1
|
Dayama BR, Mahadik VA, Somani D, Shinde BA, Kondhare KR, Karthikeyan M, Kadoo NY. Transcriptome analyses reveal TaWRKY41 as a potential candidate governing spot blotch resistance in wheat. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2025; 31:591-608. [PMID: 40443467 PMCID: PMC12116962 DOI: 10.1007/s12298-025-01583-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 02/21/2025] [Accepted: 03/18/2025] [Indexed: 06/02/2025]
Abstract
Spot blotch disease caused by Bipolaris sorokiniana poses a significant threat to wheat production. Cultivation of disease-resistant wheat genotypes appears to be the most practical approach to mitigate the impact of this devastating disease. However, the molecular responses of wheat plants during spot blotch disease progression remain poorly understood. This study employed RNA-sequencing to unravel the spatiotemporal molecular events underlying the resistance mechanism in the spot blotch susceptible and resistant wheat genotypes. This study further provides a comprehensive overview of differentially expressed transcripts through functional analysis and transcription factor identification, elucidating the biological mechanisms governing wheat-B. sorokiniana interaction. In the resistant genotype, the expression of one of the key transcription factors, TaWRKY41, was significantly induced upon pathogen inoculation. Computational studies, electrophoretic-mobility shift assay, and yeast one-hybrid assay confirmed the interaction of the recombinant TaWRKY41 protein with W-box elements present in the promoters of plant defense-related genes. Furthermore, co-expression network analyses identified downstream genes positively correlated with TaWRKY41, providing insights into their probable involvement in the defense response. Overall, our investigation suggests that TaWRKY41 contributes to spot blotch resistance in wheat. This knowledge can help develop new disease-resistant wheat varieties. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-025-01583-5.
Collapse
Affiliation(s)
- Bhakti R. Dayama
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Varsha A. Mahadik
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Deepika Somani
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Balkrishna A. Shinde
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- MIT School of Bioengineering Sciences & Research, MIT-ADT University, Rajbaug, Loni Kalbhor, Pune, Maharashtra 412201 India
| | - Kirtikumar R. Kondhare
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| | - Muthukumarasamy Karthikeyan
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
- Chemical Engineering and Process Development Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
| | - Narendra Y. Kadoo
- Biochemical Sciences Division, CSIR-National Chemical Laboratory, Pune, Maharashtra 411008 India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh 201002 India
| |
Collapse
|
2
|
Sharma S, Kumari P, Shandilya M, Thakur S, Perveen K, Sheikh I, Ahmed Z, Sayyed R, Mastinu A. The Combination of α-Fe 2O 3 NP and Trichoderma sp. Improves Antifungal Activity Against Fusarium Wilt. J Basic Microbiol 2025; 65:e2400613. [PMID: 39828989 PMCID: PMC11973845 DOI: 10.1002/jobm.202400613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 12/07/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025]
Abstract
Soil-borne plant pathogens are the most damaging pathogens responsible for severe crop damage. A conventional chemotherapy approach to these pathogens has numerous environmental issues, while biological control agents (BCAs) are less promising under field conditions. There is an immediate need to develop an integrated strategy for utilizing nanoparticles and biocontrol to manage soil-borne pathogens, such as Fusarium wilt, effectively. Simulation of BCA metabolites to nanoparticle biocontrol metabolites is considered the most effective biocontrol approach. Combining Fe2O3 nanoparticles and Trichoderma in nursery and field conditions manages pathogens and increases plant growth characteristics. The present study evaluated the commercial biocontrol strains and the use of NPFe in combination with Trichoderma harzianum to enhance the biocontrol potential of T. harzianum against soil-borne pathogens. The effectiveness of (NPFe + T. harzianum) was evaluated under in vitro conditions where combination was found most effective upto (87.63%) mycelial growth inhibition of pathogen and under field conditions lowest pooled Fusarium wilt incidence (19.54%) was recorded. Nanocomposites are beneficial for agricultural sustainability and environmental safety by upregulating the expression of genes linked to these processes, Fe NPs can activate plant defense mechanisms and increase plant resistance to pathogenic invasions. Additionally, as iron is a necessary component for plant growth and development, Fe NPs promote better nutrient uptake.
Collapse
Affiliation(s)
- Sushma Sharma
- Department of Plant Pathology, Dr. Khem Singh Gill Akal College of AgricultureEternal UniversityBaru SahibIndia
| | - Poonam Kumari
- Department of Physics, Akal College of Basic SciencesEternal UniversityBaru SahibIndia
| | - Mamta Shandilya
- School of Physics and Materials ScienceShoolini UniversitySolanIndia
| | - Sapna Thakur
- Department of Plant Pathology, Dr. Khem Singh Gill Akal College of AgricultureEternal UniversityBaru SahibIndia
| | - Kahkashan Perveen
- Department of Botany and Microbiology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
| | - Imran Sheikh
- Department of Plant Pathology, Dr. Khem Singh Gill Akal College of AgricultureEternal UniversityBaru SahibIndia
| | - Zubair Ahmed
- Department of Botany, Hindu CollegeMahatma Jyotiba Phule Rohilkhand UniversityBareillyIndia
| | - Riyaz Sayyed
- Department of Biological Science and Chemistry, College of Arts and ScienceUniversity of NizwaNizwaSultanate of Oman
| | - Andrea Mastinu
- Department of Molecular and Translational Medicine, Division of PharmacologyUniversity of BresciaBresciaItaly
| |
Collapse
|
3
|
Wang C, Ahsan T, Ding A, Han D, Gao J, Liang CH, Du ST, Wei Y, Huang YQ, Zhang SH. Colonization of Serendipita indica enhances resistance against Phoma arachidicola in Arachis hypogaea L. World J Microbiol Biotechnol 2025; 41:28. [PMID: 39789344 DOI: 10.1007/s11274-024-04244-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/28/2024] [Indexed: 01/12/2025]
Abstract
The endophytic fungus Serendipita indica (Si) could suppress Phoma arachidicola (Pa) and control peanut web blotch disease. The study evaluated its growth-promoting and disease-resistant effects in two peanut cultivars, Luhua11 and Baisha1016. In vitro experiments and microscopy analysis demonstrated that S. indica suppressed the growth of P. arachidicola. Additionally, scanning electron microscopy illustrated that S. indica adversely affected the pathogen's hyphae. LSi treatment showed the highest stem height (35 cm), root length (15.533 cm), shoot fresh weight (9.33 g), shoot dry weight (1.30085 g), root dry weight (0.1990 g), and chlorophyll a (1.3253) and b (1.8316), while BPa had the lowest values of these parameters. The highest MDA value was observed at 96 h for BPa with (3.14598 nmol/g), and the highest proline value was observed at 72 h for LSi-Pa with (56.42851 µmol/g). Antioxidant enzymes, catalase, peroxidase, ascorbate peroxidase, and phenylalanine ammonia-lyase, increased significantly after 48 h in cultivar L. The most significant result is observed in salicylic acid with LSi-Pa at 72 h (702.10 µg/mL), showing a consistent significant difference. RNA-seq analysis revealed more pronounced transcriptomic changes in cultivar L, with enriched pathways related to flavonoid biosynthesis and defense responses. The LSi-Pa treatment significantly upregulated gene expression at 96 h, with AhNPR1 (0.05807), AhNPR10 (0.10536), AhPAL1 (4.30831), and Ahcapx (0.22074), demonstrating a strong regulatory effect. These results demonstrate that S. indica enhances peanut plant growth and resilience against P. arachidicola, mainly through modulation of oxidative stress and immune responses.
Collapse
Affiliation(s)
- Chen Wang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Taswar Ahsan
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Ao Ding
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Di Han
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jie Gao
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Chun-Hao Liang
- Institute of Plant Protection, Liaoning Academy of Agricultural Sciences, Shenyang, 110161, China
| | - Si-Tong Du
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yi Wei
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yu-Qian Huang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| | - Shi-Hong Zhang
- The Key Laboratory for Extreme-Environmental Microbiology, College of Plant Protection, Shenyang Agricultural University, Shenyang, 110866, China.
| |
Collapse
|
4
|
Li S, Zhao Y, Wu P, Grierson D, Gao L. Ripening and rot: How ripening processes influence disease susceptibility in fleshy fruits. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1831-1863. [PMID: 39016673 DOI: 10.1111/jipb.13739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 06/24/2024] [Indexed: 07/18/2024]
Abstract
Fleshy fruits become more susceptible to pathogen infection when they ripen; for example, changes in cell wall properties related to softening make it easier for pathogens to infect fruits. The need for high-quality fruit has driven extensive research on improving pathogen resistance in important fruit crops such as tomato (Solanum lycopersicum). In this review, we summarize current progress in understanding how changes in fruit properties during ripening affect infection by pathogens. These changes affect physical barriers that limit pathogen entry, such as the fruit epidermis and its cuticle, along with other defenses that limit pathogen growth, such as preformed and induced defense compounds. The plant immune system also protects ripening fruit by recognizing pathogens and initiating defense responses involving reactive oxygen species production, mitogen-activated protein kinase signaling cascades, and jasmonic acid, salicylic acid, ethylene, and abscisic acid signaling. These phytohormones regulate an intricate web of transcription factors (TFs) that activate resistance mechanisms, including the expression of pathogenesis-related genes. In tomato, ripening regulators, such as RIPENING INHIBITOR and NON_RIPENING, not only regulate ripening but also influence fruit defenses against pathogens. Moreover, members of the ETHYLENE RESPONSE FACTOR (ERF) family play pivotal and distinct roles in ripening and defense, with different members being regulated by different phytohormones. We also discuss the interaction of ripening-related and defense-related TFs with the Mediator transcription complex. As the ripening processes in climacteric and non-climacteric fruits share many similarities, these processes have broad applications across fruiting crops. Further research on the individual contributions of ERFs and other TFs will inform efforts to diminish disease susceptibility in ripe fruit, satisfy the growing demand for high-quality fruit and decrease food waste and related economic losses.
Collapse
Affiliation(s)
- Shan Li
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Yu Zhao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Pan Wu
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
| | - Donald Grierson
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough, LE12 5RD, UK
| | - Lei Gao
- State Key Laboratory of Plant Diversity and Specialty Crops, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan, 430074, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
5
|
Hamsa S, Rajarammohan S, Aswal M, Kumar M, Kaur J. Transcriptome responses of Arabidopsis to necrotrophic fungus Alternaria brassicae reveal pathways and candidate genes associated with resistance. PLANT MOLECULAR BIOLOGY 2024; 114:68. [PMID: 38842571 DOI: 10.1007/s11103-024-01453-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 04/11/2024] [Indexed: 06/07/2024]
Abstract
Alternaria leaf blight (ALB), caused by a necrotrophic fungus Alternaria brassicae is a serious disease of oleiferous Brassicas resulting in significant yield losses worldwide. No robust resistance against A. brassicae has been identified in the Brassicas. Natural accessions of Arabidopsis show a spectrum of responses to A. brassicae ranging from high susceptibility to complete resistance. To understand the molecular mechanisms of resistance/ susceptibility, we analysed the comparative changes in the transcriptome profile of Arabidopsis accessions with contrasting responses- at different time points post-infection. Differential gene expression, GO enrichment, pathway enrichment, and weighted gene co-expression network analysis (WGCNA) revealed reprogramming of phenylpropanoid biosynthetic pathway involving lignin, hydroxycinnamic acids, scopoletin, anthocyanin genes to be highly associated with resistance against A. brassicae. T-DNA insertion mutants deficient in the biosynthesis of coumarin scopoletin exhibited enhanced susceptibility to A. brassicae. The supplementation of scopoletin to medium or exogenous application resulted in a significant reduction in the A. brassicae growth. Our study provides new insights into the transcriptome dynamics in A. brassicae-challenged Arabidopsis and demonstrates the involvement of coumarins in plant immunity against the Brassica pathogen A. brassicae.
Collapse
Affiliation(s)
- S Hamsa
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Sivasubramanian Rajarammohan
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India
- Agricultural Biotechnology Division, National Agri-Food Biotechnology Institute, SAS Nagar, Mohali, Punjab, India
| | - Manisha Aswal
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Manish Kumar
- Department of Biophysics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India
| | - Jagreet Kaur
- Department of Genetics, University of Delhi, South Campus, Benito Juarez Road, New Delhi, 110021, India.
- Centre for Genetic Manipulation of Crop Plants, University of Delhi South Campus, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
6
|
Wang H, Cheng X, Yin D, Chen D, Luo C, Liu H, Huang C. Advances in the Research on Plant WRKY Transcription Factors Responsive to External Stresses. Curr Issues Mol Biol 2023; 45:2861-2880. [PMID: 37185711 PMCID: PMC10136515 DOI: 10.3390/cimb45040187] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 03/20/2023] [Accepted: 03/23/2023] [Indexed: 04/05/2023] Open
Abstract
The WRKY transcription factors are a class of transcriptional regulators that are ubiquitous in plants, wherein they play key roles in various physiological activities, including responses to stress. Specifically, WRKY transcription factors mediate plant responses to biotic and abiotic stresses through the binding of their conserved domain to the W-box element of the target gene promoter and the subsequent activation or inhibition of transcription (self-regulation or cross-regulation). In this review, the progress in the research on the regulatory effects of WRKY transcription factors on plant responses to external stresses is summarized, with a particular focus on the structural characteristics, classifications, biological functions, effects on plant secondary metabolism, regulatory networks, and other aspects of WRKY transcription factors. Future research and prospects in this field are also proposed.
Collapse
Affiliation(s)
- Hongli Wang
- College of Ecology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Xi Cheng
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Dongmei Yin
- College of Ecology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Dongliang Chen
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Chang Luo
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hua Liu
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Conglin Huang
- Beijing Engineering Research Center of Functional Floriculture, Institute of Grassland, Flowers and Ecology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| |
Collapse
|
7
|
Ansari M, Ahmed S, Abbasi A, Hamad NA, Ali HM, Khan MT, Haq IU, Zaman QU. Green Synthesized Silver Nanoparticles: A Novel Approach for the Enhanced Growth and Yield of Tomato against Early Blight Disease. Microorganisms 2023; 11:microorganisms11040886. [PMID: 37110309 PMCID: PMC10145257 DOI: 10.3390/microorganisms11040886] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/23/2023] [Accepted: 03/23/2023] [Indexed: 04/29/2023] Open
Abstract
Tomato plants are among the most widely cultivated and economically important crops worldwide. Farmers' major challenge when growing tomatoes is early blight disease caused by Alternaria solani, which results in significant yield losses. Silver nanoparticles (AgNPs) have gained popularity recently due to their potential antifungal activity. The present study investigated the potential of green synthesized silver nanoparticles (AgNPs) for enhancing the growth and yield of tomato plants and their resistance against early blight disease. AgNPs were synthesized using leaf extract of the neem tree. Tomato plants treated with AgNPs showed a significant increase in plant height (30%), number of leaves, fresh weight (45%), and dry weight (40%) compared to the control plants. Moreover, the AgNP-treated plants exhibited a significant reduction in disease severity index (DSI) (73%) and disease incidence (DI) (69%) compared to the control plants. Tomato plants treated with 5 and 10 ppm AgNPs reached their maximum levels of photosynthetic pigments and increased the accumulation of certain secondary metabolites compared to the control group. AgNP treatment improved stress tolerance in tomato plants as indicated by higher activities of antioxidant enzymes such as PO (60%), PPO (65%), PAL (65.5%), SOD (65.3%), CAT (53.8%), and APX (73%). These results suggest that using green synthesized AgNPs is a promising approach for enhancing the growth and yield of tomato plants and protecting them against early blight disease. Overall, the findings demonstrate the potential of nanotechnology-based solutions for sustainable agriculture and food security.
Collapse
Affiliation(s)
- Madeeha Ansari
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Shakil Ahmed
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
| | - Asim Abbasi
- Department of Environmental Sciences, Kohsar University Murree, Murree 47150, Pakistan
- School of Plant Sciences, University of Arizona, Tucson, AZ 85721, USA
| | - Najwa A Hamad
- Plant Protection Department, Faculty of Agriculture, Omar Al-Mukhtar University, El-Beida P.O. Box 919, Libya
| | - Hayssam M Ali
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Muhammad Tajammal Khan
- Institute of Botany, University of the Punjab, Lahore 54590, Pakistan
- Division of Science and Technology, Department of Botany, University of Education, Lahore 54770, Pakistan
| | - Inzamam Ul Haq
- Department of Entomology, University of Agriculture, Faisalabad 38000, Pakistan
| | - Qamar Uz Zaman
- Department of Environmental Sciences, The University of Lahore, Lahore 54590, Pakistan
| |
Collapse
|
8
|
Hussain K, Jaweed TH, Kamble AC. Modulation of phenylpropanoid and lignin biosynthetic pathway is crucial for conferring resistance in pigeon pea against Fusarium wilt. Gene 2023; 851:146994. [DOI: 10.1016/j.gene.2022.146994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 09/18/2022] [Accepted: 10/14/2022] [Indexed: 11/07/2022]
|
9
|
Peng R, Sun S, Li N, Kong L, Chen Z, Wang P, Xu L, Wang H, Geng X. Physiological and transcriptome profiling revealed defense networks during Cladosporium fulvum and tomato interaction at the early stage. FRONTIERS IN PLANT SCIENCE 2022; 13:1085395. [PMID: 36561446 PMCID: PMC9763619 DOI: 10.3389/fpls.2022.1085395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
Tomato leaf mold caused by Cladosporium fulvum (C. fulvum) is a serious fungal disease which results in huge yield losses in tomato cultivation worldwide. In our study, we discovered that ROS (reactive oxygen species) burst was triggered by C. fulvum treatment in tomato leaves. RNA-sequencing was used to identify differentially expressed genes (DEGs) induced by C. fulvum inoculation at the early stage of invasion in susceptible tomato plants. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to annotate functions of DEGs in tomato plants. Based on our comparative analysis, DEGs related to plant-pathogen interaction pathway, plant hormone signal transduction pathway and the plant phenylpropanoid pathway were further analyzed. Our results discovered that a number of core defense genes against fungal invasion were induced and plant hormone signal transduction pathways were impacted by C. fulvum inoculation. Further, our results showed that SA (salicylic acid) and ABA (abscisic acid) contents were accumulated while JA (jasmonic acid) content decreased after C. fulvum inoculation in comparison with control, and quantitative real-time PCR to detect the relative expression of genes involved in SA, ABA and JA signaling pathway further confirmed our results. Together, results will contribute to understanding the mechanisms of C. fulvum and tomato interaction in future.
Collapse
Affiliation(s)
- Rong Peng
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Sheng Sun
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
| | - Na Li
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lingjuan Kong
- Vegetable Department, Shanghai Agricultural Technology Extension and Service Center, Shanghai, China
| | - Zhifeng Chen
- College of Biology and Agricultural Technology, Zunyi Normal University, Zunyi, China
| | - Peng Wang
- College of Horticulture, Shanxi Agricultural University, Jinzhong, Shanxi, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Lurong Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Hehe Wang
- Clemson University, Edisto Research and Education Center, Blackville, SC, United States
| | - Xueqing Geng
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
10
|
Li S, Wu P, Yu X, Cao J, Chen X, Gao L, Chen K, Grierson D. Contrasting Roles of Ethylene Response Factors in Pathogen Response and Ripening in Fleshy Fruit. Cells 2022; 11:cells11162484. [PMID: 36010560 PMCID: PMC9406635 DOI: 10.3390/cells11162484] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/01/2022] [Accepted: 08/09/2022] [Indexed: 11/16/2022] Open
Abstract
Fleshy fruits are generally hard and unpalatable when unripe; however, as they mature, their quality is transformed by the complex and dynamic genetic and biochemical process of ripening, which affects all cell compartments. Ripening fruits are enriched with nutrients such as acids, sugars, vitamins, attractive volatiles and pigments and develop a pleasant taste and texture and become attractive to eat. Ripening also increases sensitivity to pathogens, and this presents a crucial problem for fruit postharvest transport and storage: how to enhance pathogen resistance while maintaining ripening quality. Fruit development and ripening involve many changes in gene expression regulated by transcription factors (TFs), some of which respond to hormones such as auxin, abscisic acid (ABA) and ethylene. Ethylene response factor (ERF) TFs regulate both fruit ripening and resistance to pathogen stresses. Different ERFs regulate fruit ripening and/or pathogen responses in both fleshy climacteric and non-climacteric fruits and function cooperatively or independently of other TFs. In this review, we summarize the current status of studies on ERFs that regulate fruit ripening and responses to infection by several fungal pathogens, including a systematic ERF transcriptome analysis of fungal grey mould infection of tomato caused by Botrytis cinerea. This deepening understanding of the function of ERFs in fruit ripening and pathogen responses may identify novel approaches for engineering transcriptional regulation to improve fruit quality and pathogen resistance.
Collapse
Affiliation(s)
- Shan Li
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
- Correspondence: (S.L.); (D.G.)
| | - Pan Wu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Xiaofen Yu
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Jinping Cao
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Xia Chen
- College of Food Science and Engineering, Hainan University, Haikou 570228, China
| | - Lei Gao
- Key Laboratory of Plant Germplasm Enhancement and Specialty Agriculture, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Kunsong Chen
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Zhejiang Provincial Key Laboratory of Horticultural Plant Integrative Biology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
| | - Donald Grierson
- College of Agriculture and Biotechnology, Zhejiang University, Zijinggang Campus, Hangzhou 310058, China
- Plant and Crop Sciences Division, School of Biosciences, University of Nottingham, Sutton Bonington Campus, Loughborough LE12 5RD, UK
- Correspondence: (S.L.); (D.G.)
| |
Collapse
|
11
|
FytoSol, a Promising Plant Defense Elicitor, Controls Early Blight (Alternaria solani) Disease in the Tomato by Inducing Host Resistance-Associated Gene Expression. HORTICULTURAE 2022. [DOI: 10.3390/horticulturae8060484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Early blight (EB), caused by the necrotrophic pathogen Alternaria solani, is one of the most common and destructive diseases in the tomato (Solanum lycopersicum L.). The use of fungicides is a prominent tactic used to control EB; however, their undesirable effects on the environment and human health, as well as involvement in the development of resistant strains, have driven researchers to search for new alternatives. Plant defense elicitors are exogenous defense-triggering molecules that induce a plant’s defense system associated with extensive transcriptional- and metabolic reprogramming of the genome and do not cause direct toxicity to phytopathogens. Moreover, 2,6-dichloroisonicotinic acid (INA) was an early-identified and strong plant defense elicitor to various phytopathogens. Recently, the combination of chitosan oligomers and pectin-derived oligogalacturonides that can mimic the induction of plants by a pathogen or damaged-derived molecules (PAMP and DAMP) were characterized as defense elicitors, named FytoSol. In this study, the preventive roles of these two defense elicitors—FytoSol and INA—against EB disease and its molecular basis, were explored. According to the results, FytoSol significantly reduced disease severity by an average of 30% for almost one month with an AUDPC value of 399 compared to the control, which had an AUDPC value of 546. On the contrary, INA did not provide any protection against EB. Gene expression analyses of these two distinct plant defense elicitors indicated that the expression patterns of several SA-, JA-, or ET-pathway-related genes (Pti4, TPK1b, Pto kinase, TomloxD, PRB1-2, SABP2, WRKY33b, WRKY70, PR-5, and PR3) were induced by defense elicitors differently. FytoSol extensively upregulated gene expressions of PR3, downregulated the SA-related defense pathway, and provided remarkable protection against the necrotrophic pathogen Alternaria solani. On the contrary, INA mostly induced genes related to biotrophic and/or hemibiotrophic pathogen protection. Our results indicate that FytoSol is a promising plant defense elicitor against EB and the modes of action of the elicitors are important to characterize their effects against pathogens. Further research may extend the use of defense elicitors as alternatives to pesticides in agriculture.
Collapse
|
12
|
Kalsi HS, Karkhanis AA, Natarajan B, Bhide AJ, Banerjee AK. AUXIN RESPONSE FACTOR 16 (StARF16) regulates defense gene StNPR1 upon infection with necrotrophic pathogen in potato. PLANT MOLECULAR BIOLOGY 2022; 109:13-28. [PMID: 35380408 DOI: 10.1007/s11103-022-01261-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
We demonstrate a new regulatory mechanism in the jasmonic acid (JA) and salicylic acid (SA) mediated crosstalk in potato defense response, wherein, miR160 target StARF16 (a gene involved in growth and development) binds to the promoter of StNPR1 (a defense gene) and negatively regulates its expression to suppress the SA pathway. Overall, our study establishes the importance of StARF16 in regulation of StNPR1 during JA mediated defense response upon necrotrophic pathogen interaction. Plants employ antagonistic crosstalk between salicylic acid (SA) and jasmonic acid (JA) to effectively defend them from pathogens. During biotrophic pathogen attack, SA pathway activates and suppresses the JA pathway via NONEXPRESSOR OF PATHOGENESIS-RELATED GENES 1 (NPR1). However, upon necrotrophic pathogen attack, how JA-mediated defense response suppresses the SA pathway, is still not well-understood. Recently StARF10 (AUXIN RESPONSE FACTOR), a miR160 target, has been shown to regulate SA and binds to the promoter of StGH3.6 (GRETCHEN HAGEN3), a gene proposed to maintain the balance between the free SA and auxin in plants. In the current study, we investigated the role of StARF16 (a miR160 target) in the regulation of the defense gene StNPR1 in potato upon activation of the JA pathway. We observed that a negative correlation exists between StNPR1 and StARF16 upon infection with the pathogen. The results were further confirmed through the exogenous application of SA and JA. Using yeast one-hybrid assay, we demonstrated that StARF16 binds to the StNPR1 promoter through putative ARF binding sites. Additionally, through protoplast transfection and chromatin immunoprecipitation experiments, we showed that StARF16 could bind to the StNPR1 promoter and regulate its expression. Co-transfection assays using promoter deletion constructs established that ARF binding sites are present in the 2.6 kb sequence upstream to the StNPR1 gene and play a key role in its regulation during infection. In summary, we demonstrate the importance of StARF16 in the regulation of StNPR1, and thus SA pathway, during JA-mediated defense response upon necrotrophic pathogen interaction.
Collapse
Affiliation(s)
- Harpreet Singh Kalsi
- Biology Division, Molecular Plant Biology Lab, Indian Institute of Science Education and Research (IISER Pune), Pune, 411008, Maharashtra, India
| | - Anindita A Karkhanis
- Biology Division, Molecular Plant Biology Lab, Indian Institute of Science Education and Research (IISER Pune), Pune, 411008, Maharashtra, India
| | - Bhavani Natarajan
- Biology Division, Molecular Plant Biology Lab, Indian Institute of Science Education and Research (IISER Pune), Pune, 411008, Maharashtra, India
- Department of Crop Genetics, John Innes Centre, Norwich, UK
| | - Amey J Bhide
- Biology Division, Molecular Plant Biology Lab, Indian Institute of Science Education and Research (IISER Pune), Pune, 411008, Maharashtra, India
| | - Anjan K Banerjee
- Biology Division, Molecular Plant Biology Lab, Indian Institute of Science Education and Research (IISER Pune), Pune, 411008, Maharashtra, India.
| |
Collapse
|
13
|
Rashad YM, Abdel Razik ES, Darwish DB. Essential oil from Lavandula angustifolia elicits expression of three SbWRKY transcription factors and defense-related genes against sorghum damping-off. Sci Rep 2022; 12:857. [PMID: 35039591 PMCID: PMC8763899 DOI: 10.1038/s41598-022-04903-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 01/04/2022] [Indexed: 12/21/2022] Open
Abstract
Sorghum damping-off, caused by Fusarium solani (Mart.) Sacc., is a serious disease which causes economic loss in sorghum production. In this study, antagonistic activity of lavender essential oil (EO) at 0.5, 0.75, 1.0, 1.25, 1.5, and 1.6% against F. solani was studied in vitro. Their effects on regulation of three SbWRKY transcription factors, the response factor JERF3 and eight defense-related genes, which mediate different signaling pathways, in sorghum were investigated. Effects of application under greenhouse conditions were also evaluated. The results showed that lavender EO possesses potent antifungal activity against F. solani. A complete inhibition in the fungal growth was recorded for lavender EO at 1.6%. Gas chromatography-mass spectrometric analysis revealed that EO antifungal activity is most likely attributed to linalyl anthranilate, α-terpineol, eucalyptol, α-Pinene, and limonene. Observations using transmission electron microscopy revealed many abnormalities in the ultrastructures of the fungal mycelium as a response to treating with lavender EO, indicating that multi-mechanisms contributed to their antagonistic behavior. Results obtained from Real-time PCR investigations demonstrated that the genes studied were overexpressed, to varying extents in response to lavender EO. However, SbWRKY1 was the highest differentially expressed gene followed by JERF3, which suggest they play primary role(s) in synchronously organizing the transcription-regulatory-networks enhancing the plant resistance. Under greenhouse conditions, treating of sorghum grains with lavender EO at 1.5% prior to infection significantly reduced disease severity. Moreover, the growth parameters evaluated, the activities of antioxidant enzymes, and total phenolic and flavonoid contents were all enhanced. In contrast, lipid peroxidation was highly reduced. Results obtained from this study support the possibility of using lavender EO for control of sorghum damping-off. However, field evaluation is highly needed prior to any usage recommendation.
Collapse
Affiliation(s)
- Younes M Rashad
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt.
| | - Elsayed S Abdel Razik
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Egypt
| | - Doaa B Darwish
- Botany Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
14
|
Jindo K, Evenhuis A, Kempenaar C, Pombo Sudré C, Zhan X, Goitom Teklu M, Kessel G. Review: Holistic pest management against early blight disease towards sustainable agriculture. PEST MANAGEMENT SCIENCE 2021; 77:3871-3880. [PMID: 33538396 PMCID: PMC8451811 DOI: 10.1002/ps.6320] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/22/2021] [Accepted: 02/04/2021] [Indexed: 05/24/2023]
Abstract
Alternaria species are well-known aggressive pathogens that are widespread globally and warmer temperatures caused by climate change might increase their abundance more drastically. Early blight (EB) disease, caused mainly by Alternaria solani, and brown spot, caused by Alternaria alternata, are major concerns in potato, tomato and eggplant production. The development of EB is strongly linked to varieties, crop development stages, environmental factors, cultivation and field management. Several forecasting models for pesticide application to control EB were created in the last century and more recent scientific advances have included modern breeding technology to detect resistant genes and precision agriculture with hyperspectral sensors to pinpoint damage locations on plants. This paper presents an overview of the EB disease and provides an evaluation of recent scientific advances to control the disease. First of all, we describe the outline of this disease, encompassing biological cycles of the Alternaria genus, favorite climate and soil conditions as well as resistant plant species. Second, versatile management practices to minimize the effect of this pathogen at field level are discussed, covering their limitations and pitfalls. A better understanding of the underlying factors of this disease and the potential of novel research can contribute to implementing integrated pest management systems for an ecofriendly farming system. © 2021 The Authors. Pest Management Science published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Collapse
Affiliation(s)
- Keiji Jindo
- Agrosystems ResearchWageningen University & ResearchWageningenThe Netherlands
| | | | - Corné Kempenaar
- Agrosystems ResearchWageningen University & ResearchWageningenThe Netherlands
| | - Cláudia Pombo Sudré
- Laboratório de Melhoramento Genético VegetalUniversidade Estadual do Norte Fluminense Darcy Ribeiro, UENFCampos dos GoytacazesBrazil
| | - Xiaoxiu Zhan
- Department of Crop Cultivation and Farming SystemCollege of Agronomy, Sichuan Agricultural UniversityChengduChina
| | | | - Geert Kessel
- Field CropsWageningen University & ResearchLelystadThe Netherlands
| |
Collapse
|
15
|
BOYNO G, DEMİR S, AKKÖPRÜ A. Domateste Alternaria solani (Ell. & G. Martin) Sor.’ye Karşı Bazı Endofit Bakterilerin Etkisi. ULUSLARARASI TARIM VE YABAN HAYATI BILIMLERI DERGISI 2020. [DOI: 10.24180/ijaws.770380] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
16
|
De S. Strategies of Plant Biotechnology to Meet the Increasing Demand of Food and Nutrition in India. ACTA ACUST UNITED AC 2020. [DOI: 10.21467/ias.10.1.7-15] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A groundbreaking application of biotechnology research during the recent past has been improvement of crop health and production. India being one of the most rapidly developing countries with an enormous population and remarkable biodiversity, plant biotechnology promises significant potential to contribute to characterization and conservation of the biodiversity, increasing its usefulness. However, India’s green revolution was noted to be insufficient to feed the country's teeming millions. Therefore, novel approaches in crop biotechnology had to be aimed at ensuring better productivity and quality of cultivars. This paper provides a comprehensive review of research undertaken mainly in the last couple of decades along with potential strategies in plant biotechnology focusing on specific grain and seed crops of key agricultural as well as dietary importance to meet the growing demand of food and nutrition in India, while also proposing potential application of relevant global research findings in the Indian context. The analysis would help address the ever-increasing worldwide socio-economic necessity for greater food security, particularly during times of crisis such as the recent Coronavirus Infectious Disease 2019 (COVID-19) pandemic.
Collapse
|
17
|
Pathak RK, Baunthiyal M, Pandey D, Kumar A. Computational analysis of microarray data of Arabidopsis thaliana challenged with Alternaria brassicicola for identification of key genes in Brassica. J Genet Eng Biotechnol 2020; 18:17. [PMID: 32607787 PMCID: PMC7326868 DOI: 10.1186/s43141-020-00032-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 04/30/2020] [Indexed: 11/10/2022]
Abstract
BACKGROUND Alternaria blight, a recalcitrant disease caused by Alternaria brassicae and Alternaria brassicicola, has been recognized for significant losses of oilseed crops especially rapeseed-mustard throughout the world. Till date, no resistance source is available against the disease; hence, plant breeding methods cannot be used to develop disease-resistant varieties. Therefore, in the present study, efforts have been made to identify resistance and defense-related genes as well as key components of JA-SA-ET-mediated pathway involved in resistance against Alternaria brasscicola through computational analysis of microarray data and network biology approach. Microarray profiling data from wild type and mutant Arabidopsis plants challenged with Alternaria brassicicola along with control plant were obtained from the Gene Expression Omnibus (GEO) database. The data analysis, including DEGs extraction, functional enrichment, annotation, and network analysis, was used to identify genes associated with disease resistance and defense response. RESULTS A total of 2854 genes were differentially expressed in WT9C9; among them, 1327 genes were upregulated and 1527 genes were downregulated. A total of 1159 genes were differentially expressed in JAM9C9; among them, 809 were upregulated and 350 were downregulated. A total of 2516 genes were differentially expressed in SAM9C9; among them, 1355 were upregulated and 1161 were downregulated. A total of 1567 genes were differentially expressed in ETM9C9; among them, 917 were upregulated and 650 were downregulated. Besides, a total of 2965 genes were differentially expressed in contrast WT24C24; among them, 1510 genes were upregulated and 1455 genes were downregulated. A total of 4598 genes were differentially expressed in JAM24C24; among them, 2201 were upregulated and 2397 were downregulated. A total of 3803 genes were differentially expressed in SAM24C24; among them, 1819 were upregulated and 1984 were downregulated. A total of 4164 genes were differentially expressed in ETM24C24; among them, 1895 were upregulated and 2269 were downregulated. The upregulated genes of Arabidopsis thaliana were mapped and annotated with CDS sequences of Brassica rapa obtained from PlantGDB database. Additionally, PPI network of these genes were constructed to investigate the key components of hormone-mediated pathway involved in resistance during pathogenesis. CONCLUSION The obtained information from present study can be used to engineer resistance to Alternaria blight caused by Alternaria brasscicola through molecular breeding or genetic manipulation-based approaches for improving Brassica oilseed productivity.
Collapse
Affiliation(s)
- Rajesh Kumar Pathak
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering & Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Mamta Baunthiyal
- Department of Biotechnology, Govind Ballabh Pant Institute of Engineering & Technology, Pauri Garhwal, Uttarakhand 246194 India
| | - Dinesh Pandey
- Department of Molecular Biology & Genetic Engineering, College of Basic Sciences & Humanities, G. B. Pant University of Agriculture & Technology, Pantnagar, Uttarakhand 263145 India
| | - Anil Kumar
- Rani Lakshmi Bai Central Agricultural University, Jhansi, Uttar Pradesh 284003 India
| |
Collapse
|
18
|
Moghaddam GA, Rezayatmand Z, Nasr Esfahani M, Khozaei M. Genetic defense analysis of tomatoes in response to early blight disease, Alternaria alternata. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2019; 142:500-509. [PMID: 31445475 DOI: 10.1016/j.plaphy.2019.08.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 08/14/2019] [Indexed: 06/10/2023]
Abstract
Early blight disease of tomato is one of the most devastating biotic stresses worldwide, and in Iran, Alternaria alternata is one of the most predominant species causing the disease. In the current study, a diverse collection of 35 tomato genotypes and implication of 5 SlWRKYs and 7 PR genes as well as enzymatic activity were evaluated on resistant and susceptible cultivars through real-time polymerase chain reaction at transplanting and maturing stages and by measuring product formation using spectrophotometry. The results indicated that the expression of these antifungal genes in 14 genotypes at two growth stages after inoculation with A. alternata highly enhanced by 1-50-fold. There was also significant upregulation of WRKYs and PRs genes among the resistant tomato varieties in comparison to susceptible and control varieties at both stages. These findings demonstrate the varieties that showed increased or decreased SlWRKY1 expression also displayed similar changes in the expression of PR1 and PR2 genes. Furthermore, the differential expression patterns of SlWRKY1 and SlWRKY11 were consistent with PR7 and PDF1.2 expression patterns. The analysis of enzymatic activity of PR2 and PR3 proteins, β-1,3-glucanase, and chitinase showed the highest level of activity in resistant inoculated genotypes against A. alternata. Therefore, the current findings suggest the possible involvement of these transcription factors in the increased expression of PR genes in response to A. alternata infection.
Collapse
Affiliation(s)
| | - Zahra Rezayatmand
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran.
| | - Mehdi Nasr Esfahani
- Department of Biology, Falavarjan Branch, Islamic Azad University, Isfahan, Iran; Plant Protection Research Division, Isfahan Center for Research and Education in Agricultural Science and Natural Resources, (AREEO), Isfahan, Iran.
| | - Mahdi Khozaei
- Plant Biotechnology, Department of Biology, University of Isfahan, Isfahan, Iran.
| |
Collapse
|