1
|
Namata MJ, Xu J, Habyarimana E, Palakolanu SR, Wang L, Li J. Genome editing in maize and sorghum: A comprehensive review of CRISPR/Cas9 and emerging technologies. THE PLANT GENOME 2025; 18:e70038. [PMID: 40324959 PMCID: PMC12052613 DOI: 10.1002/tpg2.70038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/28/2025] [Accepted: 03/21/2025] [Indexed: 05/07/2025]
Abstract
The increasing changes in the climate patterns across the globe have deeply affected food systems where unparalleled and unmatched challenges are created. This jeopardizes food security due to an ever-increasing population. The extreme efficiency of C4 crops as compared to C3 crops makes them incredibly significant in securing food safety. C4 crops, maize (Zea mays L.) and sorghum (Sorghum bicolor L. Moench) in particular, have the ability to withstand osmotic stress induced by oxidative stress. Osmotic stress causes a series of physical changes in a plant thus facilitating reduced water uptake and photosynthesis inhibition, such as membrane tension, cell wall stiffness, and turgor changes. There has been a great advancement in plant breeding brought by introduction of clustered regularly interspaced short palindromic repeats (CRISPR) gene editing technology. This technology offers precise alterations to an organism's DNA through targeting specific genes for desired traits in a wide number of crop species. Despite its immense opportunities in plant breeding, it faces limitations such as effective delivery systems, editing efficiency, regulatory concerns, and off-target effects. Future prospects lie in optimizing next-generation techniques, such as prime editing, and developing novel genotype-independent delivery methods. Overall, the transformative role of CRISPR/Cas9 in sorghum and maize breeding underscores the need for responsible and sustainable utilization to address global food security challenges.
Collapse
Affiliation(s)
- Mercy Jocyline Namata
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| | - Jingyi Xu
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi‐Arid TropicsHyderabadIndia
| | | | - Lihua Wang
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| | - Jieqin Li
- College of AgricultureAnhui Science and Technology UniversityFengyangChina
- International Joint Research Center of Forage Bio‐Breeding in Anhui ProvinceChuzhouChina
| |
Collapse
|
2
|
Naik YD, Bahuguna RN, Garcia‐Caparros P, Zwart RS, Reddy MSS, Mir RR, Jha UC, Fakrudin B, Pandey MK, Challabathula D, Sharma VK, Reddy UK, Kumar CVS, Mendu V, Prasad PVV, Punnuri SM, Varshney RK, Thudi M. Exploring the multifaceted dynamics of flowering time regulation in field crops: Insight and intervention approaches. THE PLANT GENOME 2025; 18:e70017. [PMID: 40164968 PMCID: PMC11958873 DOI: 10.1002/tpg2.70017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 01/16/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
The flowering time (FTi) plays a critical role in the reproductive success and yield of various crop species by directly impacting both the quality and quantity of grain yield. Achieving optimal FTi is crucial for maximizing reproductive success and ensuring overall agricultural productivity. While genetic factors undoubtedly influence FTi, photoperiodism and vernalization are recognized as key contributors to the complex physiological processes governing flowering in plants. Identifying candidate genes and pathways associated with FTi is essential for developing genomic interventions and plant breeding to enhance adaptability to diverse environmental conditions. This review highlights the intricate nature of the regulatory mechanisms of flowering and emphasizes the vital importance of precisely regulating FTi to ensure plant adaptability and reproductive success. Special attention is given to essential genes, pathways, and genomic interventions geared toward promoting early flowering, particularly under challenging environmental conditions such as drought, heat, and cold stress as well as other abiotic stresses that occur during the critical flowering stage of major field crops. Moreover, this review explores the significant progress achieved in omics technologies, offering valuable insights and tools for deciphering and regulating FTi. In summary, this review aims to provide a comprehensive understanding of the mechanisms governing FTi, with a particular focus on their crucial role in bolstering yields under adverse environmental conditions to safeguard food security.
Collapse
Affiliation(s)
- Yogesh Dashrath Naik
- Department of Agricultural Biotechnology and Molecular BiologyDr. Rajendra Prasad Central Agricultural UniversityPusaBiharIndia
| | | | | | - Rebecca S. Zwart
- Centre for Crop Health and School of Agriculture and Environmental ScienceUniversity of Southern QueenslandToowoombaAustralia
| | - M. S. Sai Reddy
- Department of EntomologyDr. Rajendra Prasad Central Agricultural UniversityPusaBiharIndia
| | - Reyazul Rouf Mir
- Faculty of AgricultureSher‐e‐Kashmir University of Agricultural Sciences and TechnologySoporeKashmirIndia
| | - Uday Chand Jha
- Indian Council of Agricultural Research, Indian Institute of Pulses ResearchKanpurUttar PradeshIndia
| | - B. Fakrudin
- Department of Biotechnology and Crop ImprovementUniversity of Horticultural SciencesBagalkotKarnatakaIndia
| | - Manish K. Pandey
- International Crops Research Institute for the Semi‐Arid TropicsHyderabadTelanganaIndia
| | - Dinakar Challabathula
- Department of BiotechnologyCentral University of Tamil NaduThiruvarurTamil NaduIndia
| | - Vinay Kumar Sharma
- Department of Agricultural Biotechnology and Molecular BiologyDr. Rajendra Prasad Central Agricultural UniversityPusaBiharIndia
| | - Umesh K. Reddy
- Department of BiologyWest Virginia State UniversityMorgantownWest VirginiaUSA
| | - Chanda Venkata Sameer Kumar
- Department of Genetics and Plant BreedingProfessor Jayashankar Telangana State Agricultural UniversityHyderabadTelanganaIndia
| | - Venugopal Mendu
- Department of Agronomy, Agribusiness & Environmental SciencesTexas A&M UniversityKingsvilleTexasUSA
| | | | - Somashekhar M. Punnuri
- College of Agriculture, Family Sciences and TechnologyFort Valley State UniversityFort ValleyGeorgiaUSA
| | - Rajeev K. Varshney
- WA State Agricultural Biotechnology Centre, Centre for Crop and Food InnovationMurdoch UniversityMurdochWestern AustraliaAustralia
| | - Mahendar Thudi
- Centre for Crop Health and School of Agriculture and Environmental ScienceUniversity of Southern QueenslandToowoombaAustralia
- College of Agriculture, Family Sciences and TechnologyFort Valley State UniversityFort ValleyGeorgiaUSA
| |
Collapse
|
3
|
Chen C, Ge F, Du H, Sun Y, Sui Y, Tang S, Shen Z, Li X, Zhang H, Mei C, Xie P, Li C, Yang S, Wei H, Shi J, Zhang D, Zhao K, Yang D, Qiao Y, Luo Z, Zhang L, Khan A, Wodajo B, Wu Y, Xia R, Wu C, Liang C, Xie Q, Yu F. A comprehensive omics resource and genetic tools for functional genomics research and genetic improvement of sorghum. MOLECULAR PLANT 2025; 18:703-719. [PMID: 40055894 DOI: 10.1016/j.molp.2025.03.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/05/2025] [Accepted: 03/05/2025] [Indexed: 04/04/2025]
Abstract
Sorghum, the fifth most important food crop globally, is a source of silage forage, fiber, syrup, and biofuel. Moreover, it is widely recognized as an ideal model crop for studying stress biology becaused of its ability to tolerate multiple abiotic stresses, including high salt-alkali conditions, drought, and heat. However, functional genomics studies on sorghum have been challenging, primarily due to the limited availability of genetic resources and effective genetic transformation techniques. In this study, we developed the Sorghum Genomics and Mutation Database (SGMD), aiming to advance the genetic understanding of sorghum. Our effort encompassed a telomere-to-telomere genome assembly of an inbred sorghum line, E048, yielding 729.46 Mb of sequence data representing the complete genome. Alongside the high-quality sequence data, a gene expression atlas covering 13 distinct tissues was developed. We constructed a saturated ethyl methane sulfonate mutant library comprising 13,226 independent mutants. Causal genes in chlorosis and leafy mutants from the library were easily identified by leveraging the MutMap and MutMap+ methodologies, demonstrating the powerful application of this library for identifying functional genes. To facilitate sorghum research, we performed whole-genome sequencing of 179 M2 mutant lines, resulting in 2,291,074 mutations that covered 97.54% of all genes. In addition, an Agrobacterium-mediated sorghum transformation platform was established for gene function studies. In summary, this work establishes a comprehensive platform and provides valuable resources for functional genomics investigations and genetic improvement of sorghum.
Collapse
Affiliation(s)
- Chengxuan Chen
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fengyong Ge
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuanchang Sun
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Yi Sui
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Sanyuan Tang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhengwei Shen
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xuefeng Li
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Huili Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Cuo Mei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chao Li
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Sen Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huimin Wei
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiayang Shi
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dan Zhang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kangxu Zhao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Dekai Yang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yi Qiao
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zuyong Luo
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Li Zhang
- Cropedit Biotech Co., Ltd., Beijing 102206, China
| | - Aimal Khan
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Baye Wodajo
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yaorong Wu
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ran Xia
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyin Wu
- Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Chengzhi Liang
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Qi Xie
- Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Feifei Yu
- College of Grassland Science and Technology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
4
|
Nigam D, Devkar V, Dhiman P, Shakoor S, Liu D, Patil GB, Jiao Y. Emerging frontiers in sorghum genetic engineering. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e17244. [PMID: 39988953 DOI: 10.1111/tpj.17244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 12/17/2024] [Accepted: 12/20/2024] [Indexed: 02/25/2025]
Abstract
Sorghum, a climate-resilient cereal, is crucial for meeting the growing demand for food and feed in arid and semi-arid regions, especially amid global population growth and climate change. Despite its natural drought tolerance and adaptability, sorghum faces challenges in increasing yield, enhancing resistance to abiotic and biotic stresses, and improving grain quality. Genetic engineering has emerged as a powerful tool to address these challenges by directly modifying genes associated with desirable traits. Recent advancements have utilized morphogenic regulators to improve transformation and regeneration efficiency in sorghum. This review explores the status of genomic resources and genetic diversity in sorghum, highlighting the advancements and challenges faced in its genetic engineering efforts. Genome editing technologies, particularly CRISPR/Cas systems, have improved key agronomic traits such as stress tolerance, nutrient use efficiency, and grain quality. However, significant obstacles still need to be addressed, including low regeneration rates, high genotype dependency, and labor-intensive transformation processes. We highlight potential strategies to overcome these barriers, such as optimizing transformation protocols, exploring alternative explants, using morphogenic regulators and advancing tissue culture techniques. Additionally, we discuss the biosafety considerations and potential applications of genetically engineered sorghum in global agriculture. This review underscores the need for ongoing innovation to unlock the potential of genetically engineered sorghum in addressing global food security challenges.
Collapse
Affiliation(s)
- Deepti Nigam
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Vikas Devkar
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Pallavi Dhiman
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Sana Shakoor
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Degao Liu
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Gunvant B Patil
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| | - Yinping Jiao
- Department of Plant and Soil Science, Institute of Genomics for Crop Abiotic Stress Tolerance (IGCAST), Texas Tech University, Lubbock, Texas, 79409, USA
| |
Collapse
|
5
|
Potsenkovskaia EA, Tvorogova VE, Simonova VY, Konstantinov ZS, Kiseleva AS, Matveenko AG, Brynchikova AV, Lutova LA. CRISPR-Based Editing of the Medicago truncatula LEC1 Gene. PLANTS (BASEL, SWITZERLAND) 2024; 13:3226. [PMID: 39599434 PMCID: PMC11598548 DOI: 10.3390/plants13223226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/09/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Arabidopsis thaliana LEAFY COTYLEDON1 (LEC1) gene is shown to have numerous diverse functions in plant development, including the regulation of embryo morphogenesis and maturation, hypocotyl elongation, flowering transition, etc. However, the functions of LEC1 orthologs in different plant species have not been extensively studied. In this study, we obtained a line of Medicago truncatula, a model leguminous plant, carrying the loss-of-function mutation in the MtLEC1 (MtNF-YB10) gene, orthologous to LEC1, using the Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated proteins (CRISPR/Cas9) genome editing system. Edited plants with loss of MtNF-YB10 function did not demonstrate any severe abnormalities during their normal growth and gave viable seeds, but their capability for somatic embryogenesis in vitro was dramatically reduced. The T1 progeny of unedited plants with a Cas9-gRNA cassette insertion was also analyzed based on the suggestion that editing could occur during seed formation. However, no edited plants were found in the T1 generation. These results suggest divergent functions of LEC1 orthologs and make it possible to investigate potential specific MtNF-YB10 functions.
Collapse
Affiliation(s)
- Elina A. Potsenkovskaia
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (V.E.T.); (Z.S.K.); (A.G.M.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42 Bolshaya Morskaya Street, 190000 Saint Petersburg, Russia
| | - Varvara E. Tvorogova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (V.E.T.); (Z.S.K.); (A.G.M.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
- Center for Genetic Technologies, N. I. Vavilov All-Russian Institute of Plant Genetic Resources (VIR), 42 Bolshaya Morskaya Street, 190000 Saint Petersburg, Russia
| | - Veronika Y. Simonova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| | - Zakhar S. Konstantinov
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (V.E.T.); (Z.S.K.); (A.G.M.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| | - Anna S. Kiseleva
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| | - Andrew G. Matveenko
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (V.E.T.); (Z.S.K.); (A.G.M.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| | - Anna V. Brynchikova
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| | - Ludmila A. Lutova
- Department of Genetics and Biotechnology, Saint Petersburg State University, 7/9 Universitetskaya Embankment, 199034 Saint Petersburg, Russia; (V.E.T.); (Z.S.K.); (A.G.M.); (L.A.L.)
- Plant Biology and Biotechnology Department, Sirius University of Science and Technology, 1 Olympic Avenue, 354340 Sochi, Russia; (V.Y.S.); (A.S.K.); (A.V.B.)
| |
Collapse
|
6
|
Chandra T, Jaiswal S, Tomar RS, Iquebal MA, Kumar D. Realizing visionary goals for the International Year of Millet (IYoM): accelerating interventions through advances in molecular breeding and multiomics resources. PLANTA 2024; 260:103. [PMID: 39304579 DOI: 10.1007/s00425-024-04520-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 08/30/2024] [Indexed: 09/22/2024]
Abstract
MAIN CONCLUSION Leveraging advanced breeding and multi-omics resources is vital to position millet as an essential "nutricereal resource," aligning with IYoM goals, alleviating strain on global cereal production, boosting resilience to climate change, and advancing sustainable crop improvement and biodiversity. The global challenges of food security, nutrition, climate change, and agrarian sustainability demand the adoption of climate-resilient, nutrient-rich crops to support a growing population amidst shifting environmental conditions. Millets, also referred to as "Shree Anna," emerge as a promising solution to address these issues by bolstering food production, improving nutrient security, and fostering biodiversity conservation. Their resilience to harsh environments, nutritional density, cultural significance, and potential to enhance dietary quality index made them valuable assets in global agriculture. Recognizing their pivotal role, the United Nations designated 2023 as the "International Year of Millets (IYoM 2023)," emphasizing their contribution to climate-resilient agriculture and nutritional enhancement. Scientific progress has invigorated efforts to enhance millet production through genetic and genomic interventions, yielding a wealth of advanced molecular breeding technologies and multi-omics resources. These advancements offer opportunities to tackle prevailing challenges in millet, such as anti-nutritional factors, sensory acceptability issues, toxin contamination, and ancillary crop improvements. This review provides a comprehensive overview of molecular breeding and multi-omics resources for nine major millet species, focusing on their potential impact within the framework of IYoM. These resources include whole and pan-genome, elucidating adaptive responses to abiotic stressors, organelle-based studies revealing evolutionary resilience, markers linked to desirable traits for efficient breeding, QTL analysis facilitating trait selection, functional gene discovery for biotechnological interventions, regulatory ncRNAs for trait modulation, web-based platforms for stakeholder communication, tissue culture techniques for genetic modification, and integrated omics approaches enabled by precise application of CRISPR/Cas9 technology. Aligning these resources with the seven thematic areas outlined by IYoM catalyzes transformative changes in millet production and utilization, thereby contributing to global food security, sustainable agriculture, and enhanced nutritional consequences.
Collapse
Affiliation(s)
- Tilak Chandra
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Sarika Jaiswal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| | - Rukam Singh Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, Gujarat, 110012, India
| | - Mir Asif Iquebal
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India.
| | - Dinesh Kumar
- Division of Agricultural Bioinformatics, ICAR-Indian Agricultural Statistics Research Institute, New Delhi, 110012, India
| |
Collapse
|
7
|
Zhang W, Benke R, Zhang X, Zhang H, Zhao C, Zhao Y, Xu Y, Wang H, Liu S, Li X, Wu Y. Novel allelic variations in Tannin1 and Tannin2 contribute to tannin absence in sorghum. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:24. [PMID: 38495646 PMCID: PMC10942951 DOI: 10.1007/s11032-024-01463-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Sorghum is an important food crop commonly used for brewing, feed, and bioenergy. Certain genotypes of sorghum contain high concentrations of condensed tannins in seeds, which are beneficial, such as protecting grains from herbivore bird pests, but also impair grain quality and digestibility. Previously, we identified Tannin1 and Tannin2, each with three recessive causal alleles, regulate tannin absence in sorghum. In this study, via characterizing 421 sorghum accessions, we further identified three novel recessive alleles from these two genes. The tan1-d allele contains a 12-bp deletion at position 659 nt and the tan1-e allele contains a 10-bp deletion at position 771 nt in Tannin1. The tan2-d allele contains a C-to-T transition, which results in a premature stop codon before the bHLH domain in Tannin2, and was predominantly selected in China. We further developed KASP assays targeting these identified recessive alleles to efficiently genotype large populations. These studies provide new insights in sorghum domestication and convenient tools for breeding programs. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01463-y.
Collapse
Affiliation(s)
- Wenbin Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Ryan Benke
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164 USA
| | - Xiao Zhang
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Huawen Zhang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Cunyuan Zhao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Yu Zhao
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Ying Xu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Hailian Wang
- Crop Research Institute, Shandong Academy of Agricultural Sciences, Jinan, 250100 China
| | - Shubing Liu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| | - Xianran Li
- USDA-ARS, Wheat Health, Genetics, and Quality Research Unit, Pullman, WA 99164 USA
| | - Yuye Wu
- National Key Laboratory of Wheat Improvement, College of Life Sciences, Shandong Agricultural University, Tai’an, 271018 China
| |
Collapse
|
8
|
Nor A'azizam NM, Chopra S, Guleria P, Kumar V, Abd Rahim MH, Yaacob JS. Harnessing the potential of mutation breeding, CRISPR genome editing, and beyond for sustainable agriculture. Funct Integr Genomics 2024; 24:44. [PMID: 38421529 DOI: 10.1007/s10142-024-01325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 02/04/2024] [Accepted: 02/19/2024] [Indexed: 03/02/2024]
Abstract
By 2050, the global population is projected to exceed 9.5 billion, posing a formidable challenge to ensure food security worldwide. To address this pressing issue, mutation breeding in horticultural crops, utilizing physical or chemical methods, has emerged as a promising biotechnological strategy. However, the efficacy of these mutagens can be influenced by various factors, including biological and environmental variables, as well as targeted plant materials. This review highlights the global challenges related to food security and explores the potential of mutation breeding as an indispensable biotechnological tool in overcoming food insecurity. This review also covers the emergence of CRISPR-Cas9, a breakthrough technology offering precise genome editing for the development of high-yield, stress-tolerant crops. Together, mutation breeding and CRISPR can potentially address future food demands. This review focuses into these biotechnological advancements, emphasizing their combined potential to fortify global food security in the face of a booming population.
Collapse
Affiliation(s)
| | - Sakshi Chopra
- Plant Biotechnology and Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India
| | - Praveen Guleria
- Plant Biotechnology and Genetic Engineering Lab, Department of Biotechnology, DAV University, Jalandhar, Punjab, 144012, India
| | - Vineet Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144111, India
| | - Muhamad Hafiz Abd Rahim
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400 UPM, Serdang, Selangor, Malaysia
| | - Jamilah Syafawati Yaacob
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
- Centre for Research in Biotechnology for Agriculture (CEBAR), Faculty of Science, Universiti Malaya, 50603, Kuala Lumpur, Malaysia.
| |
Collapse
|
9
|
Ahmar S, Hensel G, Gruszka D. CRISPR/Cas9-mediated genome editing techniques and new breeding strategies in cereals - current status, improvements, and perspectives. Biotechnol Adv 2023; 69:108248. [PMID: 37666372 DOI: 10.1016/j.biotechadv.2023.108248] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 09/06/2023]
Abstract
Cereal crops, including triticeae species (barley, wheat, rye), as well as edible cereals (wheat, corn, rice, oat, rye, sorghum), are significant suppliers for human consumption, livestock feed, and breweries. Over the past half-century, modern varieties of cereal crops with increased yields have contributed to global food security. However, presently cultivated elite crop varieties were developed mainly for optimal environmental conditions. Thus, it has become evident that taking into account the ongoing climate changes, currently a priority should be given to developing new stress-tolerant cereal cultivars. It is necessary to enhance the accuracy of methods and time required to generate new cereal cultivars with the desired features to adapt to climate change and keep up with the world population expansion. The CRISPR/Cas9 system has been developed as a powerful and versatile genome editing tool to achieve desirable traits, such as developing high-yielding, stress-tolerant, and disease-resistant transgene-free lines in major cereals. Despite recent advances, the CRISPR/Cas9 application in cereals faces several challenges, including a significant amount of time required to develop transgene-free lines, laboriousness, and a limited number of genotypes that may be used for the transformation and in vitro regeneration. Additionally, developing elite lines through genome editing has been restricted in many countries, especially Europe and New Zealand, due to a lack of flexibility in GMO regulations. This review provides a comprehensive update to researchers interested in improving cereals using gene-editing technologies, such as CRISPR/Cas9. We will review some critical and recent studies on crop improvements and their contributing factors to superior cereals through gene-editing technologies.
Collapse
Affiliation(s)
- Sunny Ahmar
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland
| | - Goetz Hensel
- Centre for Plant Genome Engineering, Institute of Plant Biochemistry, Heinrich-Heine-University, Duesseldorf, Germany; Centre of Region Haná for Biotechnological and Agricultural Research, Czech Advanced Technology and Research Institute, Palacký University Olomouc, Olomouc, Czech Republic
| | - Damian Gruszka
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia, Katowice, Poland.
| |
Collapse
|
10
|
Hodaei A, Werbrouck SPO. Unlocking Nature's Clock: CRISPR Technology in Flowering Time Engineering. PLANTS (BASEL, SWITZERLAND) 2023; 12:4020. [PMID: 38068655 PMCID: PMC10708119 DOI: 10.3390/plants12234020] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/23/2024]
Abstract
Flowering is a crucial process in the life cycle of most plants as it is essential for the reproductive success and genetic diversity of the species. There are situations in which breeders want to expedite, delay, or prevent flowering, for example, to shorten or prolong vegetative growth, to prevent unwanted pollination, to reduce the risk of diseases or pests, or to modify the plant's phenotypes. This review aims to provide an overview of the current state of knowledge to use CRISPR/Cas9, a powerful genome-editing technology to modify specific DNA sequences related to flowering induction. We discuss the underlying molecular mechanisms governing the regulation of the photoperiod, autonomous, vernalization, hormonal, sugar, aging, and temperature signal pathways regulating the flowering time. In addition, we are investigating the most effective strategies for nominating target genes. Furthermore, we have collected a dataset showing successful applications of CRISPR technology to accelerate flowering in several plant species from 2015 up to date. Finally, we explore the opportunities and challenges of using the potential of CRISPR technology in flowering time engineering.
Collapse
Affiliation(s)
| | - Stefaan P. O. Werbrouck
- Laboratory for Applied In Vitro Plant Biotechnology, Department of Plants and Crops, Faculty of Bioscience Engineering, Ghent University, 9000 Ghent, Belgium;
| |
Collapse
|
11
|
Sabnam N, Hussain A, Saha P. The secret password: Cell death-inducing proteins in filamentous phytopathogens - As versatile tools to develop disease-resistant crops. Microb Pathog 2023; 183:106276. [PMID: 37541554 DOI: 10.1016/j.micpath.2023.106276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/06/2023]
Abstract
Cell death-inducing proteins (CDIPs) are some of the secreted effector proteins manifested by filamentous oomycetes and fungal pathogens to invade the plant tissue and facilitate infection. Along with their involvement in different developmental processes and virulence, CDIPs play a crucial role in plant-pathogen interactions. As the name implies, CDIPs cause necrosis and trigger localised cell death in the infected host tissues by the accumulation of higher concentrations of hydrogen peroxide (H2O2), oxidative burst, accumulation of nitric oxide (NO), and electrolyte leakage. They also stimulate the biosynthesis of defense-related phytohormones such as salicylic acid (SA), jasmonic acid (JA), abscisic acid (ABA), and ethylene (ET), as well as the expression of pathogenesis-related (PR) genes that are important in disease resistance. Altogether, the interactions result in the hypersensitive response (HR) in the host plant, which might confer systemic acquired resistance (SAR) in some cases against a vast array of related and unrelated pathogens. The CDIPs, due to their capability of inducing host resistance, are thus unique among the array of proteins secreted by filamentous plant pathogens. More interestingly, a few transgenic plant lines have also been developed expressing the CDIPs with added resistance. Thus, CDIPs have opened an interesting hot area of research. The present study critically reviews the current knowledge of major types of CDIPs identified across filamentous phytopathogens and their modes of action in the last couple of years. This review also highlights the recent breakthrough technologies in studying plant-pathogen interactions as well as crop improvement by enhancing disease resistance through CDIPs.
Collapse
Affiliation(s)
- Nazmiara Sabnam
- Department of Life Sciences, Presidency University, Kolkata, India.
| | - Afzal Hussain
- Department of Bioinformatics, Maulana Azad National Institute of Technology, Bhopal, India
| | - Pallabi Saha
- Biotechnology Institute, University of Minnesota, Saint Paul, Minnesota, 55108, United States; Department of Biotechnology, National Institute of Technology, Durgapur, India
| |
Collapse
|
12
|
Yang L, Zhou Q, Sheng X, Chen X, Hua Y, Lin S, Luo Q, Yu B, Shao T, Wu Y, Chang J, Li Y, Tu M. Harnessing the Genetic Basis of Sorghum Biomass-Related Traits to Facilitate Bioenergy Applications. Int J Mol Sci 2023; 24:14549. [PMID: 37833996 PMCID: PMC10573072 DOI: 10.3390/ijms241914549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/18/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023] Open
Abstract
The extensive use of fossil fuels and global climate change have raised ever-increasing attention to sustainable development, global food security and the replacement of fossil fuels by renewable energy. Several C4 monocot grasses have excellent photosynthetic ability, stress tolerance and may rapidly produce biomass in marginal lands with low agronomic inputs, thus representing an important source of bioenergy. Among these grasses, Sorghum bicolor has been recognized as not only a promising bioenergy crop but also a research model due to its diploidy, simple genome, genetic diversity and clear orthologous relationship with other grass genomes, allowing sorghum research to be easily translated to other grasses. Although sorghum molecular genetic studies have lagged far behind those of major crops (e.g., rice and maize), recent advances have been made in a number of biomass-related traits to dissect the genetic loci and candidate genes, and to discover the functions of key genes. However, molecular and/or targeted breeding toward biomass-related traits in sorghum have not fully benefited from these pieces of genetic knowledge. Thus, to facilitate the breeding and bioenergy applications of sorghum, this perspective summarizes the bioenergy applications of different types of sorghum and outlines the genetic control of the biomass-related traits, ranging from flowering/maturity, plant height, internode morphological traits and metabolic compositions. In particular, we describe the dynamic changes of carbohydrate metabolism in sorghum internodes and highlight the molecular regulators involved in the different stages of internode carbohydrate metabolism, which affects the bioenergy utilization of sorghum biomass. We argue the way forward is to further enhance our understanding of the genetic mechanisms of these biomass-related traits with new technologies, which will lead to future directions toward tailored designing sorghum biomass traits suitable for different bioenergy applications.
Collapse
Affiliation(s)
- Lin Yang
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Qin Zhou
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Xuan Sheng
- School of Life Science and Technology, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangqian Chen
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Yuqing Hua
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Shuang Lin
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Qiyun Luo
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Boju Yu
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Ti Shao
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Yixiao Wu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| | - Junli Chang
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Yin Li
- The Genetic Engineering International Cooperation Base of Chinese Ministry of Science and Technology, The Key Laboratory of Molecular Biophysics of Chinese Ministry of Education, College of Life Science and Technology, Huazhong University of Science & Technology, Wuhan 430074, China; (B.Y.); (T.S.); (J.C.)
| | - Min Tu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China (Y.W.)
| |
Collapse
|
13
|
Chawla R, Poonia A, Samantara K, Mohapatra SR, Naik SB, Ashwath MN, Djalovic IG, Prasad PVV. Green revolution to genome revolution: driving better resilient crops against environmental instability. Front Genet 2023; 14:1204585. [PMID: 37719711 PMCID: PMC10500607 DOI: 10.3389/fgene.2023.1204585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/11/2023] [Indexed: 09/19/2023] Open
Abstract
Crop improvement programmes began with traditional breeding practices since the inception of agriculture. Farmers and plant breeders continue to use these strategies for crop improvement due to their broad application in modifying crop genetic compositions. Nonetheless, conventional breeding has significant downsides in regard to effort and time. Crop productivity seems to be hitting a plateau as a consequence of environmental issues and the scarcity of agricultural land. Therefore, continuous pursuit of advancement in crop improvement is essential. Recent technical innovations have resulted in a revolutionary shift in the pattern of breeding methods, leaning further towards molecular approaches. Among the promising approaches, marker-assisted selection, QTL mapping, omics-assisted breeding, genome-wide association studies and genome editing have lately gained prominence. Several governments have progressively relaxed their restrictions relating to genome editing. The present review highlights the evolutionary and revolutionary approaches that have been utilized for crop improvement in a bid to produce climate-resilient crops observing the consequence of climate change. Additionally, it will contribute to the comprehension of plant breeding succession so far. Investing in advanced sequencing technologies and bioinformatics will deepen our understanding of genetic variations and their functional implications, contributing to breakthroughs in crop improvement and biodiversity conservation.
Collapse
Affiliation(s)
- Rukoo Chawla
- Department of Genetics and Plant Breeding, Maharana Pratap University of Agriculture and Technology, Udaipur, Rajasthan, India
| | - Atman Poonia
- Department of Genetics and Plant Breeding, Chaudhary Charan Singh Haryana Agricultural University, Bawal, Haryana, India
| | - Kajal Samantara
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Sourav Ranjan Mohapatra
- Department of Forest Biology and Tree Improvement, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - S. Balaji Naik
- Institute of Integrative Biology and Systems, University of Laval, Quebec City, QC, Canada
| | - M. N. Ashwath
- Department of Forest Biology and Tree Improvement, Kerala Agricultural University, Thrissur, Kerala, India
| | - Ivica G. Djalovic
- Institute of Field and Vegetable Crops, National Institute of the Republic of Serbia, Novi Sad, Serbia
| | - P. V. Vara Prasad
- Department of Agronomy, Kansas State University, Manhattan, KS, United States
| |
Collapse
|
14
|
Lee JS, Bae SJ, Kim JS, Kim C, Kang BC. A streamlined guide RNA screening system for genome editing in Sorghum bicolor. PLANT METHODS 2023; 19:90. [PMID: 37633915 PMCID: PMC10463630 DOI: 10.1186/s13007-023-01058-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 07/18/2023] [Indexed: 08/28/2023]
Abstract
BACKGROUND Genome editing tools derived from clustered regularly interspaced short palindromic repeats (CRISPR) systems have been developed for generating targeted mutations in plants. Although these tools hold promise for rapid crop improvement, target-specific guide RNAs exhibit variable activity. To improve genome editing, a rapid and precise method for evaluating their efficiency is necessary. RESULTS Here we report an efficient system for screening single guide RNAs (sgRNAs) for genome editing in sorghum using a transient protoplast transfection assay. Protoplasts were isolated from leaves from sorghum plants cultivated under three different conditions. Cultivation for three days of continuous darkness following seven days with a 16-h light and 8-h dark photoperiod resulted in the highest yield of viable protoplasts and the highest protoplast transfection efficiency. We tested both plasmid-mediated and ribonucleoprotein-based delivery to protoplasts, via polyethylene glycol-mediated transfection, of CRISPR components targeting the sorghum genome. The frequencies of small insertions and deletions induced by a set of sgRNAs targeting four endogenous sorghum genes were analyzed via targeted deep sequencing. Our screening system induced indels in sorghum protoplasts at frequencies of up to 77.8% (plasmid) and 18.5% (RNP). The entire screening system was completed within 16 days. CONCLUSIONS The screening system optimized in this study for predicting sgRNA activity for genome editing in sorghum is efficient and straightforward. This system will reduce the time and effort needed for sorghum genome editing.
Collapse
Affiliation(s)
- Jeong Sun Lee
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, Daejeon, Republic of Korea
- National Research Safety Headquarters, Korea Research Institute of Bioscience and Biotechnology, Cheongju, Republic of Korea
| | - Su-Ji Bae
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea
| | - Jin-Soo Kim
- NUS Synthetic Biology for Clinical & Technological Innovation (SynCTI) and Department of Biochemistry, National University of Singapore, Singapore, Singapore
| | - Changsoo Kim
- Department of Crop Science, College of Agricultural and Life Sciences, Chungnam National University, Daejeon, Republic of Korea.
| | - Beum-Chang Kang
- Center for Genome Engineering, Institute for Basic Science, Daejeon, Republic of Korea.
- Department of Horticulture, College of Agricultural Life Science, Jeonbuk National University, Jeonju, Republic of Korea.
| |
Collapse
|
15
|
Wang YH, Zhang YQ, Zhang RR, Zhuang FY, Liu H, Xu ZS, Xiong AS. Lycopene ε-cyclase mediated transition of α-carotene and β-carotene metabolic flow in carrot fleshy root. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 115:986-1003. [PMID: 37158657 DOI: 10.1111/tpj.16275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 04/28/2023] [Accepted: 05/03/2023] [Indexed: 05/10/2023]
Abstract
The accumulation of carotenoids, such as xanthophylls, lycopene, and carotenes, is responsible for the color of carrot (Daucus carota subsp. sativus) fleshy roots. The potential role of DcLCYE, encoding a lycopene ε-cyclase associated with carrot root color, was investigated using cultivars with orange and red roots. The expression of DcLCYE in red carrot varieties was significantly lower than that in orange carrots at the mature stage. Furthermore, red carrots accumulated larger amounts of lycopene and lower levels of α-carotene. Sequence comparison and prokaryotic expression analysis revealed that amino acid differences in red carrots did not affect the cyclization function of DcLCYE. Analysis of the catalytic activity of DcLCYE revealed that it mainly formed ε-carotene, while a side activity on α-carotene and γ-carotene was also observed. Comparative analysis of the promoter region sequences indicated that differences in the promoter region may affect the transcription of DcLCYE. DcLCYE was overexpressed in the red carrot 'Benhongjinshi' under the control of the CaMV35S promoter. Lycopene in transgenic carrot roots was cyclized, resulting in the accumulation of higher levels of α-carotene and xanthophylls, while the β-carotene content was significantly decreased. The expression levels of other genes in the carotenoid pathway were simultaneously upregulated. Knockout of DcLCYE in the orange carrot 'Kurodagosun' by CRISPR/Cas9 technology resulted in a decrease in the α-carotene and xanthophyll contents. The relative expression levels of DcPSY1, DcPSY2, and DcCHXE were sharply increased in DcLCYE knockout mutants. The results of this study provide insights into the function of DcLCYE in carrots, which could serve as a basis for creating colorful carrot germplasms.
Collapse
Affiliation(s)
- Ya-Hui Wang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Yu-Qing Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Rong-Rong Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Fei-Yun Zhuang
- Key Laboratory of Horticultural Crop Biology and Germplasm Innovation, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Hui Liu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Zhi-Sheng Xu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| | - Ai-Sheng Xiong
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, Ministry of Agriculture and Rural Affairs Key Laboratory of Biology and Germplasm Enhancement of Horticultural Crops in East China, College of Horticulture, Nanjing Agricultural University, Nanjing, Jiangsu, 210095, China
| |
Collapse
|
16
|
Zhu X, Xu W, Liu B, Zhan Y, Xia T. Adaptation of high-efficiency CRISPR/Cas9-based multiplex genome editing system in white lupin by using endogenous promoters. PHYSIOLOGIA PLANTARUM 2023; 175:e13976. [PMID: 37616014 DOI: 10.1111/ppl.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023]
Abstract
White lupin (Lupinus albus L.) is an important crop with high phosphorus (P) use efficiency; however, technologies for its functional genomic and molecular analyses are limited. Cluster regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system has been applied to gene editing and function genomics in many crops, but its application in white lupin has not been well documented. Here, we adapted the CRISPR/Cas9-based multiplex genome editing system by using the native U3/U6 and ubiquitin (UBQ) promoters to drive sgRNAs and Cas9. Two target sites (T1 and T2) within the Lalb_Chr05g0223881 gene, encoding a putative trehalase, were selected to validate its efficacy in white lupin based on the Agrobacterium rhizogenes-mediated transformation. We found that the T0 hairy roots were efficiently mutated at T1 and T2 with a frequency of 6.25%-35% and 50%-92.31%, respectively. The mutation types include nucleotide insertion, deletion, substitution, and complicated variant. Simultaneous mutations of the two targets were also observed with a range of 6.25%-35%. The combination of LaU6.6 promoter for sgRNA and LaUBQ12 promoter for Cas9 generated the highest frequency of homozygous/biallelic mutations at 38.46%. In addition, the target-sgRNA sequence also contributes to the editing efficiency of the CRISPR/Cas9 system in white lupin. In conclusion, our results expand the toolbox of the CRISPR/Cas9 system and benefit the basic research in white lupin.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bowen Liu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yujie Zhan
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyu Xia
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
17
|
Lui ACW, Pow KC, Lin N, Lam LPY, Liu G, Godwin ID, Fan Z, Khoo CJ, Tobimatsu Y, Wang L, Hao Q, Lo C. Regioselective stilbene O-methylations in Saccharinae grasses. Nat Commun 2023; 14:3462. [PMID: 37308495 DOI: 10.1038/s41467-023-38908-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 05/18/2023] [Indexed: 06/14/2023] Open
Abstract
O-Methylated stilbenes are prominent nutraceuticals but rarely produced by crops. Here, the inherent ability of two Saccharinae grasses to produce regioselectively O-methylated stilbenes is reported. A stilbene O-methyltransferase, SbSOMT, is first shown to be indispensable for pathogen-inducible pterostilbene (3,5-bis-O-methylated) biosynthesis in sorghum (Sorghum bicolor). Phylogenetic analysis indicates the recruitment of genus-specific SOMTs from canonical caffeic acid O-methyltransferases (COMTs) after the divergence of Sorghum spp. from Saccharum spp. In recombinant enzyme assays, SbSOMT and COMTs regioselectively catalyze O-methylation of stilbene A-ring and B-ring respectively. Subsequently, SOMT-stilbene crystal structures are presented. Whilst SbSOMT shows global structural resemblance to SbCOMT, molecular characterizations illustrate two hydrophobic residues (Ile144/Phe337) crucial for substrate binding orientation leading to 3,5-bis-O-methylations in the A-ring. In contrast, the equivalent residues (Asn128/Asn323) in SbCOMT facilitate an opposite orientation that favors 3'-O-methylation in the B-ring. Consistently, a highly-conserved COMT is likely involved in isorhapontigenin (3'-O-methylated) formation in wounded wild sugarcane (Saccharum spontaneum). Altogether, our work reveals the potential of Saccharinae grasses as a source of O-methylated stilbenes, and rationalize the regioselectivity of SOMT activities for bioengineering of O-methylated stilbenes.
Collapse
Affiliation(s)
- Andy C W Lui
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
- Plant Breeding and Genetics Section, School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA
| | - Kah Chee Pow
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Nan Lin
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Lydia Pui Ying Lam
- Center for Crossover Education, Graduate School of Engineering Science, Akita University, Tegata Gakuen-machi 1-1, Akita City, Akita, 010-8502, Japan
| | - Guoquan Liu
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian D Godwin
- Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Zhuming Fan
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Chen Jing Khoo
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China
| | - Yuki Tobimatsu
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji, Kyoto, 611-0011, Japan
| | - Lanxiang Wang
- CAS Key Laboratory of Quantitative Engineering Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Quan Hao
- School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Pokfulam, Hong Kong, China.
- Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
- China Spallation Neutron Source, Dongguan, Guangdong, 523000, China.
| | - Clive Lo
- School of Biological Sciences, The University of Hong Kong, Pokfulam, Hong Kong, China.
| |
Collapse
|
18
|
Assem SK, Basry MA, Taha TA, El-Aziz MHA, Alwa T, Fouad WM. Development of an in vitro regeneration system from immature inflorescences and CRISPR/Cas9-mediated gene editing in sudangrass. J Genet Eng Biotechnol 2023; 21:58. [PMID: 37184575 DOI: 10.1186/s43141-023-00517-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 05/06/2023] [Indexed: 05/16/2023]
Abstract
BACKGROUND Sudangrass (Sorghum sudanense) is a major biomass producer for livestock feed and biofuel in many countries. It has a wide range of adaptations for growing on marginal lands under biotic and abiotic stresses. The immature inflorescence is an explant with high embryogenic competence and is frequently used to regenerate different sorghum cultivars. Caffeic acid O-methyl transferase (COMT) is a key enzyme in the lignin biosynthesis pathway, which limits ruminant digestion of forage cell walls and is a crucial barrier in the conversion of plant biomass to bioethanol. Genome editing by CRISPR/Cas9-mediated mutagenesis without a transgenic footprint will accelerate the improvement and facilitate regulatory approval and commercialization of biotech crops. METHODS AND RESULTS We report the overcome of the recalcitrance in sudangrass transformation and regeneration in order to use genome editing technique. Hence, an efficient regeneration system has been established to induce somatic embryogenesis from the immature inflorescence of two sudangrass cultivars on four MS-based media supplemented with different components. Our results indicate an interaction between genotype and medium composition. The combination of Giza-1 cultivar and M4 medium produces the maximum frequency of embryogenic calli of 80% and subsequent regeneration efficiency of 22.6%. Precise mutagenesis of the COMT gene is executed using the CRISPR/Cas9 system with the potential to reduce lignin content and enhance forage and biomass quality in sudangrass. CONCLUSION A reliable regeneration and transformation system has been established for sudangrass using immature inflorescence, and the CRISPR/Cas9 system has demonstrated a promising technology for genome editing. The outcomes of this research will pave the road for further improvement of various sorghum genotypes to meet the global demand for food, feed, and biofuels, achieving sustainable development goals (SDGs).
Collapse
Affiliation(s)
- Shireen K Assem
- Department of Plant Molecular Biology, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt.
| | - Mahmoud A Basry
- Department of Plant Molecular Biology, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Taha A Taha
- Department of Plant Molecular Biology, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - M H Abd El-Aziz
- Genetics Department, Faculty of Agriculture, Mansoura University, Mansoura, Egypt
| | - Taher Alwa
- Department of Plant Molecular Biology, Agricultural Genetic Engineering Research Institute (AGERI), Agricultural Research Center (ARC), Giza, Egypt
| | - Walid M Fouad
- Department of Biology, School of Science and Engineering, American University in Cairo, New Cairo, 11835, Cairo, Egypt
| |
Collapse
|
19
|
Baloch FS, Altaf MT, Liaqat W, Bedir M, Nadeem MA, Cömertpay G, Çoban N, Habyarimana E, Barutçular C, Cerit I, Ludidi N, Karaköy T, Aasim M, Chung YS, Nawaz MA, Hatipoğlu R, Kökten K, Sun HJ. Recent advancements in the breeding of sorghum crop: current status and future strategies for marker-assisted breeding. Front Genet 2023; 14:1150616. [PMID: 37252661 PMCID: PMC10213934 DOI: 10.3389/fgene.2023.1150616] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023] Open
Abstract
Sorghum is emerging as a model crop for functional genetics and genomics of tropical grasses with abundant uses, including food, feed, and fuel, among others. It is currently the fifth most significant primary cereal crop. Crops are subjected to various biotic and abiotic stresses, which negatively impact on agricultural production. Developing high-yielding, disease-resistant, and climate-resilient cultivars can be achieved through marker-assisted breeding. Such selection has considerably reduced the time to market new crop varieties adapted to challenging conditions. In the recent years, extensive knowledge was gained about genetic markers. We are providing an overview of current advances in sorghum breeding initiatives, with a special focus on early breeders who may not be familiar with DNA markers. Advancements in molecular plant breeding, genetics, genomics selection, and genome editing have contributed to a thorough understanding of DNA markers, provided various proofs of the genetic variety accessible in crop plants, and have substantially enhanced plant breeding technologies. Marker-assisted selection has accelerated and precised the plant breeding process, empowering plant breeders all around the world.
Collapse
Affiliation(s)
- Faheem Shehzad Baloch
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Tanveer Altaf
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Waqas Liaqat
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Mehmet Bedir
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Azhar Nadeem
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Gönül Cömertpay
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Nergiz Çoban
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ephrem Habyarimana
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | - Celaleddin Barutçular
- Department of Field Crops, Faculty of Agriculture, Çukurova University, Adana, Türkiye
| | - Ibrahim Cerit
- Eastern Mediterranean Agricultural Research Institute, Adana, Türkiye
| | - Ndomelele Ludidi
- Plant Stress Tolerance Laboratory, Department of Biotechnology, University of the Western Cape, Bellville, South Africa
- DSI-NRF Centre of Excellence in Food Security, University of the Western Cape, Bellville, South Africa
| | - Tolga Karaköy
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Muhammad Aasim
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Yong Suk Chung
- Department of Plant Resources and Environment, Jeju National University, Jeju, Republic of Korea
| | | | - Rüştü Hatipoğlu
- Kırşehir Ahi Evran Universitesi Ziraat Fakultesi Tarla Bitkileri Bolumu, Kırşehir, Türkiye
| | - Kağan Kökten
- Faculty of Agricultural Sciences and Technologies, Sivas University of Science and Technology, Sivas, Türkiye
| | - Hyeon-Jin Sun
- Subtropical Horticulture Research Institute, Jeju National University, Jeju, Republic of Korea
| |
Collapse
|
20
|
Basu U, Riaz Ahmed S, Bhat BA, Anwar Z, Ali A, Ijaz A, Gulzar A, Bibi A, Tyagi A, Nebapure SM, Goud CA, Ahanger SA, Ali S, Mushtaq M. A CRISPR way for accelerating cereal crop improvement: Progress and challenges. Front Genet 2023; 13:866976. [PMID: 36685816 PMCID: PMC9852743 DOI: 10.3389/fgene.2022.866976] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 11/21/2022] [Indexed: 01/09/2023] Open
Abstract
Humans rely heavily on cereal grains as a key source of nutrients, hence regular improvement of cereal crops is essential for ensuring food security. The current food crisis at the global level is due to the rising population and harsh climatic conditions which prompts scientists to develop smart resilient cereal crops to attain food security. Cereal crop improvement in the past generally depended on imprecise methods like random mutagenesis and conventional genetic recombination which results in high off targeting risks. In this context, we have witnessed the application of targeted mutagenesis using versatile CRISPR-Cas systems for cereal crop improvement in sustainable agriculture. Accelerated crop improvement using molecular breeding methods based on CRISPR-Cas genome editing (GE) is an unprecedented tool for plant biotechnology and agriculture. The last decade has shown the fidelity, accuracy, low levels of off-target effects, and the high efficacy of CRISPR technology to induce targeted mutagenesis for the improvement of cereal crops such as wheat, rice, maize, barley, and millets. Since the genomic databases of these cereal crops are available, several modifications using GE technologies have been performed to attain desirable results. This review provides a brief overview of GE technologies and includes an elaborate account of the mechanisms and applications of CRISPR-Cas editing systems to induce targeted mutagenesis in cereal crops for improving the desired traits. Further, we describe recent developments in CRISPR-Cas-based targeted mutagenesis through base editing and prime editing to develop resilient cereal crop plants, possibly providing new dimensions in the field of cereal crop genome editing.
Collapse
Affiliation(s)
- Umer Basu
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Syed Riaz Ahmed
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | | | - Zunaira Anwar
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Ahmad Ali
- National Key Laboratory of Crop Genetic Improvement, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Aqsa Ijaz
- Nuclear Institute for Agriculture and Biology College, Pakistan Institute of Engineering and Applied Sciences (NIAB-C, PIEAS), Faisalabad, Pakistan
| | - Addafar Gulzar
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Wadura Sopore, India
| | - Amir Bibi
- Department of Plant Breeding and Genetics, Faculty of Agriculture Sciences, University of Agriculture Faisalabad, Faisalabad, Pakistan
| | - Anshika Tyagi
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Suresh M. Nebapure
- Division of Entomology, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Chengeshpur Anjali Goud
- Institute of Biotechnology, Professor Jayashanker Telangana State Agriculture University, Hyderabad, India
| | - Shafat Ahmad Ahanger
- Division of Plant Pathology, Faculty of Agriculture, Sher-e-Kashmir University of Agricultural Sciences and Technology of Kashmir, Wadura Sopore, India,*Correspondence: Shafat Ahmad Ahanger, ; Sajad Ali, ; Muntazir Mushtaq,
| | - Sajad Ali
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea,*Correspondence: Shafat Ahmad Ahanger, ; Sajad Ali, ; Muntazir Mushtaq,
| | - Muntazir Mushtaq
- ICAR-National Bureau of Plant Genetic Resources, Division of Germplasm Evaluation, Pusa Campus, New Delhi, India,*Correspondence: Shafat Ahmad Ahanger, ; Sajad Ali, ; Muntazir Mushtaq,
| |
Collapse
|
21
|
Kor SD, Chowdhury N, Keot AK, Yogendra K, Chikkaputtaiah C, Sudhakar Reddy P. RNA Pol III promoters-key players in precisely targeted plant genome editing. Front Genet 2023; 13:989199. [PMID: 36685866 PMCID: PMC9845283 DOI: 10.3389/fgene.2022.989199] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 11/15/2022] [Indexed: 01/05/2023] Open
Abstract
The clustered regularly interspaced short palindrome repeat (CRISPR)/CRISPR-associated protein Cas) system is a powerful and highly precise gene-editing tool in basic and applied research for crop improvement programs. CRISPR/Cas tool is being extensively used in plants to improve crop yield, quality, and nutritional value and make them tolerant to environmental stresses. CRISPR/Cas system consists of a Cas protein with DNA endonuclease activity and one CRISPR RNA transcript that is processed to form one or several short guide RNAs that direct Cas9 to the target DNA sequence. The expression levels of Cas proteins and gRNAs significantly influence the editing efficiency of CRISPR/Cas-mediated genome editing. This review focuses on insights into RNA Pol III promoters and their types that govern the expression levels of sgRNA in the CRISPR/Cas system. We discussed Pol III promoters structural and functional characteristics and their comparison with Pol II promoters. Further, the use of synthetic promoters to increase the targeting efficiency and overcome the structural, functional, and expressional limitations of RNA Pol III promoters has been discussed. Our review reports various studies that illustrate the use of endogenous U6/U3 promoters for improving editing efficiency in plants and the applicative approach of species-specific RNA pol III promoters for genome editing in model crops like Arabidopsis and tobacco, cereals, legumes, oilseed, and horticultural crops. We further highlight the significance of optimizing these species-specific promoters' systematic identification and validation for crop improvement and biotic and abiotic stress tolerance through CRISPR/Cas mediated genome editing.
Collapse
Affiliation(s)
- Sakshi Dharmendra Kor
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | - Naimisha Chowdhury
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India
| | - Ajay Kumar Keot
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Kalenahalli Yogendra
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India
| | - Channakeshavaiah Chikkaputtaiah
- Biological Sciences and Technology Division, CSIR-North East Institute of Science and Technology (CSIR-NEIST), Jorhat, Assam, India,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Palakolanu Sudhakar Reddy
- International Crops Research Institute for the Semi-Arid Tropics, Hyderabad, Telangana, India,*Correspondence: Palakolanu Sudhakar Reddy, ,
| |
Collapse
|
22
|
Aregawi K, Shen J, Pierroz G, Sharma MK, Dahlberg J, Owiti J, Lemaux PG. Morphogene-assisted transformation of Sorghum bicolor allows more efficient genome editing. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:748-760. [PMID: 34837319 PMCID: PMC8989502 DOI: 10.1111/pbi.13754] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 11/12/2021] [Accepted: 11/15/2021] [Indexed: 05/08/2023]
Abstract
Sorghum bicolor (L.) Moench, the fifth most important cereal worldwide, is a multi-use crop for feed, food, forage and fuel. To enhance the sorghum and other important crop plants, establishing gene function is essential for their improvement. For sorghum, identifying genes associated with its notable abiotic stress tolerances requires a detailed molecular understanding of the genes associated with those traits. The limits of this knowledge became evident from our earlier in-depth sorghum transcriptome study showing that over 40% of its transcriptome had not been annotated. Here, we describe a full spectrum of tools to engineer, edit, annotate and characterize sorghum's genes. Efforts to develop those tools began with a morphogene-assisted transformation (MAT) method that led to accelerated transformation times, nearly half the time required with classical callus-based, non-MAT approaches. These efforts also led to expanded numbers of amenable genotypes, including several not previously transformed or historically recalcitrant. Another transformation advance, termed altruistic, involved introducing a gene of interest in a separate Agrobacterium strain from the one with morphogenes, leading to plants with the gene of interest but without morphogenes. The MAT approach was also successfully used to edit a target exemplary gene, phytoene desaturase. To identify single-copy transformed plants, we adapted a high-throughput technique and also developed a novel method to determine transgene independent integration. These efforts led to an efficient method to determine gene function, expediting research in numerous genotypes of this widely grown, multi-use crop.
Collapse
Affiliation(s)
- Kiflom Aregawi
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Jianqiang Shen
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Grady Pierroz
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Manoj K. Sharma
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Jeffery Dahlberg
- University of California Ag & Natural ResourcesKearney Agricultural Research & Extension CenterParlierCAUSA
| | - Judith Owiti
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| | - Peggy G. Lemaux
- Department of Plant and Microbial BiologyUniversity of CaliforniaBerkeleyCAUSA
| |
Collapse
|
23
|
Silva TN, Thomas JB, Dahlberg J, Rhee SY, Mortimer JC. Progress and challenges in sorghum biotechnology, a multipurpose feedstock for the bioeconomy. JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:646-664. [PMID: 34644381 PMCID: PMC8793871 DOI: 10.1093/jxb/erab450] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Accepted: 10/10/2021] [Indexed: 05/09/2023]
Abstract
Sorghum [Sorghum bicolor (L.) Moench] is the fifth most important cereal crop globally by harvested area and production. Its drought and heat tolerance allow high yields with minimal input. It is a promising biomass crop for the production of biofuels and bioproducts. In addition, as an annual diploid with a relatively small genome compared with other C4 grasses, and excellent germplasm diversity, sorghum is an excellent research species for other C4 crops such as maize. As a result, an increasing number of researchers are looking to test the transferability of findings from other organisms such as Arabidopsis thaliana and Brachypodium distachyon to sorghum, as well as to engineer new biomass sorghum varieties. Here, we provide an overview of sorghum as a multipurpose feedstock crop which can support the growing bioeconomy, and as a monocot research model system. We review what makes sorghum such a successful crop and identify some key traits for future improvement. We assess recent progress in sorghum transformation and highlight how transformation limitations still restrict its widespread adoption. Finally, we summarize available sorghum genetic, genomic, and bioinformatics resources. This review is intended for researchers new to sorghum research, as well as those wishing to include non-food and forage applications in their research.
Collapse
Affiliation(s)
- Tallyta N Silva
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Jason B Thomas
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, USA
| | - Jeff Dahlberg
- Joint BioEnergy Institute, Emeryville, CA, USA
- UC-ANR-KARE, 9240 S. Riverbend Ave, Parlier, CA, USA
| | - Seung Y Rhee
- Carnegie Institution for Science, Department of Plant Biology, Stanford, CA, USA
- Correspondence: or
| | - Jenny C Mortimer
- Joint BioEnergy Institute, Emeryville, CA, USA
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- School of Agriculture, Food and Wine, Waite Research Institute, University of Adelaide, SA, Australia
- Correspondence: or
| |
Collapse
|
24
|
Yeap WC, Norkhairunnisa Che Mohd Khan, Norfadzilah Jamalludin, Muad MR, Appleton DR, Harikrishna Kulaveerasingam. An Efficient Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)/CRISPR-Associated Protein 9 Mutagenesis System for Oil Palm ( Elaeis guineensis). FRONTIERS IN PLANT SCIENCE 2021; 12:773656. [PMID: 34880893 PMCID: PMC8647858 DOI: 10.3389/fpls.2021.773656] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 10/18/2021] [Indexed: 07/27/2023]
Abstract
The clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) system has emerged as a powerful tool for the precise editing of plant genomes for crop improvement. Rapid in vitro methods for the determination of guide RNA (gRNA) cleavage efficiency and an efficient DNA delivery system is essential for gene editing. However, we lack an efficient gene-editing system for palm species. In this study, we described the development of a transient oil palm protoplast assay to rapidly evaluate the cleavage efficiency of CRISPR/Cas9 mutagenesis and the generation of stable transformed oil palms using biolistic particle bombardment in immature embryos. Using the phytoene desaturase (EgPDS) gene, we found cleavage frequency of up to 25.49% in electro-transfected protoplast, which enables the production of transgenic oil palm shoots exhibiting chimeric albino phenotypes as a result of DNA insertions, deletions (InDels), and nucleotide substitutions, with a mutation efficiency of 62.5-83.33%. We further validated the mutagenesis efficiency and specificity of the CRISPR/Cas9 system in oil palm by targeting the brassinosteroid-insensitive 1 (EgBRI1) gene, which resulted in nucleotide substitutions in EgBRI1 with premature necrosis phenotype in oil palm transgenic shoots and stunted phenotype resulting from DNA InDels. Taken together, our results showed that effective and efficient editing of genes using the CRISPR/Cas9 system can be achieved in oil palm by optimizing the selection of efficient gRNA and DNA delivery methods. This newly designed strategy will enable new routes for the genetic improvement in oil palm and related species.
Collapse
Affiliation(s)
- Wan-Chin Yeap
- Sime Darby Plantation Technology Centre Sdn. Bhd., Serdang, Malaysia
| | | | | | | | | | | |
Collapse
|
25
|
Xin Z, Wang M, Cuevas HE, Chen J, Harrison M, Pugh NA, Morris G. Sorghum genetic, genomic, and breeding resources. PLANTA 2021; 254:114. [PMID: 34739592 PMCID: PMC8571242 DOI: 10.1007/s00425-021-03742-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 09/28/2021] [Indexed: 05/24/2023]
Abstract
Sorghum research has entered an exciting and fruitful era due to the genetic, genomic, and breeding resources that are now available to researchers and plant breeders. As the world faces the challenges of a rising population and a changing global climate, new agricultural solutions will need to be developed to address the food and fiber needs of the future. To that end, sorghum will be an invaluable crop species as it is a stress-resistant C4 plant that is well adapted for semi-arid and arid regions. Sorghum has already remained as a staple food crop in many parts of Africa and Asia and is critically important for animal feed and niche culinary applications in other regions, such as the United States. In addition, sorghum has begun to be developed into a promising feedstock for forage and bioenergy production. Due to this increasing demand for sorghum and its potential to address these needs, the continuous development of powerful community resources is required. These resources include vast collections of sorghum germplasm, high-quality reference genome sequences, sorghum association panels for genome-wide association studies of traits involved in food and bioenergy production, mutant populations for rapid discovery of causative genes for phenotypes relevant to sorghum improvement, gene expression atlas, and online databases that integrate all resources and provide the sorghum community with tools that can be used in breeding and genomic studies. Used in tandem, these valuable resources will ensure that the rate, quality, and collaborative potential of ongoing sorghum improvement efforts is able to rival that of other major crops.
Collapse
Affiliation(s)
- Zhanguo Xin
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA.
| | - Mingli Wang
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - Hugo E Cuevas
- Tropical Agriculture Research Station, USDA-ARS, Mayagüez, 00680, Puerto Rico
| | - Junping Chen
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Melanie Harrison
- Plant Genetic Resources Conservation Unit, USDA-ARS, Griffin, GA, 30223, USA
| | - N Ace Pugh
- Plant Stress and Germplasm Development Unit, Crop Systems Research Laboratory, USDA-ARS, 3810, 4th Street, Lubbock, TX, 79424, USA
| | - Geoffrey Morris
- Crop Quantitative Genomics, Soil and Crop Sciences, Colorado State University, Plant Sciences Building, Fort Collins, CO, 80523, USA
| |
Collapse
|
26
|
Co-Inoculation of Bacillus spp. for Growth Promotion and Iron Fortification in Sorghum. SUSTAINABILITY 2021. [DOI: 10.3390/su132112091] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Seven Bacillus spp. isolated from the marine water and the rhizosphere of the medicinal plant Coscinium fenestratum were studied to produce plant growth promotion (PGP) traits invitro. Among the seven isolates, MMRH22 and RHPR20 produced copious amounts of PGP traits. Based on the 16S rRNA sequence, the two potent bacterial isolates, RHPR20 and MMRH22, were identified as Bacillus mojavensis and Bacillus cereus, respectively. A compatibility test between the isolates RHPR20 and MMRH22 revealed they are compatible and can be used as a consortium. Both isolates were evaluated for the plant growth promotion and the biofortification of sorghum under greenhouse conditions. Treatments included the application of MMRH22, RHPR20, their consortium (RHPR20 + MMRH22), and an uninoculated control. Inoculation with bacterial cultures resulted in a significant increase in the plant height; the number of leaves; the leaf area; the root, shoot, and leaf weight; and the yield of sorghum at 30 and 60 days after sowing (DAS). The scanning electron micrograph of the sorghum plant roots revealed extensive colonization in the plants treated with the bacterial cultures compared to the uninoculated control. The sorghum grains obtained after final harvest were analyzed for their nutrient content by ICP–OES. The biofortification in sorghum grains was varied and was found to enhance the iron content up to 97%. This study revealed that treatments with microbial consortia enhance plant growth, yield, and iron content, which could combat nutrient deficiencies in plants and humans.
Collapse
|
27
|
Venezia M, Creasey Krainer KM. Current Advancements and Limitations of Gene Editing in Orphan Crops. FRONTIERS IN PLANT SCIENCE 2021; 12:742932. [PMID: 34630494 PMCID: PMC8493294 DOI: 10.3389/fpls.2021.742932] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 08/20/2021] [Indexed: 05/23/2023]
Abstract
Gene editing provides precise, heritable genome mutagenesis without permanent transgenesis, and has been widely demonstrated and applied in planta. In the past decade, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated proteins (Cas) has revolutionized the application of gene editing in crops, with mechanistic advances expanding its potential, including prime editing and base editing. To date, CRISPR/Cas has been utilized in over a dozen orphan crops with diverse genetic backgrounds, leading to novel alleles and beneficial phenotypes for breeders, growers, and consumers. In conjunction with the adoption of science-based regulatory practices, there is potential for CRISPR/Cas-mediated gene editing in orphan crop improvement programs to solve a plethora of agricultural problems, especially impacting developing countries. Genome sequencing has progressed, becoming more affordable and applicable to orphan crops. Open-access resources allow for target gene identification and guide RNA (gRNA) design and evaluation, with modular cloning systems and enzyme screening methods providing experimental feasibility. While the genomic and mechanistic limitations are being overcome, crop transformation and regeneration continue to be the bottleneck for gene editing applications. International collaboration between all stakeholders involved in crop improvement is vital to provide equitable access and bridge the scientific gap between the world's most economically important crops and the most under-researched crops. This review describes the mechanisms and workflow of CRISPR/Cas in planta and addresses the challenges, current applications, and future prospects in orphan crops.
Collapse
|
28
|
Mbinda W, Mukami A. A Review of Recent Advances and Future Directions in the Management of Salinity Stress in Finger Millet. FRONTIERS IN PLANT SCIENCE 2021; 12:734798. [PMID: 34603359 PMCID: PMC8481900 DOI: 10.3389/fpls.2021.734798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Salinity stress is a major environmental impediment affecting the growth and production of crops. Finger millet is an important cereal grown in many arid and semi-arid areas of the world characterized by erratic rainfall and scarcity of good-quality water. Finger millet salinity stress is caused by the accumulation of soluble salts due to irrigation without a proper drainage system, coupled with the underlying rocks having a high salt content, which leads to the salinization of arable land. This problem is projected to be exacerbated by climate change. The use of new and efficient strategies that provide stable salinity tolerance across a wide range of environments can guarantee sustainable production of finger millet in the future. In this review, we analyze the strategies that have been used for salinity stress management in finger millet production and discuss potential future directions toward the development of salt-tolerant finger millet varieties. This review also describes how advanced biotechnological tools are being used to develop salt-tolerant plants. The biotechnological techniques discussed in this review are simple to implement, have design flexibility, low cost, and highly efficient. This information provides insights into enhancing finger millet salinity tolerance and improving production.
Collapse
Affiliation(s)
- Wilton Mbinda
- Department of Biochemistry and Biotechnology, Pwani University, Kilifi, Kenya
- Pwani University Biosciences Research Centre (PUBReC), Pwani University, Kilifi, Kenya
| | - Asunta Mukami
- Department of Life Sciences, South Eastern Kenya University, Kitui, Kenya
| |
Collapse
|
29
|
Massel K, Lam Y, Wong ACS, Hickey LT, Borrell AK, Godwin ID. Hotter, drier, CRISPR: the latest edit on climate change. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2021; 134:1691-1709. [PMID: 33420514 DOI: 10.1007/s00122-020-03764-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 12/30/2020] [Indexed: 05/23/2023]
Abstract
Integrating CRISPR/Cas9 genome editing into modern breeding programs for crop improvement in cereals. Global climate trends in many agricultural regions have been rapidly changing over the past decades, and major advances in global food systems are required to ensure food security in the face of these emerging challenges. With increasing climate instability due to warmer temperatures and rising CO2 levels, the productivity of global agriculture will continue to be negatively impacted. To combat these growing concerns, creative approaches will be required, utilising all the tools available to produce more robust and tolerant crops with increased quality and yields under more extreme conditions. The integration of genome editing and transgenics into current breeding strategies is one promising solution to accelerate genetic gains through targeted genetic modifications, producing crops that can overcome the shifting climate realities. This review focuses on how revolutionary genome editing tools can be directly implemented into breeding programs for cereal crop improvement to rapidly counteract many of the issues affecting agriculture production in the years to come.
Collapse
Affiliation(s)
- Karen Massel
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia.
| | - Yasmine Lam
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Albert C S Wong
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lee T Hickey
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Andrew K Borrell
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian D Godwin
- Centre for Crop Science, Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
30
|
Li ZC, Ren QW, Guo Y, Ran J, Ren XT, Wu NN, Xu HY, Liu X, Liu JZ. Dual Roles of GSNOR1 in Cell Death and Immunity in Tetraploid Nicotiana tabacum. FRONTIERS IN PLANT SCIENCE 2021; 12:596234. [PMID: 33643341 PMCID: PMC7902495 DOI: 10.3389/fpls.2021.596234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
S-nitrosoglutathione reductase 1 (GSNOR1) is the key enzyme that regulates cellular homeostasis of S-nitrosylation. Although extensively studied in Arabidopsis, the roles of GSNOR1 in tetraploid Nicotiana species have not been investigated previously. To study the function of NtGSNOR1, we knocked out two NtGSNOR1 genes simultaneously in Nicotiana tabacum using clustered regularly interspaced short palindromic repeats (CRISPR)/caspase 9 (Cas9) technology. To our surprise, spontaneous cell death occurred on the leaves of the CRISPR/Cas9 lines but not on those of the wild-type (WT) plants, suggesting that NtGSNOR1 negatively regulates cell death. The natural cell death on the CRISPR/Cas9 lines could be a result from interactions between overaccumulated nitric oxide (NO) and hydrogen peroxide (H2O2). This spontaneous cell death phenotype was not affected by knocking out two Enhanced disease susceptibility 1 genes (NtEDS11a/1b) and thus was independent of the salicylic acid (SA) pathway. Unexpectedly, we found that the NtGSNOR1a/1b knockout plants displayed a significantly (p < 0.001) enhanced resistance to paraquat-induced cell death compared to WT plants, suggesting that NtGSNOR1 functions as a positive regulator of the paraquat-induced cell death. The increased resistance to the paraquat-induced cell death of the NtGSNOR1a/1b knockout plants was correlated with the reduced level of H2O2 accumulation. Interestingly, whereas the N gene-mediated resistance to Tobacco mosaic virus (TMV) was significantly enhanced (p < 0.001), the resistance to Pseudomonas syringae pv. tomato DC3000 was significantly reduced (p < 0.01) in the NtGSNOR1a/1b knockout lines. In summary, our results indicate that NtGSNOR1 functions as both positive and negative regulator of cell death under different conditions and displays distinct effects on resistance against viral and bacterial pathogens.
Collapse
Affiliation(s)
- Zhen-Chao Li
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Qian-Wei Ren
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Yan Guo
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Jie Ran
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xiao-Tian Ren
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Ni-Ni Wu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Hui-Yang Xu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
| | - Xia Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, China
| | - Jian-Zhong Liu
- College of Chemistry and Life Sciences, Zhejiang Normal University, Jinhua, China
- Zhejiang Provincial Key Laboratory of Biotechnology on Specialty Economic Plants, Zhejiang Normal University, Jinhua, China
| |
Collapse
|
31
|
Chen G, Zhou Y, Kishchenko O, Stepanenko A, Jatayev S, Zhang D, Borisjuk N. Gene editing to facilitate hybrid crop production. Biotechnol Adv 2020; 46:107676. [PMID: 33285253 DOI: 10.1016/j.biotechadv.2020.107676] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 11/23/2020] [Accepted: 11/28/2020] [Indexed: 11/18/2022]
Abstract
Capturing heterosis (hybrid vigor) is a promising way to increase productivity in many crops; hybrid crops often have superior yields, disease resistance, and stress tolerance compared with their parental inbred lines. The full utilization of heterosis faces a number of technical problems related to the specifics of crop reproductive biology, such as difficulties with generating and maintaining male-sterile lines and the low efficiency of natural cross-pollination for some genetic combinations. Innovative technologies, such as development of artificial in vitro systems for hybrid production and apomixis-based systems for maintenance of the resulting heterotic progeny, may substantially facilitate the production of hybrids. Genome editing using specifically targeted nucleases, such as clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease 9 (CRISPR/Cas9) systems, which recognize targets by RNA:DNA complementarity, has recently become an integral part of research and development in life science. In this review, we summarize the progress of genome editing technologies for facilitating the generation of mutant male sterile lines, applications of haploids for hybrid production, and the use of apomixis for the clonal propagation of elite hybrid lines.
Collapse
Affiliation(s)
- Guimin Chen
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| | - Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Anton Stepanenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China; Institute of Cell Biology & Genetic Engineering, National Academy of Science of Ukraine, Kyiv, Ukraine.
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Dabing Zhang
- Joint International Research Laboratory of Metabolic & Developmental Sciences, Shanghai Jiao Tong University-University of Adelaide Joint Centre for Agriculture and Health, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China; School of Agriculture, Food and Wine, University of Adelaide, Glen Osmond, SA, Australia.
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai'an, China; Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture & Environmental Protection, Huaiyin Normal University, Huai'an, China.
| |
Collapse
|
32
|
Stutts LR, Vermerris W. Elucidating Anthracnose Resistance Mechanisms in Sorghum-A Review. PHYTOPATHOLOGY 2020; 110:1863-1876. [PMID: 33100146 DOI: 10.1094/phyto-04-20-0132-rvw] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Sorghum (Sorghum bicolor) is the fifth most cultivated cereal crop in the world, traditionally providing food, feed, and fodder, but more recently also fermentable sugars for the production of renewable fuels and chemicals. The hemibiotrophic fungal pathogen Colletotrichum sublineola, the causal agent of anthracnose disease in sorghum, is prevalent in the warm and humid climates where much of the sorghum is cultivated and poses a serious threat to sorghum production. The use of anthracnose-resistant sorghum germplasm is the most environmentally and economically sustainable way to protect sorghum against this pathogen. Even though multiple anthracnose resistance loci have been mapped in diverse sorghum germplasm in recent years, the diversity in C. sublineola pathotypes at the local and regional levels means that these resistance genes are not equally effective in different areas of cultivation. This review summarizes the genetic and cytological data underlying sorghum's defense response and describes recent developments that will enable a better understanding of the interactions between sorghum and C. sublineola at the molecular level. This includes releases of the sorghum genome and the draft genome of C. sublineola, the use of next-generation sequencing technologies to identify gene expression networks activated in response to infection, and improvements in methodologies to validate resistance genes, notably virus-induced and transgenic gene silencing approaches.
Collapse
Affiliation(s)
- Lauren R Stutts
- Graduate Program in Plant Molecular & Cellular Biology, University of Florida, Gainesville, FL 32610
| | - Wilfred Vermerris
- Department of Microbiology & Cell Science, UF Genetics Institute, and Florida Center for Renewable Fuels and Chemicals, University of Florida, Gainesville, FL 32610
| |
Collapse
|
33
|
Kishchenko O, Zhou Y, Jatayev S, Shavrukov Y, Borisjuk N. Gene editing applications to modulate crop flowering time and seed dormancy. ABIOTECH 2020; 1:233-245. [PMID: 36304127 PMCID: PMC9590486 DOI: 10.1007/s42994-020-00032-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/10/2020] [Indexed: 02/07/2023]
Abstract
Gene editing technologies such as CRISPR/Cas9 have been used to improve many agricultural traits, from disease resistance to grain quality. Now, emerging research has used CRISPR/Cas9 and other gene editing technologies to target plant reproduction, including major areas such as flowering time and seed dormancy. Traits related to these areas have important implications for agriculture, as manipulation of flowering time has multiple applications, including tailoring crops for regional adaptation and improving yield. Moreover, understanding seed dormancy will enable approaches to improve germination upon planting and prevent pre-harvest sprouting. Here, we summarize trends and recent advances in using gene editing to gain a better understanding of plant reproduction and apply the resulting information for crop improvement.
Collapse
Affiliation(s)
- Olena Kishchenko
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
- Institute of Cell Biology and Genetic Engineering, NAS of Ukraine, Kiev, Ukraine
| | - Yuzhen Zhou
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| | - Satyvaldy Jatayev
- Faculty of Agronomy, S. Seifullin Kazakh AgroTechnical University, Nur-Sultan, Kazakhstan
| | - Yuri Shavrukov
- College of Science and Engineering, Biological Sciences, Flinders University, Adelaide, Australia
| | - Nikolai Borisjuk
- Jiangsu Key Laboratory for Eco-Agricultural Biotechnology around Hongze Lake, School of Life Sciences, Huaiyin Normal University, Huai’an, China
- Jiangsu Collaborative Innovation Centre of Regional Modern Agriculture and Environmental Protection, Huaiyin Normal University, Huai’an, China
| |
Collapse
|
34
|
Char SN, Lee H, Yang B. Use of CRISPR/Cas9 for Targeted Mutagenesis in Sorghum. ACTA ACUST UNITED AC 2020; 5:e20112. [PMID: 32501639 DOI: 10.1002/cppb.20112] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Sorghum (Sorghum bicolor) fulfills the demand for bioenergy resources and also provides substantial diet calories to the world's population. Therefore, many biological studies use sorghum as a research model for improvement of the domesticated food and bioenergy crops. Furthermore, leveraging genome editing systems in a plethora of grass plant species has been extensively studied with no exception in sorghum. However, a protocol that details the genome editing strategies using CRISPR/Cas9 and that combines an efficient tissue culture and transformation platform in sorghum based on Agrobacterium-mediated DNA transfer has yet to be reported. This protocol outlines the steps and workflow from design of sorghum CRISPR target sites using BTx623 as a reference genome, construction of sorghum CRISPR/Cas9 plasmids, tissue culture, to Agrobacterium-mediated transformation followed by genotyping of CRISPR/Cas9 induced mutants. © 2020 Wiley Periodicals LLC. Basic Protocol 1: Construction of CRISPR/Cas9 expression vector to analysis of CRISPR-edited plants Basic Protocol 2: Stable transformation of sorghum Support Protocol: Management of sorghum plants in a greenhouse.
Collapse
Affiliation(s)
- Si Nian Char
- Division of Plant Sciences, University of Missouri, Columbia, Missouri.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri
| | - Hyeyoung Lee
- Division of Plant Sciences, University of Missouri, Columbia, Missouri.,Plant Transformation Core Facility, University of Missouri, Columbia, Missouri
| | - Bing Yang
- Division of Plant Sciences, University of Missouri, Columbia, Missouri.,Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri.,Donald Danforth Plant Science Center, St. Louis, Missouri
| |
Collapse
|
35
|
Flinn B, Dale S, Disharoon A, Kresovich S. Comparative Analysis of In Vitro Responses and Regeneration between Diverse Bioenergy Sorghum Genotypes. PLANTS (BASEL, SWITZERLAND) 2020; 9:E248. [PMID: 32075100 PMCID: PMC7076383 DOI: 10.3390/plants9020248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/24/2020] [Accepted: 02/11/2020] [Indexed: 01/09/2023]
Abstract
Sorghum has been considered a recalcitrant plant in vitro and suffers from a lack of regeneration protocols that function broadly and efficiently across a range of genotypes. This study was initiated to identify differential genotype-in vitro protocol responses across a range of bioenergy sorghum parental lines and the common grain sorghum genotype Tx430 in order to characterize response profiles for use in future genetic studies. Two different in vitro protocols, LG and WU, were used for comparisons. Distinct genotype-protocol responses were observed, and the WU protocol performed significantly better for plantlet regeneration. Most bioenergy genotypes performed as well, if not better than Tx430, with Rio and PI329311 as the top regenerating lines. Genotypes displayed protocol-dependent, differential phenolic exudation responses, as indicated by medium browning. During the callus induction phase, genotypes prone to medium browning exhibited a response on WU medium which was either equal or greater than on LG medium. Genotype- and protocol-dependent albino plantlet regeneration was also noted, with three of the bioenergy genotypes showing albino plantlet regeneration. Grassl, Rio and Pink Kafir were susceptible to albino plantlet regeneration, with the response strongly associated with the WU protocol. These bioenergy parental genotypes, and their differential responses under two in vitro protocols, provide tools to further explore and assess the role of genetic loci, candidate genes, and allelic variants in the regulation of in vitro responsiveness in sorghum.
Collapse
Affiliation(s)
- Barry Flinn
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634, USA;
| | - Savanah Dale
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (A.D.)
| | - Andrew Disharoon
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (A.D.)
| | - Stephen Kresovich
- Advanced Plant Technology Program, Clemson University, Clemson, SC 29634, USA;
- Department of Plant and Environmental Sciences, Clemson University, Clemson, SC 29634, USA; (S.D.); (A.D.)
| |
Collapse
|