLHs) comprise one of the largest families of transcription factors in plants. They have been shown to be involved in responses to various abiotic stresses, such as drought, salinity, chilling, heavy metal toxicity, iron deficiency, and osmotic damages. By specifically binding to cis-elements in the promoter region of stress related genes, bHLHs can regulate their transcriptional expression, thereby regulating the plant's adaptive responses. This review focuses on the structural characteristics of bHLHs, the regulatory mechanism of how bHLHs are involved transcriptional activation, and the mechanism of how bHLHs regulate the transcription of target genes under various stresses. Finally, as increasing research demonstrates that flavonoids are usually induced under fluctuating environments, the latest research progress and future research prospects are described on the mechanisms of how flavonoid biosynthesis is regulated by bHLHs in the regulation of the plant's responses to abiotic stresses.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Erxu Pi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, China
| |
Collapse
|
46
|
Chen W, Zheng Q, Li J, Liu Y, Xu L, Zhang Q, Luo Z. DkMYB14 is a bifunctional transcription factor that regulates the accumulation of proanthocyanidin in persimmon fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2021; 106:1708-1727. [PMID: 33835602 DOI: 10.1111/tpj.15266] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 03/18/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Proanthocyanidins (PAs) are phenolic secondary metabolites that contribute to the protection of plant and human health. Persimmon (Diospyros kaki Thunb.) can accumulate abundant PAs in fruit, which cause a strong sensation of astringency. Proanthocyanidins can be classified into soluble and insoluble PAs; the former cause astringency but the latter do not. Soluble PAs can be converted into insoluble PAs upon interacting with acetaldehydes. We demonstrate here that DkMYB14, which regulates the accumulation of PA in persimmon fruit flesh, is a bifunctional transcription factor that acts as a repressor in PA biosynthesis but becomes an activator when involved in acetaldehyde biosynthesis. Interestingly, both functions contribute to the elimination of astringency by decreasing PA biosynthesis and promoting its insolubilization. We show that the amino acid Gly39 in the R2 domain and the ethylene response factor-associated amphiphilic repression-like motif in the C-terminal of DkMYB14 are essential for the regulation of both PA and acetaldehyde synthesis. The repressive function of DkMYB14 was lost after the mutation of either motif, and all activities of DkMYB14 were eliminated following the mutation of both motifs. Our results demonstrate that DkMYB14 functions as both a transcriptional activator and a repressor, directly repressing biosynthesis of PA and promoting its insolubilization, resulting in non-astringency in persimmon.
Collapse
Affiliation(s)
- Wenxing Chen
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qingyou Zheng
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Jinwang Li
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Ying Liu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Liqing Xu
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Qinglin Zhang
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| | - Zhengrong Luo
- Key Laboratory of Horticultural Plant Biology, Huazhong Agricultural University, Wuhan, Hubei, 430070, China
| |
Collapse
|
47
|
Sun WJ, Zhang JC, Ji XL, Feng ZQ, Wang X, Huang WJ, You CX, Wang XF, Hao YJ. Low nitrate alleviates iron deficiency by regulating iron homeostasis in apple. PLANT, CELL & ENVIRONMENT 2021; 44:1869-1884. [PMID: 33459386 DOI: 10.1111/pce.13998] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Revised: 12/30/2020] [Accepted: 01/04/2021] [Indexed: 05/13/2023]
Abstract
Iron (Fe) is an essential element for plant growth, development and metabolism. Due to its lack of solubility and low bioavailability in soil, Fe levels are usually far below the optimum amount for most plants' growth and development. In apple production, excessive use of nitrogen fertilizer may cause iron chlorosis symptoms in the newly growing leaves, but the regulatory mechanisms underlying this phenomenon are unclear. In this study, low nitrate (NO3- , LN) application alleviated the symptoms of Fe deficiency and promoted lower rhizosphere pH, which was beneficial for root Fe acquisition. At the same time, LN treatment increased citrate and abscisic acid accumulation in roots, which promoted Fe transport from root to shoot and maintained Fe homeostasis. Moreover, qRT-PCR analysis showed that nitrate application caused differential expression of genes related to Fe uptake and transport, as well as transcriptional regulators. In summary, our data reveal that low nitrate alleviated Fe deficiency through multiple pathways, demonstrating a new option for minimizing Fe deficiency by regulating the balance between nutrients.
Collapse
Affiliation(s)
- Wei-Jian Sun
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
- Shandong Salver Group, Salver Academy of Botany, Rizhao, China
| | - Jiu-Cheng Zhang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xing-Long Ji
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Zi-Quan Feng
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xun Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Wen-Jing Huang
- Yunnan Academy of Agricultural Sciences, Horticultural Institute of Yunnan Academy of Agricultural Science, Kunming, China
| | - Chun-Xiang You
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Xiao-Fei Wang
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| | - Yu-Jin Hao
- State Key Laboratory of Crop Biology, Shandong Collaborative Innovation Center for Fruit and Vegetable Production with High Quality and Efficiency, College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
48
|
Gao F, Dubos C. Transcriptional integration of plant responses to iron availability. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:2056-2070. [PMID: 33246334 DOI: 10.1093/jxb/eraa556] [Citation(s) in RCA: 77] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Accepted: 11/23/2020] [Indexed: 05/16/2023]
Abstract
Iron is one of the most important micronutrients for plant growth and development. It functions as the enzyme cofactor or component of electron transport chains in various vital metabolic processes, including photosynthesis, respiration, and amino acid biosynthesis. To maintain iron homeostasis, and therefore prevent any deficiency or excess that could be detrimental, plants have evolved complex transcriptional regulatory networks to tightly control iron uptake, translocation, assimilation, and storage. These regulatory networks are composed of various transcription factors; among them, members of the basic helix-loop-helix (bHLH) family play an essential role. Here, we first review recent advances in understanding the roles of bHLH transcription factors involved in the regulatory cascade controlling iron homeostasis in the model plant Arabidopsis, and extend this understanding to rice and other plant species. The importance of other classes of transcription factors will also be discussed. Second, we elaborate on the post-translational mechanisms involved in the regulation of these regulatory networks. Finally, we provide some perspectives on future research that should be conducted in order to precisely understand how plants control the homeostasis of this micronutrient.
Collapse
Affiliation(s)
- Fei Gao
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| | - Christian Dubos
- BPMP, Univ Montpellier, CNRS, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
49
|
Li D, Sun Q, Zhang G, Zhai L, Li K, Feng Y, Wu T, Zhang X, Xu X, Wang Y, Han Z. MxMPK6-2-bHLH104 interaction is involved in reactive oxygen species signaling in response to iron deficiency in apple rootstock. JOURNAL OF EXPERIMENTAL BOTANY 2021; 72:1919-1932. [PMID: 33216933 DOI: 10.1093/jxb/eraa547] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Accepted: 11/15/2020] [Indexed: 05/16/2023]
Abstract
Iron (Fe) is a trace element necessary for plant growth. Many land plants have evolved a set of mechanisms associated with the Fe absorption process to deal with the problem of insufficient Fe supply in the soil. During Fe absorption, reactive oxygen species (ROS) can be used as a signal to initiate a response to stress caused by Fe deficiency. However, the molecular mechanisms underlying the involvement of ROS in the Fe deficiency stress response remains unclear. In this study, we have identified a kinase, MxMPK6-2, from Malus xiaojinensis, an apple rootstock that is highly efficient at Fe absorption. MxMPK6-2 has been shown to be responsive to ROS signals during Fe deficiency, and MxMPK6-2 overexpression in apple calli enhanced its tolerance to Fe deficiency. We further screened for proteins in the Fe absorption pathway and identified MxbHLH104, a transcription factor which interacts with MxMPK6-2. MxbHLH104 can be phosphorylated by MxMPK6-2 in vivo, and we confirmed that its phosphorylation increased Fe absorption in apple calli under Fe deficiency, with the presence of ROS promoting this process. Overall, we have demonstrated that MxMPK6-2 is responsive to ROS signaling during Fe deficiency, and is able to control its response by regulating MxbHLH104.
Collapse
Affiliation(s)
- Duyue Li
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Qiran Sun
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Guifen Zhang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Longmei Zhai
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Keting Li
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Yi Feng
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Ting Wu
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Xinzhong Zhang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Xuefeng Xu
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Yi Wang
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| | - Zhenhai Han
- College of Horticulture, China Agricultural University, Beijing, P. R. China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Nutrition and Physiology), Ministry of Agriculture, Beijing, P. R. China
| |
Collapse
|
50
|
Bai Q, Shen Y, Huang Y. Advances in Mineral Nutrition Transport and Signal Transduction in Rosaceae Fruit Quality and Postharvest Storage. FRONTIERS IN PLANT SCIENCE 2021; 12:620018. [PMID: 33692815 PMCID: PMC7937644 DOI: 10.3389/fpls.2021.620018] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/11/2021] [Indexed: 05/12/2023]
Abstract
Mineral nutrition, taken up from the soil or foliar sprayed, plays fundamental roles in plant growth and development. Among of at least 14 mineral elements, the macronutrients nitrogen (N), potassium (K), phosphorus (P), and calcium (Ca) and the micronutrient iron (Fe) are essential to Rosaceae fruit yield and quality. Deficiencies in minerals strongly affect metabolism with subsequent impacts on the growth and development of fruit trees. This ultimately affects the yield, nutritional value, and quality of fruit. Especially, the main reason of the postharvest storage loss caused by physiological disorders is the improper proportion of mineral nutrient elements. In recent years, many important mineral transport proteins and their regulatory components are increasingly revealed, which make drastic progress in understanding the molecular mechanisms for mineral nutrition (N, P, K, Ca, and Fe) in various aspects including plant growth, fruit development, quality, nutrition, and postharvest storage. Importantly, many studies have found that mineral nutrition, such as N, P, and Fe, not only affects fruit quality directly but also influences the absorption and the content of other nutrient elements. In this review, we provide insights of the mineral nutrients into their function, transport, signal transduction associated with Rosaceae fruit quality, and postharvest storage at physiological and molecular levels. These studies will contribute to provide theoretical basis to improve fertilizer efficient utilization and fruit industry sustainable development.
Collapse
|