1
|
Berman A, Su N, Li Z, Landau U, Chakraborty J, Gerbi N, Liu J, Qin Y, Yuan B, Wei W, Yanai O, Mayrose I, Zhang Y, Shani E. Construction of multi-targeted CRISPR libraries in tomato to overcome functional redundancy at genome-scale level. Nat Commun 2025; 16:4111. [PMID: 40316524 PMCID: PMC12048548 DOI: 10.1038/s41467-025-59280-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 04/16/2025] [Indexed: 05/04/2025] Open
Abstract
Genetic variance is vital for breeding programs and mutant screening, yet traditional mutagenesis methods wrestle with genetic redundancy and a lack of specificity in gene targeting. CRISPR-Cas9 offers precise, site-specific gene editing, but its application in crop improvement has been limited by scalability challenges. In this study, we develop genome-wide multi-targeted CRISPR libraries in tomato, enhancing the scalability of CRISPR gene editing in crops and addressing the challenges of redundancy while maintaining its precision. We design 15,804 unique single guide RNAs (sgRNAs), each targeting multiple genes within the same gene families. These sgRNAs are classified into 10 sub-libraries based on gene function. We generate approximately 1300 independent CRISPR lines and successfully identify mutants with distinct phenotypes related to fruit development, fruit flavor, nutrient uptake, and pathogen response. Additionally, we develop CRISPR-GuideMap, a double-barcode tagging system to enable large-scale sgRNA tracking in generated plants. Our results demonstrate that multi-targeted CRISPR libraries are scalable and effective for large-scale gene editing and offer an approach to overcome gene functional redundancy in basic plant research and crop breeding.
Collapse
Affiliation(s)
- Amichai Berman
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Ning Su
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuorong Li
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Udi Landau
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Joydeep Chakraborty
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Natali Gerbi
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Jia Liu
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yuntai Qin
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Boxi Yuan
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Wei Wei
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- Key Lab of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Osnat Yanai
- NetaGenomiX, Netter Center, Mikveh Israel, Israel
| | - Itay Mayrose
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel
| | - Yuqin Zhang
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China.
| | - Eilon Shani
- School of Plant Sciences and Food Security, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
2
|
Jiang Y, Xiao Z, Luo Z, Zhou S, Tong C, Jin S, Liu X, Qin R, Xu R, Pan L, Li J, Wei P. Improving plant C-to-G base editors with a cold-adapted glycosylase and TadA-8e variants. Trends Biotechnol 2025:S0167-7799(25)00086-1. [PMID: 40187931 DOI: 10.1016/j.tibtech.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 02/25/2025] [Accepted: 03/04/2025] [Indexed: 04/07/2025]
Abstract
Plant cytosine (C)-to-guanine (G) base editors (CGBEs) have been established but suffer from limited editing efficiencies and low outcome purities. This study engineered a cod uracil DNA glycosylase (cod UNG, coUNG) from the cold-adapted fish Gadus morhua for plant CGBE, demonstrating 1.71- to 2.54-fold increases in C-to-G editing efficiency compared with the CGBE using human UNG (hUNG). Further engineering took advantage of TadA-8e-derived cytidine deaminases (TadA-CDs). These variants induced C substitutions with efficiencies ranging from 26.28% to 30.82% in rice cells, whereas adenine (A) conversion was negligible. By integrating coUNG and TadA-CDc elements with SpCas9 nickase, the resulting CDc-CGBEco achieved pure C-to-G editing without byproducts in up to 52.08% of transgenic lines. Whole-genome sequencing (WGS) analysis revealed no significant off-target effects of the CDc-BEs in rice. In addition, CDc-CGBEco enabled precise C-to-G editing in soybean and tobacco. These engineered CGBEs enhanced editing efficiency, purity, and specificity, suggesting their broad potential for applications in scientific research and crop breeding.
Collapse
Affiliation(s)
- Yingli Jiang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Zhi Xiao
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China; Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Zhaopeng Luo
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, PR China
| | - Suhuai Zhou
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Chaoyun Tong
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
| | - Shan Jin
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
| | - Xiaoshuang Liu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China
| | - Ruiying Qin
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
| | - Rongfang Xu
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China
| | - Lang Pan
- College of Plant Protection, Hunan Agricultural University, Changsha, 410128, PR China
| | - Juan Li
- Anhui Province Key Laboratory of Rice Germplasm Innovation and Molecular Improvement, Anhui Academy of Agricultural Sciences, Hefei, 230031, PR China.
| | - Pengcheng Wei
- College of Agronomy, Anhui Agricultural University, Hefei, 230036, PR China; Research Centre for Biological Breeding Technology, Advance Academy, Anhui Agricultural University, Hefei, 230036, PR China.
| |
Collapse
|
3
|
Cheng Y, Li G, Qi A, Mandlik R, Pan C, Wang D, Ge S, Qi Y. A comprehensive all-in-one CRISPR toolbox for large-scale screens in plants. THE PLANT CELL 2025; 37:koaf081. [PMID: 40261966 PMCID: PMC12013820 DOI: 10.1093/plcell/koaf081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Accepted: 03/09/2025] [Indexed: 04/10/2025]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR)-associated nuclease (Cas) technologies facilitate routine genome engineering of one or a few genes at a time. However, large-scale CRISPR screens with guide RNA libraries remain challenging in plants. Here, we have developed a comprehensive all-in-one CRISPR toolbox for Cas9-based genome editing, cytosine base editing, adenine base editing (ABE), Cas12a-based genome editing and ABE, and CRISPR-Act3.0-based gene activation in both monocot and dicot plants. We evaluated all-in-one T-DNA expression vectors in rice (Oryza sativa, monocot) and tomato (Solanum lycopersicum, dicot) protoplasts, demonstrating their broad and reliable applicability. To showcase the applications of these vectors in CRISPR screens, we constructed guide RNA (gRNA) pools for testing in rice protoplasts, establishing a high-throughput approach to select high-activity gRNAs. Additionally, we demonstrated the efficacy of sgRNA library screening for targeted mutagenesis of ACETOLACTATE SYNTHASE in rice, recovering novel candidate alleles for herbicide resistance. Furthermore, we carried out a CRISPR activation screen in Arabidopsis thaliana, rapidly identifying potent gRNAs for FLOWERING LOCUS T activation that confer an early-flowering phenotype. This toolbox contains 61 versatile all-in-one vectors encompassing nearly all commonly used CRISPR technologies. It will facilitate large-scale genetic screens for loss-of-function or gain-of-function studies, presenting numerous promising applications in plants.
Collapse
Affiliation(s)
- Yanhao Cheng
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Gen Li
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Aileen Qi
- Montgomery Blair High School, Silver Spring, MD 20901, USA
| | - Rushil Mandlik
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Changtian Pan
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
| | - Doris Wang
- Montgomery Blair High School, Silver Spring, MD 20901, USA
| | - Sophia Ge
- Montgomery Blair High School, Silver Spring, MD 20901, USA
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD 20742, USA
- Institute for Bioscience and Biotechnology Research, University of Maryland, Rockville, MD 20850, USA
| |
Collapse
|
4
|
Duan Z, Xu L, Zhou G, Zhu Z, Wang X, Shen Y, Ma X, Tian Z, Fang C. Unlocking soybean potential: genetic resources and omics for breeding. J Genet Genomics 2025:S1673-8527(25)00041-4. [PMID: 39984157 DOI: 10.1016/j.jgg.2025.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 02/11/2025] [Accepted: 02/12/2025] [Indexed: 02/23/2025]
Abstract
Soybean (Glycine max) is a vital foundation of global food security, providing a primary source of high-quality protein and oil for human consumption and animal feed. The rising global population has significantly increased the demand for soybeans, emphasizing the urgency of developing high-yield, stress-tolerant, and nutritionally superior cultivars. The extensive collection of soybean germplasm resources-including wild relatives, landraces, and cultivars-represents a valuable reservoir of genetic diversity critical for breeding advancements. Recent breakthroughs in genomic technologies, particularly high-throughput sequencing and multi-omics approaches, have revolutionized the identification of key genes associated with essential agronomic traits within these resources. These innovations enable precise and strategic utilization of genetic diversity, empowering breeders to integrate traits that improve yield potential, resilience to biotic and abiotic stresses, and nutritional quality. This review highlights the critical role of genetic resources and omics-driven innovations in soybean breeding. It also offers insights into strategies for accelerating the development of elite soybean cultivars to meet the growing demands of global soybean production.
Collapse
Affiliation(s)
- Zongbiao Duan
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Liangwei Xu
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Guoan Zhou
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhou Zhu
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Xudong Wang
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China
| | - Yanting Shen
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xin Ma
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhixi Tian
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China; State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Chao Fang
- Yazhouwan National Laboratory, Sanya, Hainan 572000, China.
| |
Collapse
|
5
|
Sulis DB, Lavoine N, Sederoff H, Jiang X, Marques BM, Lan K, Cofre-Vega C, Barrangou R, Wang JP. Advances in lignocellulosic feedstocks for bioenergy and bioproducts. Nat Commun 2025; 16:1244. [PMID: 39893176 PMCID: PMC11787297 DOI: 10.1038/s41467-025-56472-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Accepted: 01/21/2025] [Indexed: 02/04/2025] Open
Abstract
Lignocellulose, an abundant renewable resource, presents a promising alternative for sustainable energy and industrial applications. However, large-scale adoption of lignocellulosic feedstocks faces considerable obstacles, including scalability, bioprocessing efficiency, and resilience to climate change. This Review examines current efforts and future opportunities for leveraging lignocellulosic feedstocks in bio-based energy and products, with a focus on enhancing conversion efficiency and scalability. It also explores emerging biotechnologies such as CRISPR-based genome editing informed by machine learning, aimed at improving feedstock traits and reducing the environmental impact of fossil fuel dependence.
Collapse
Affiliation(s)
- Daniel B Sulis
- TreeCo, Raleigh, NC, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA
| | - Nathalie Lavoine
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Heike Sederoff
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA
| | - Xiao Jiang
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Barbara M Marques
- TreeCo, Raleigh, NC, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA
| | - Kai Lan
- Department of Forest Biomaterials, North Carolina State University, Raleigh, NC, USA
| | - Carlos Cofre-Vega
- TreeCo, Raleigh, NC, USA
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA
| | - Rodolphe Barrangou
- TreeCo, Raleigh, NC, USA.
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA.
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC, USA.
| | - Jack P Wang
- TreeCo, Raleigh, NC, USA.
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC, USA.
- NC Plant Sciences Initiative, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
6
|
Meng Y, Wang N, Wang X, Qiu Z, Kuang H, Guan Y. GmbZIP4a/b Positively Regulate Nodule Number by Affecting Cytokinin Biosynthesis in Glycine max. Int J Mol Sci 2024; 25:13311. [PMID: 39769075 PMCID: PMC11678618 DOI: 10.3390/ijms252413311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2024] [Revised: 12/06/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025] Open
Abstract
Legumes have the capability to form nodules that facilitate symbiotic nitrogen fixation (SNF) with rhizobia. Given the substantial energy consumption during the process of SNF, legumes need to optimize nodule number in response to everchanging environmental scenarios. The TGACG BINDING FACTOR1/4 (TGA1/4) are key players in the basal immune response of plants. In this study, both β-glucuronidase staining and quantitative reverse transcription PCR (qRT-PCR) demonstrated that both GmbZIP4a and GmbZIP4b are inducible upon rhizobial inoculation. To investigate their roles further, we constructed gmbzip4a/b double mutants using CRISPR/Cas9 system. Nodulation assessments revealed that these double mutants displayed a reduction in the number of infection threads, which subsequently resulted in a decreased nodule number. However, the processes associated with nodule development including nodule fresh weight, structural characteristics, and nitrogenase activity, remained unaffected in the double mutants. Subsequent transcriptome analyses revealed that zeatin biosynthesis was downregulated in gmbzip4a/b mutants post rhizobial inoculation. Supporting these findings, genes associated with cytokinin (CTK) signaling pathway were upregulated in Williams 82 (Wm82), but this upregulation was not observed in the double mutants after rhizobial treatment. These results suggest that GmbZIP4a/b positively influences nodule formation by promoting the activation of the CTK signaling pathway during the early stages of nodule formation.
Collapse
Affiliation(s)
- Yongjie Meng
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.M.); (X.W.)
| | - Nan Wang
- School of Life Sciences, Inner Mongolia University, Hohhot 010021, China;
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.M.); (X.W.)
| | - Zhimin Qiu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, 334 Xueshan Road, Wenzhou 325005, China
| | - Huaqin Kuang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.M.); (X.W.)
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; (Y.M.); (X.W.)
| |
Collapse
|
7
|
Jiang W, Deng F, Babla M, Chen C, Yang D, Tong T, Qin Y, Chen G, Marchant B, Soltis P, Soltis DE, Zeng F, Chen ZH. Efficient gene editing of a model fern species through gametophyte-based transformation. PLANT PHYSIOLOGY 2024; 196:2346-2361. [PMID: 39268871 PMCID: PMC11638000 DOI: 10.1093/plphys/kiae473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 08/12/2024] [Accepted: 08/12/2024] [Indexed: 09/15/2024]
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated nuclease (Cas) system allows precise and easy editing of genes in many plant species. However, this system has not yet been applied to any fern species through gametophytes due to the complex characteristics of fern genomes, genetics, and physiology. Here, we established a protocol for gametophyte-based screening of single-guide RNAs (sgRNAs) with high efficiency for CRISPR/Cas9-mediated gene knockout in a model fern species, Ceratopteris richardii. We utilized the C. richardii ACTIN promoter to drive sgRNA expression and the enhanced CaMV 35S promoter to drive the expression of Streptococcus pyogenes Cas9 in this CRISPR-mediated editing system, which was employed to successfully edit a few genes, such as Nucleotidase/phosphatase 1 (CrSAL1) and Phytoene Desaturase (CrPDS), which resulted in an albino phenotype in C. richardii. Knockout of CrSAL1 resulted in significantly (P < 0.05) reduced stomatal conductance (gs), leaf transpiration rate (E), guard cell length, and abscisic acid (ABA)-induced reactive oxygen species (ROS) accumulation in guard cells. Moreover, CrSAL1 overexpressing plants showed significantly increased net photosynthetic rate (A), gs, and E as well as most of the stomatal traits and ABA-induced ROS production in guard cells compared to the wild-type (WT) plants. Taken together, our optimized CRISPR/Cas9 system provides a useful tool for functional genomics in a model fern species, allowing the exploration of fern gene functions for evolutionary biology, herbal medicine discovery, and agricultural applications.
Collapse
Affiliation(s)
- Wei Jiang
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Xianghu Laboratory, Hangzhou 311231, China
| | - Fenglin Deng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Mohammad Babla
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Chen Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
| | - Dongmei Yang
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- School of Tropical Agriculture and Forestry, Hainan University, Danzhou, 571737, China
| | - Tao Tong
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yuan Qin
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Guang Chen
- Institute of Digital Agriculture, Zhejiang Academy of Agricultural Science, Hangzhou 310021, China
| | - Blaine Marchant
- Department of Biology, University of Missouri—St. Louis, St. Louis, MO 63121, USA
| | - Pamela Soltis
- Department of Biology, University of Florida, Gainesville, FL 32611, USA
| | | | - Fanrong Zeng
- MARA Key Laboratory of Sustainable Crop Production in the Middle Reaches of the Yangtze River, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, NSW 2751, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, NSW 2751, Australia
| |
Collapse
|
8
|
Xu Q, Wang X, Wang N, Li S, Yao X, Kuang H, Qiu Z, Ke D, Yang W, Guan Y. Nitrogen inhibition of nitrogenase activity involves the modulation of cytosolic invertase in soybean nodule. J Genet Genomics 2024; 51:1404-1412. [PMID: 38950857 DOI: 10.1016/j.jgg.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 06/23/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
Legume symbiotic nitrogen fixation (SNF) is suppressed by inorganic nitrogen (N) in the soil. High N inhibition of nitrogenase activity is associated with the deprivation of carbon allocation and metabolism in nodules. However, the underlying molecular mechanisms remain unclear. Here, we identify GmCIN1, which encodes a cytosolic invertase, as a gateway for the N-tuning of sucrose utilization in nodules. GmCIN1 is enriched in mature soybean nodules, and its expression is regulated by nitrogen status. The knockout of GmCIN1 using genome editing partially mimics the inhibitory effects of N on nitrogenase activity and sugar content and the impact of high N on nodule transcriptomes. This indicates that GmCIN1 partially mediates the high N inhibition of nodule activity. Moreover, ChIP-qPCR and EMSA reveal that SNAP1/2 transcription factors directly bind to the GmCIN1 promoter. In addition, SNAP1/2 may be involved in the repression of GmCIN1 expression in mature nodules at high N concentrations. Our findings provide insights into the involvement of the transcriptional tuning of carbon (C) metabolism genes by N-signaling modulators in the N-induced inhibition of nitrogenase activity.
Collapse
Affiliation(s)
- Qinzhen Xu
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Nan Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, Inner Mongolia 010000, China
| | - Suning Li
- Jiangxi Province Key Laboratory of Oil Crops Genetic Improvement (2024SSY04031), Crop Institute, Jiangxi Academy of Agricultural Sciences, Nanchang, Jiangxi 330200, China
| | - Xiaolei Yao
- College of Resources and Environment, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Huaqin Kuang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China
| | - Zhimin Qiu
- Zhejiang Institute of Subtropical Crops, Zhejiang Academy of Agricultural Sciences, Wenzhou, Zhejiang 325005, China
| | - Danxia Ke
- College of Life Sciences & Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, Henan 464000, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong 510006, China.
| |
Collapse
|
9
|
Park SR, Son S. CRISPR/Cas9-based mutant library screening: the discovery of novel genes regulating immune responses in cotton and rice. FRONTIERS IN PLANT SCIENCE 2024; 15:1501092. [PMID: 39610885 PMCID: PMC11602277 DOI: 10.3389/fpls.2024.1501092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 10/28/2024] [Indexed: 11/30/2024]
Abstract
The environmental conditions play a crucial role in determining crop yield, which is essential for ensuring food and nutritional security. However, rapid climate change is exacerbating global environmental stress, leading to severe biotic pressures on crops. Therefore, enhancing crop resilience to pathogens has become one of the most pressing challenges for humanity. Large-scale mutant library screening is the most efficient strategy for identifying numerous genes associated with specific traits. The revolutionary CRISPR/Cas9 system has ushered in a new era in the construction of mutant library. However, its application in crop plants has been relatively scarce compared to mammals, largely due to challenges in accessibility. Fortunately, several research groups have recently developed CRISPR/Cas9-based mutant libraries, successfully identifying a variety of genes involved in crop immunity. In this review, we present an overview and discussion of studies that have generated significant results through the use of CRISPR/Cas9 library screening to identify novel genes associated with resistance to biotic stresses within the field of plant research.
Collapse
Affiliation(s)
| | - Seungmin Son
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
10
|
Verma A, Kaur L, Kaur N, Bhardwaj A, Pandey AK, Kandoth PK. Genome editing of an oxalyl-CoA synthetase gene in Lathyrus sativus reveals its role in oxalate metabolism. PLANT CELL REPORTS 2024; 43:280. [PMID: 39538000 DOI: 10.1007/s00299-024-03368-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
KEY MESSAGE Established an Agrobacterium-mediated hairy root transformation system for gene function analysis in Lathyrus sativus. Arabidopsis mutant complementation and genome editing in Lathyrus confirmed role of LsOCS in the oxalate metabolism. Grass pea (Lathyrus sativus) is a resilient legume cultivated for its protein-rich seeds and fodder. However, the presence of a naturally occurring neurotoxin, β-N-oxalyl-L-α,β-diaminopropionic acid (β-ODAP), which causes neurolathyrism, limits its extensive cultivation. This paper reports the in-planta characterization of oxalyl-CoA synthetase (OCS), an enzyme involved in oxalate metabolism and important in the oxalylating step leading to β-ODAP production in Lathyrus. For this, we used complementation experiments in an Arabidopsis OCS mutant. The LsOCS-complemented lines showed oxalate content similar to wild-type levels, and the analysis of seeds by field emission scanning electron microscope (FESEM) showed that the LsOCS-complemented lines were rescued from seed-coat defects found in the mutant seeds. We used genome editing of LsOCS in Lathyrus hairy roots to further characterize LsOCS function. The mutations in LsOCS resulted in the accumulation of oxalate in the hairy roots of Lathyrus, as observed in Arabidopsis mutants, but did not affect the ODAP levels. The hairy root genome editing system could serve as a rapid tool for functional studies of Lathyrus genes and optimizing the agronomic traits.
Collapse
Affiliation(s)
- Anjali Verma
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
- Regional Centre for Biotechnology, Faridabad, India
| | - Lovenpreet Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
- Department of Biotechnology, Panjab University, Chandigarh, India
| | - Navpreet Kaur
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
- University of New Brunswick, Frederickton, Canada
| | - Akanksha Bhardwaj
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
- National Institute of Plant Genome Research, New Delhi, India
| | - Ajay K Pandey
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India
| | - Pramod Kaitheri Kandoth
- National Agri-Food Biotechnology Institute, Mohali, Punjab, India.
- Central University of Kerala, Periye, Kasaragod, Kerala, India.
| |
Collapse
|
11
|
Wang F, Liang S, Wang G, Hu T, Fu C, Wang Q, Xu Z, Fan Y, Che L, Min L, Li B, Long L, Gao W, Zhang X, Jin S. CRISPR-Cas9-mediated construction of a cotton CDPK mutant library for identification of insect-resistance genes. PLANT COMMUNICATIONS 2024; 5:101047. [PMID: 39138865 PMCID: PMC11589327 DOI: 10.1016/j.xplc.2024.101047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 07/10/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Calcium-dependent protein kinases (CDPKs) act as key signal transduction enzymes in plants, especially in response to diverse stresses, including herbivory. In this study, a comprehensive analysis of the CDPK gene family in upland cotton revealed that GhCPKs are widely expressed in multiple cotton tissues and respond positively to various biotic and abiotic stresses. We developed a strategy for screening insect-resistance genes from a CRISPR-Cas9 mutant library of GhCPKs. The library was created using 246 single-guide RNAs targeting the GhCPK gene family to generate 518 independent T0 plants. The average target-gene coverage was 86.18%, the genome editing rate was 89.49%, and the editing heritability was 82%. An insect bioassay in the field led to identification of 14 GhCPK mutants that are resistant or susceptible to insects. The mutant that showed the clearest insect resistance, cpk33/74 (in which the homologous genes GhCPK33 and GhCPK74 were knocked out), was selected for further study. Oral secretions from Spodoptera litura induced a rapid influx of Ca2+ in cpk33/74 leaves, resulting in a significant increase in jasmonic acid content. S-adenosylmethionine synthase is an important protein involved in plant stress response, and protein interaction experiments provided evidence for interactions of GhCPK33 and GhCPK74 with GhSAMS1 and GhSAM2. In addition, virus-induced gene silencing of GhSAMS1 and GhSAM2 in cotton impaired defense against S. litura. This study demonstrates an effective strategy for constructing a mutant library of a gene family in a polyploid plant species and offers valuable insights into the role of CDPKs in the interaction between plants and herbivorous insects.
Collapse
Affiliation(s)
- Fuqiu Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Sijia Liang
- Academy of Industry Innovation and Development, Huanghuai University, Zhumadian, Henan 463000, China
| | - Guanying Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Tianyu Hu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunyang Fu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiongqiong Wang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhongping Xu
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibo Fan
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Lianlian Che
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Ling Min
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Bo Li
- Xinjiang Key Laboratory of Crop Biotechnology, Institute of Nuclear and Biological Technology, Xinjiang Academy of Agricultural Sciences, Urumqi 830091 Xinjiang, China.
| | - Lu Long
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Henan 475004, China.
| | - Wei Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Science, Henan University, Henan 475004, China.
| | - Xianlong Zhang
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- Hubei Hongshan Laboratory, National Key Laboratory of Crop Genetic Improvement, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
12
|
Zhao D, Chen S, Han Y, Liu G, Liu J, Yang Q, Zhang T, Shen J, Fan X, Zhang C, Zhang T, Li Q, Chen C, Liu Q. A CRISPR/Cas9-mediated mutant library of seed-preferred genes in rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3012-3014. [PMID: 38925598 PMCID: PMC11500995 DOI: 10.1111/pbi.14422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/27/2024] [Accepted: 06/11/2024] [Indexed: 06/28/2024]
Affiliation(s)
- Dongsheng Zhao
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Siyu Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Yangshuo Han
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Guanqing Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Jinyu Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Qingqing Yang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Tao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Jilei Shen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Xiaolei Fan
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Tao Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Qianfeng Li
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Chen Chen
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of AgricultureYangzhou UniversityYangzhouChina
- Zhongshan Biological Breeding Laboratory, Co‐Innovation Centre for Modern Production Technology of Grain Crops of Jiangsu Province / Key Laboratory of Crop Genetics and Physiology of Jiangsu ProvinceYangzhou UniversityYangzhouChina
| |
Collapse
|
13
|
Vargas-Almendra A, Ruiz-Medrano R, Núñez-Muñoz LA, Ramírez-Pool JA, Calderón-Pérez B, Xoconostle-Cázares B. Advances in Soybean Genetic Improvement. PLANTS (BASEL, SWITZERLAND) 2024; 13:3073. [PMID: 39519991 PMCID: PMC11548167 DOI: 10.3390/plants13213073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/30/2024] [Indexed: 11/16/2024]
Abstract
The soybean (Glycine max) is a globally important crop due to its high protein and oil content, which serves as a key resource for human and animal nutrition, as well as bioenergy production. This review assesses recent advancements in soybean genetic improvement by conducting an extensive literature analysis focusing on enhancing resistance to biotic and abiotic stresses, improving nutritional profiles, and optimizing yield. We also describe the progress in breeding techniques, including traditional approaches, marker-assisted selection, and biotechnological innovations such as genetic engineering and genome editing. The development of transgenic soybean cultivars through Agrobacterium-mediated transformation and biolistic methods aims to introduce traits such as herbicide resistance, pest tolerance, and improved oil composition. However, challenges remain, particularly with respect to genotype recalcitrance to transformation, plant regeneration, and regulatory hurdles. In addition, we examined how wild soybean germplasm and polyploidy contribute to expanding genetic diversity as well as the influence of epigenetic processes and microbiome on stress tolerance. These genetic innovations are crucial for addressing the increasing global demand for soybeans, while mitigating the effects of climate change and environmental stressors. The integration of molecular breeding strategies with sustainable agricultural practices offers a pathway for developing more resilient and productive soybean varieties, thereby contributing to global food security and agricultural sustainability.
Collapse
Affiliation(s)
- Adriana Vargas-Almendra
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Roberto Ruiz-Medrano
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| | - Leandro Alberto Núñez-Muñoz
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - José Abrahán Ramírez-Pool
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Berenice Calderón-Pérez
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
| | - Beatriz Xoconostle-Cázares
- Departamento de Biotecnología y Bioingeniería, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Ciudad de México 07360, Mexico; (A.V.-A.); (R.R.-M.); (L.A.N.-M.); (J.A.R.-P.); (B.C.-P.)
- Programa de Doctorado Transdisciplinario en Desarrollo Científico y Tecnológico para la Sociedad, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Av. Instituto Politécnico Nacional 2508, Ciudad de México 07360, Mexico
| |
Collapse
|
14
|
Zhou M, Li Y, Yao XL, Zhang J, Liu S, Cao HR, Bai S, Chen CQ, Zhang DX, Xu A, Lei JN, Mao QZ, Zhou Y, Duanmu DQ, Guan YF, Chen ZC. Inorganic nitrogen inhibits symbiotic nitrogen fixation through blocking NRAMP2-mediated iron delivery in soybean nodules. Nat Commun 2024; 15:8946. [PMID: 39414817 PMCID: PMC11484902 DOI: 10.1038/s41467-024-53325-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 10/08/2024] [Indexed: 10/18/2024] Open
Abstract
Symbiotic nitrogen fixation (SNF) in legume-rhizobia serves as a sustainable source of nitrogen (N) in agriculture. However, the addition of inorganic N fertilizers significantly inhibits SNF, and the underlying mechanisms remain not-well understood. Here, we report that inorganic N disrupts iron (Fe) homeostasis in soybean nodules, leading to a decrease in SNF efficiency. This disruption is attributed to the inhibition of the Fe transporter genes Natural Resistance-Associated Macrophage Protein 2a and 2b (GmNRAMP2a&2b) by inorganic N. GmNRAMP2a&2b are predominantly localized at the tonoplast of uninfected nodule tissues, affecting Fe transfer to infected cells and consequently, modulating SNF efficiency. In addition, we identified a pair of N-signal regulators, nitrogen-regulated GARP-type transcription factors 1a and 1b (GmNIGT1a&1b), that negatively regulate the expression of GmNRAMP2a&2b, which establishes a link between N signaling and Fe homeostasis in nodules. Our findings reveal a plausible mechanism by which soybean adjusts SNF efficiency through Fe allocation in response to fluctuating inorganic N conditions, offering valuable insights for optimizing N and Fe management in legume-based agricultural systems.
Collapse
Affiliation(s)
- Min Zhou
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuan Li
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiao-Lei Yao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jing Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Sheng Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hong-Rui Cao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shuang Bai
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chun-Qu Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Dan-Xun Zhang
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Ao Xu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jia-Ning Lei
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Qian-Zhuo Mao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Biotechnology in Plant Protection of MARA, Key Laboratory of Green Plant Protection of Zhejiang Province, Institute of Plant Virology, Ningbo University, Ningbo, China
| | - Yu Zhou
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - De-Qiang Duanmu
- State Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Yue-Feng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China.
| | - Zhi-Chang Chen
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
15
|
Li H, Liao C, Yang H, Kong L, Liu S, Wei J, Chen H, Zhao X, Liu B, Kong F, Chen L. AP1c and SOC1 Form a Regulatory Feedback Loop to Regulate Flowering Time in Soybean. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39370759 DOI: 10.1111/pce.15190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 10/08/2024]
Abstract
Flowering time is a key agronomic trait that directly affects soybean yield. Both APETALA1 (AP1) and SUPPRESSOR OF OVEREXPRESSION OF CO 1 (SOC1) regulate flowering time in soybean, but their genetic and regulatory relationships have not been clarified. Here, we report that AP1c physically interacted with two SOC1 proteins, SOC1a and SOC1b, and that these SOC1s upregulated the expression of AP1c, promoting flowering. Moreover, AP1c repressed the expression of the SOC1s by directly binding to their promoters, thus preventing plants from flowering too early. These findings indicate that AP1c and SOC1s form a regulatory feedback loop that regulates flowering time. Importantly, we identified an exceptional allele, AP1cG, that was selected for during soybean domestication and promotes the early-flowering phenotype in cultivated soybean. Collectively, our work identifies a previously unknown allelic combination potentially useful for both classical and molecular soybean breeding.
Collapse
Affiliation(s)
- Haiyang Li
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Chunmei Liao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Hui Yang
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Lingping Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Shuangrong Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jin Wei
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Haili Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xiaohui Zhao
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Baohui Liu
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fanjiang Kong
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Liyu Chen
- Guangdong Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou Key Laboratory of Crop Gene Editing, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| |
Collapse
|
16
|
Zheng Y, Guo T, Xia T, Guo S, Chen M, Ye S, Pan T, Xu X, Gan Y, Zhan Y, Zheng T, Zheng Z. Utility of Arabidopsis KASII Promoter in Development of an Effective CRISPR/Cas9 System for Soybean Genome Editing and Its Application in Engineering of Soybean Seeds Producing Super-High Oleic and Low Saturated Oils. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:21720-21730. [PMID: 39288439 DOI: 10.1021/acs.jafc.4c05840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
This study reports the use of the Arabidopsis KASII promoter (AtKASII) to develop an efficient CRISPR/Cas9 system for soybean genome editing. When this promoter was paired with Arabidopsis U6 promoters to drive Cas9 and single guide RNA expression, respectively, simultaneous editing of the three fatty acid desaturase genes GmFAD2-1A, GmFAD2-1B, and GmFAD3A occurred in more than 60% of transgenic soybean lines at T2 generation, and all the triple mutants possessed desirable high-oleic traits. In sharp contrast, not a single line underwent simultaneous editing of the three target genes when AtKASII was replaced by the widely used AtEC1.2 promoter. Furthermore, our study showed that the stable and inheritable mutations in the high-oleic lines did not alter the overall contents of oil and protein or amino acid composition while increasing the oleic acid content up to 87.6% from approximately 23.8% for wild-type seeds, concomitant with 34.4- and 3.7-fold reductions in linoleic and linolenic acid, respectively. Collectively, this study demonstrates that the AtKASII promoter is highly promising for optimization of the CRISPR/Cas9 system for genome editing in soybean and possibly beyond.
Collapse
Affiliation(s)
- Yueping Zheng
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tian Guo
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ting Xia
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shixian Guo
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Mengyao Chen
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Shenhua Ye
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Tian Pan
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Xuezhen Xu
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yi Gan
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Yihua Zhan
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Ting Zheng
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang University Zhongyuan Institute, Zhengzhou 450000, China
| | - Zhifu Zheng
- Institute for Oilseed Crop Germplasm Innovation and Utilization, Key Laboratory for Quality Improvement of Agricultural Products of Zhejiang Province, College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China
| |
Collapse
|
17
|
Tu T, Gao Z, Li L, Chen J, Ye K, Xu T, Mai S, Han Q, Chen C, Wu S, Dong Y, Chen J, Huang L, Guan Y, Xie F, Chen X. Soybean symbiotic-nodule zonation and cell differentiation are defined by NIN2 signaling and GH3-dependent auxin homeostasis. Dev Cell 2024; 59:2254-2269.e6. [PMID: 39053471 DOI: 10.1016/j.devcel.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 04/18/2024] [Accepted: 07/02/2024] [Indexed: 07/27/2024]
Abstract
Symbiotic nodules comprise two classes, indeterminate and determinate, defined by the presence/absence of apical meristem and developmental zonation. Why meristem and zonation are absent from determinate nodules remains unclear. Here, we define cell types in developing soybean nodules, highlighting the undifferentiated infection zones and differentiated nitrogen-fixation zones. Auxin governs infection zone maintenance. GRETCHEN HAGEN 3 (GH3) enzymes deactivate auxin by conjugation and promote cell differentiation. gh3 mutants increased undifferentiated cells and enlarged infection zones. The central symbiosis-transcription factor NIN2a activates GH3.1 to reduce auxin levels and facilitates cell differentiation. High auxin promotes NIN2a protein accumulation and enhances signaling, further deactivating auxin and depleting infection zones. Our findings shed light on the NIN2a-GH3-auxin module that drives soybean nodule cell differentiation. This study challenges our understanding of determinate nodule development and proposes that the regulation of nodule zonation offers valuable insights into broader mechanisms of cell differentiation across plant species.
Collapse
Affiliation(s)
- Tianli Tu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Zhen Gao
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Linfang Li
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Jiansheng Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Kangzhuo Ye
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Tao Xu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Siyuan Mai
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Qingqing Han
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chaofan Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Shengwei Wu
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China; College of Agriculture and Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, China
| | - Yankun Dong
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jiaomei Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Laimei Huang
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Fang Xie
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xu Chen
- Haixia Institute of Science and Technology, Horticultural Plant Biology and Metabolomics Center, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
18
|
Freitas-Alves NS, Moreira-Pinto CE, Távora FTPK, Paes-de-Melo B, Arraes FBM, Lourenço-Tessutti IT, Moura SM, Oliveira AC, Morgante CV, Qi Y, Fatima Grossi-de-Sa M. CRISPR/Cas genome editing in soybean: challenges and new insights to overcome existing bottlenecks. J Adv Res 2024:S2090-1232(24)00367-9. [PMID: 39163906 DOI: 10.1016/j.jare.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Revised: 07/23/2024] [Accepted: 08/16/2024] [Indexed: 08/22/2024] Open
Abstract
BACKGROUND Soybean is a worldwide-cultivated crop due to its applications in the food, feed, and biodiesel industries. Genome editing in soybean began with ZFN and TALEN technologies; however, CRISPR/Cas has emerged and shortly became the preferable approach for soybean genome manipulation since it is more precise, easy to handle, and cost-effective. Recent reports have focused on the conventional Cas9 nuclease, Cas9 nickase (nCas9) derived base editors, and Cas12a (formally Cpf1) as the most commonly used genome editors in soybean. Nonetheless, several challenges in the complex plant genetic engineering pipeline need to be overcome to effectively edit the genome of an elite soybean cultivar. These challenges include (1) optimizing CRISPR cassette design (i.e., gRNA and Cas promoters, gRNA design and testing, number of gRNAs, and binary vector), (2) improving transformation frequency, (3) increasing the editing efficiency ratio of targeted plant cells, and (4) improving soybean crop production. AIM OF REVIEW This review provides an overview of soybean genome editing using CRISPR/Cas technology, discusses current challenges, and highlights theoretical (insights) and practical suggestions to overcome the existing bottlenecks. KEY SCIENTIFIC CONCEPTS OF REVIEW The CRISPR/Cas system was discovered as part of the bacterial innate immune system. It has been used as a biotechnological tool for genome editing and efficiently applied in soybean to unveil gene function, improve agronomic traits such as yield and nutritional grain quality, and enhance biotic and abiotic stress tolerance. To date, the efficiency of gRNAs has been validated using protoplasts and hairy root assays, while stable plant transformation relies on Agrobacterium-mediated and particle bombardment methods. Nevertheless, most steps of the CRISPR/Cas workflow require optimizations to achieve a more effective genome editing in soybean plants.
Collapse
Affiliation(s)
- Nayara Sabrina Freitas-Alves
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil
| | - Clidia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabiano T P K Távora
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Fabricio B M Arraes
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Stéfanie M Moura
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil
| | - Antonio C Oliveira
- National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Federal University of Pelotas (UFPEL), Pelotas, RS, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Embrapa Semi-Arid, Petrolina, PE, Brazil
| | - Yiping Qi
- Department of Plant Science and Landscape Architecture, University of Maryland, College Park, MD, USA
| | - Maria Fatima Grossi-de-Sa
- Embrapa Genetic Resources and Biotechnology, Brasília, DF, Brazil; Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná (UFPR), Curitiba, PR, Brazil; National Institute of Science and Technology, INCT PlantStress Biotech, EMBRAPA, Brasília, DF, Brazil; Catholic University of Brasília, Graduate Program in Genomic Sciences and Biotechnology, Brasília, DF, Brazil; Catholic University Dom Bosco, Graduate Program in Biotechnology, Campo Grande, MS, Brazil.
| |
Collapse
|
19
|
Sun J, Liu Y, Zheng Y, Xue Y, Fan Y, Ma X, Ji Y, Liu G, Zhang X, Li Y, Wang S, Tian Z, Zhao L. The MADS-box transcription factor GmFULc promotes GmZTL4 gene transcription to modulate maturity in soybean. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2024; 66:1603-1619. [PMID: 38869305 DOI: 10.1111/jipb.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/26/2024] [Accepted: 05/04/2024] [Indexed: 06/14/2024]
Abstract
Flowering time and maturity are crucial agronomic traits that affect the regional adaptability of soybean plants. The development of soybean cultivars with early maturity adapted to longer days and colder climates of high latitudes is very important for ensuring normal ripening before frost begins. FUL belongs to the MADS-box transcription factor family and has several duplicated members in soybeans. In this study, we observed that overexpression of GmFULc in the Dongnong 50 cultivar promoted soybean maturity, while GmFULc knockout mutants exhibited late maturity. Chromatin immunoprecipitation sequencing (ChIP-seq) and RNA sequencing (RNA-seq) revealed that GmFULc could bind to the CArG, bHLH and homeobox motifs. Further investigation revealed that GmFULc could directly bind to the CArG motif in the promoters of the GmZTL3 and GmZTL4 genes. Overexpression of GmZTL4 promoted soybean maturity, whereas the ztl4 mutants exhibited delayed maturity. Moreover, we found that the cis element box 4 motif of the GmZTL4 promoter, a motif of light response elements, played an important role in controlling the growth period. Deletion of this motif shortened the growth period by increasing the expression levels of GmZTL4. Functional investigations revealed that short-day treatment promoted the binding of GmFULc to the promoter of GmZTL4 and inhibited the expression of E1 and E1Lb, ultimately resulting in the promotion of flowering and early maturation. Taken together, these findings suggest a novel photoperiod regulatory pathway in which GmFULc directly activates GmZTL4 to promote earlier maturity in soybean.
Collapse
Affiliation(s)
- Jingzhe Sun
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
- Qingdao Institute of Bioenergy and Bioprocess Technology, The Chinese Academy of Sciences, Qingdao, 266101, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Yuhong Zheng
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, 130033, China
| | - Yongguo Xue
- Institute of Soybean Research, Heilongjiang Provincial Academy of Agricultural Sciences, Harbin, 150086, China
| | - Yuhuan Fan
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaofei Ma
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Yujia Ji
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Gaoyuan Liu
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Xiaoming Zhang
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Li
- Depatment of Environmental and Plant Biology, Ohio University, Athens, 45701, Ohio, USA
| | - Shuming Wang
- Jilin Academy of Agricultural Sciences, China Agricultural Science and Technology Northeast Innovation Center, Changchun, 130033, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, The Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin Zhao
- Key Laboratory of Soybean Biology of Ministry of Education China, Northeast Agricultural University, Harbin, 150030, China
| |
Collapse
|
20
|
Zhao X, Li H, Wang L, Wang J, Huang Z, Du H, Li Y, Yang J, He M, Cheng Q, Lin X, Liu B, Kong F. A critical suppression feedback loop determines soybean photoperiod sensitivity. Dev Cell 2024; 59:1750-1763.e4. [PMID: 38688276 DOI: 10.1016/j.devcel.2024.04.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 02/07/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024]
Abstract
Photoperiod sensitivity is crucial for soybean flowering, adaptation, and yield. In soybean, photoperiod sensitivity centers around the evening complex (EC) that regulates the transcriptional level of the core transcription factor E1, thereby regulating flowering. However, little is known about the regulation of the activity of EC. Our study identifies how E2/GIGANTEA (GI) and its homologs modulate photoperiod sensitivity through interactions with the EC. During long days, E2 interacts with the blue-light receptor flavin-binding, kelch repeat, F box 1 (FKF1), leading to the degradation of J/ELF3, an EC component. EC also suppresses E2 expression by binding to its promoter. This interplay forms a photoperiod regulatory loop, maintaining sensitivity to photoperiod. Disruption of this loop leads to losing sensitivity, affecting soybean's adaptability and yield. Understanding this loop's dynamics is vital for molecular breeding to reduce soybean's photoperiod sensitivity and develop cultivars with better adaptability and higher yields, potentially leading to the creation of photoperiod-insensitive varieties for broader agricultural applications.
Collapse
Affiliation(s)
- Xiaohui Zhao
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Haiyang Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Lingshuang Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jianhao Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China; Guangdong Key Laboratory for New Technology Research of Vegetables, Vegetable Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
| | - Zerong Huang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Haiping Du
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Yaru Li
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiahui Yang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Milan He
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Qun Cheng
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Xiaoya Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Baohui Liu
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
21
|
Fu M, Yao X, Li X, Liu J, Bai M, Fang Z, Gong J, Guan Y, Xie F. GmNLP1 and GmNLP4 activate nitrate-induced CLE peptides NIC1a/b to mediate nitrate-regulated root nodulation. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:783-795. [PMID: 38701020 DOI: 10.1111/tpj.16795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/31/2024] [Accepted: 04/22/2024] [Indexed: 05/05/2024]
Abstract
Symbiotic nitrogen fixation is an energy-intensive process, to maintain the balance between growth and nitrogen fixation, high concentrations of nitrate inhibit root nodulation. However, the precise mechanism underlying the nitrate inhibition of nodulation in soybean remains elusive. In this study, CRISPR-Cas9-mediated knockout of GmNLP1 and GmNLP4 unveiled a notable nitrate-tolerant nodulation phenotype. GmNLP1b and GmNLP4a play a significant role in the nitrate-triggered inhibition of nodulation, as the expression of nitrate-responsive genes was largely suppressed in Gmnlp1b and Gmnlp4a mutants. Furthermore, we demonstrated that GmNLP1b and GmNLP4a can bind to the promoters of GmNIC1a and GmNIC1b and activate their expression. Manipulations targeting GmNIC1a and GmNIC1b through knockdown or overexpression strategies resulted in either increased or decreased nodule number in response to nitrate. Additionally, transgenic roots that constitutively express GmNIC1a or GmNIC1b rely on both NARK and hydroxyproline O-arabinosyltransferase RDN1 to prevent the inhibitory effects imposed by nitrate on nodulation. In conclusion, this study highlights the crucial role of the GmNLP1/4-GmNIC1a/b module in mediating high nitrate-induced inhibition of nodulation.
Collapse
Affiliation(s)
- Mengdi Fu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaolei Yao
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Li
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China
| | - Jing Liu
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China
| | - Mengyan Bai
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Zijun Fang
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Jiming Gong
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, Guangdong, China
| | - Fang Xie
- CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, 200032, China
- Key Laboratory of Plant Carbon Capture, CAS, Shanghai, 200032, China
| |
Collapse
|
22
|
Yang W, Zhai H, Wu F, Deng L, Chao Y, Meng X, Chen Q, Liu C, Bie X, Sun C, Yu Y, Zhang X, Zhang X, Chang Z, Xue M, Zhao Y, Meng X, Li B, Zhang X, Zhang D, Zhao X, Gao C, Li J, Li C. Peptide REF1 is a local wound signal promoting plant regeneration. Cell 2024; 187:3024-3038.e14. [PMID: 38781969 DOI: 10.1016/j.cell.2024.04.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 03/10/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Plants frequently encounter wounding and have evolved an extraordinary regenerative capacity to heal the wounds. However, the wound signal that triggers regenerative responses has not been identified. Here, through characterization of a tomato mutant defective in both wound-induced defense and regeneration, we demonstrate that in tomato, a plant elicitor peptide (Pep), REGENERATION FACTOR1 (REF1), acts as a systemin-independent local wound signal that primarily regulates local defense responses and regenerative responses in response to wounding. We further identified PEPR1/2 ORTHOLOG RECEPTOR-LIKE KINASE1 (PORK1) as the receptor perceiving REF1 signal for plant regeneration. REF1-PORK1-mediated signaling promotes regeneration via activating WOUND-INDUCED DEDIFFERENTIATION 1 (WIND1), a master regulator of wound-induced cellular reprogramming in plants. Thus, REF1-PORK1 signaling represents a conserved phytocytokine pathway to initiate, amplify, and stabilize a signaling cascade that orchestrates wound-triggered organ regeneration. Application of REF1 provides a simple method to boost the regeneration and transformation efficiency of recalcitrant crops.
Collapse
Affiliation(s)
- Wentao Yang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Huawei Zhai
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Fangming Wu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Deng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| | - Yu Chao
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xianwen Meng
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Qian Chen
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chenhuan Liu
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Bie
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Chuanlong Sun
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yang Yu
- Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiaofei Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoyue Zhang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zeqian Chang
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Xue
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Yajie Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiangbing Meng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Boshu Li
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Xiansheng Zhang
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Dajian Zhang
- College of Agronomy, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Xiangyu Zhao
- College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China
| | - Caixia Gao
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; New Cornerstone Science Laboratory, Center for Genome Editing, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jiayang Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuanyou Li
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Taishan Academy of Tomato Innovation, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China; College of Life Sciences, Shandong Agricultural University, Tai'an 271018, Shandong, China; College of Horticulture Science and Engineering, Shandong Agricultural University, Tai'an 271018, Shandong, China.
| |
Collapse
|
23
|
Wang W, Duan J, Wang X, Feng X, Chen L, Clark CB, Swarm SA, Wang J, Lin S, Nelson RL, Meyers BC, Feng X, Ma J. Long noncoding RNAs underlie multiple domestication traits and leafhopper resistance in soybean. Nat Genet 2024; 56:1270-1277. [PMID: 38684899 DOI: 10.1038/s41588-024-01738-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 03/28/2024] [Indexed: 05/02/2024]
Abstract
The origin and functionality of long noncoding RNA (lncRNA) remain poorly understood. Here, we show that multiple quantitative trait loci modulating distinct domestication traits in soybeans are pleiotropic effects of a locus composed of two tandem lncRNA genes. These lncRNA genes, each containing two inverted repeats, originating from coding sequences of the MYB genes, function in wild soybeans by generating clusters of small RNA (sRNA) species that inhibit the expression of their MYB gene relatives through post-transcriptional regulation. By contrast, the expression of lncRNA genes in cultivated soybeans is severely repressed, and, consequently, the corresponding MYB genes are highly expressed, shaping multiple distinct domestication traits as well as leafhopper resistance. The inverted repeats were formed before the divergence of the Glycine genus from the Phaseolus-Vigna lineage and exhibit strong structure-function constraints. This study exemplifies a type of target for selection during plant domestication and identifies mechanisms of lncRNA formation and action.
Collapse
Affiliation(s)
- Weidong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- College of Agronomy and Biotechnology, China Agricultural University, Beijing, China
| | - Jingbo Duan
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Xutong Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
- College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xingxing Feng
- Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
| | - Liyang Chen
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Chancelor B Clark
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Stephen A Swarm
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Beck's Hybrids, Atlanta, IN, USA
| | - Jinbin Wang
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Sen Lin
- Department of Agronomy, Purdue University, West Lafayette, IN, USA
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA
| | - Randall L Nelson
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Blake C Meyers
- Genome Center and Department of Plant Sciences, University of California, Davis, Davis, CA, USA
| | - Xianzhong Feng
- Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China.
| | - Jianxin Ma
- Department of Agronomy, Purdue University, West Lafayette, IN, USA.
- Center for Plant Biology, Purdue University, West Lafayette, IN, USA.
| |
Collapse
|
24
|
Valentine M, Butruille D, Achard F, Beach S, Brower-Toland B, Cargill E, Hassebrock M, Rinehart J, Ream T, Chen Y. Simultaneous genetic transformation and genome editing of mixed lines in soybean ( Glycine max) and maize ( Zea mays). ABIOTECH 2024; 5:169-183. [PMID: 38974857 PMCID: PMC11224177 DOI: 10.1007/s42994-024-00173-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/02/2024] [Indexed: 07/09/2024]
Abstract
Robust genome editing technologies are becoming part of the crop breeding toolbox. Currently, genome editing is usually conducted either at a single locus, or multiple loci, in a variety at one time. Massively parallel genomics platforms, multifaceted genome editing capabilities, and flexible transformation systems enable targeted variation at nearly any locus, across the spectrum of genotypes within a species. We demonstrate here the simultaneous transformation and editing of many genotypes, by targeting mixed seed embryo explants with genome editing machinery, followed by re-identification through genotyping after plant regeneration. Transformation and Editing of Mixed Lines (TREDMIL) produced transformed individuals representing 101 of 104 (97%) mixed elite genotypes in soybean; and 22 of 40 (55%) and 9 of 36 (25%) mixed maize female and male elite inbred genotypes, respectively. Characterization of edited genotypes for the regenerated individuals identified over 800 distinct edits at the Determinate1 (Dt1) locus in samples from 101 soybean genotypes and 95 distinct Brown midrib3 (Bm3) edits in samples from 17 maize genotypes. These results illustrate how TREDMIL can help accelerate the development and deployment of customized crop varieties for future precision breeding. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00173-5.
Collapse
Affiliation(s)
- Michelle Valentine
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - David Butruille
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Frederic Achard
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Steven Beach
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | | | - Edward Cargill
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Megan Hassebrock
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Jennifer Rinehart
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Thomas Ream
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| | - Yurong Chen
- Bayer Crop Science, 700 Chesterfield Parkway W, Chesterfield, MO 63017 USA
| |
Collapse
|
25
|
Lin W, Bai M, Peng C, Kuang H, Kong F, Guan Y. Genome editing toward biofortified soybean with minimal trade-off between low phytic acid and yield. ABIOTECH 2024; 5:196-201. [PMID: 38974864 PMCID: PMC11224060 DOI: 10.1007/s42994-024-00158-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/02/2024] [Indexed: 07/09/2024]
Abstract
Phytic acid (PA) in grain seeds reduces the bioavailability of nutrient elements in monogastric animals, and an important objective for crop seed biofortification is to decrease the seed PA content. Here, we employed CRISPR/Cas9 to generate a PA mutant population targeting PA biosynthesis and transport genes, including two multi-drug-resistant protein 5 (MRP5) and three inositol pentose-phosphate kinases (IPK1). We characterized a variety of lines containing mutations on multiple IPK and MRP5 genes. The seed PA was more significantly decreased in higher-order mutant lines with multiplex mutations. However, such mutants also exhibited poor agronomic performance. In the population, we identified two lines carrying single mutations in ipk1b and ipk1c, respectively. These mutants exhibited moderately reduced PA content, and regular agronomic performance compared to the wild type. Our study indicates that moderately decreasing PA by targeting single GmIPK1 genes, rather than multiplex mutagenesis toward ultra-low PA, is an optimal strategy for low-PA soybean with a minimal trade-off in yield performance. Supplementary Information The online version contains supplementary material available at 10.1007/s42994-024-00158-4.
Collapse
Affiliation(s)
- Wenxin Lin
- Sanya Institute of China Agricultural University, Sanya, 572000 China
- College of Agronomy, China Agricultural University, Beijing, 100193 China
| | - Mengyan Bai
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Chunyan Peng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Huaqin Kuang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006 China
| |
Collapse
|
26
|
Wang C, Lin J, Bu Y, Sun R, Lu Y, Gai J, Xing H, Guo N, Zhao J. Genome-wide transcriptome analysis reveals key regulatory networks and genes involved in the determination of seed hardness in vegetable soybean. HORTICULTURE RESEARCH 2024; 11:uhae084. [PMID: 38766533 PMCID: PMC11101316 DOI: 10.1093/hr/uhae084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 03/20/2024] [Indexed: 05/22/2024]
Abstract
Seed hardness is an important quality trait of vegetable soybean. To determine the factors underlying seed hardness, two landraces with contrasting seed hardness, Niumaohuang (low seed hardness) and Pixiansilicao (high seed hardness), were selected from 216 soybean accessions originating from 26 provinces in China. The contents of the main components in vegetable soybean seeds such as water, soluble sugar, starch, protein and oil were measured, and transcriptome analyses performed during five stages of seed developmental. Transcriptome analysis indicates that during the middle and late stages of seed development, a large number of genes involved in the synthesis or degradation of starch, storage protein, and fatty acids were differentially expressed, leading to differences in the accumulation of stored substances during seed maturation among Niumaohuang and Pixiansilicao. The activity of cell proliferation and the formation of cell walls in the middle and late stages of seed development may also affect the hardness of seeds to a certain extent. In addition, weighted gene co-expression network analysis (WGCNA) was undertaken to identify co-expressed gene modules and hub genes that regulate seed hardness. Overexpression of a candidate seed hardness regulatory hub gene, GmSWEET2, resulted in increased seed hardness. In this study, the important role of GmSWEET2 in regulating the hardness of vegetable soybean seeds was verified and numerous potential key regulators controlling seed hardness and the proportion of seed components were identified, laying the groundwork for improving the texture of vegetable soybean.
Collapse
Affiliation(s)
- Congcong Wang
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jianyu Lin
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yuanpeng Bu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Ruidong Sun
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Yang Lu
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - JunYi Gai
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Han Xing
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Na Guo
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| | - Jinming Zhao
- Key Laboratory of Biology and Genetics Improvement of Soybean, Ministry of Agriculture / Zhongshan Biological Breeding Laboratory (ZSBBL) / National Innovation Platform for Soybean Breeding and Industry-Education Integration / State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization / College of Agriculture, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
27
|
Zhong X, Wang J, Shi X, Bai M, Yuan C, Cai C, Wang N, Zhu X, Kuang H, Wang X, Su J, He X, Liu X, Yang W, Yang C, Kong F, Wang E, Guan Y. Genetically optimizing soybean nodulation improves yield and protein content. NATURE PLANTS 2024; 10:736-742. [PMID: 38724696 DOI: 10.1038/s41477-024-01696-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 04/10/2024] [Indexed: 05/25/2024]
Abstract
Symbiotic nitrogen fixation in legume nodules requires substantial energy investment from host plants, and soybean (Glycine max (L.) supernodulation mutants show stunting and yield penalties due to overconsumption of carbon sources. We obtained soybean mutants differing in their nodulation ability, among which rhizobially induced cle1a/2a (ric1a/2a) has a moderate increase in nodule number, balanced carbon allocation, and enhanced carbon and nitrogen acquisition. In multi-year and multi-site field trials in China, two ric1a/2a lines had improved grain yield, protein content and sustained oil content, demonstrating that gene editing towards optimal nodulation improves soybean yield and quality.
Collapse
Affiliation(s)
- Xiangbin Zhong
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Jie Wang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaolei Shi
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Mengyan Bai
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Cuicui Yuan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Chenlin Cai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Nan Wang
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiaomin Zhu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Huaqin Kuang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Xin Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China
| | - Jiaqing Su
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xin He
- New Cornerstone Science Laboratory, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Xiao Liu
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Wenqiang Yang
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing, China
| | - Chunyan Yang
- Hebei Laboratory of Crop Genetics and Breeding, Institute of Cereal and Oil Crops, Hebei Academy of Agricultural and Forestry Sciences, Shijiazhuang, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
| | - Ertao Wang
- New Cornerstone Science Laboratory, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China.
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, China.
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, China.
| |
Collapse
|
28
|
Bernal-Gallardo JJ, de Folter S. Plant genome information facilitates plant functional genomics. PLANTA 2024; 259:117. [PMID: 38592421 PMCID: PMC11004055 DOI: 10.1007/s00425-024-04397-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/20/2024] [Indexed: 04/10/2024]
Abstract
MAIN CONCLUSION In this review, we give an overview of plant sequencing efforts and how this impacts plant functional genomics research. Plant genome sequence information greatly facilitates the studies of plant biology, functional genomics, evolution of genomes and genes, domestication processes, phylogenetic relationships, among many others. More than two decades of sequencing efforts have boosted the number of available sequenced plant genomes. The first plant genome, of Arabidopsis, was published in the year 2000 and currently, 4604 plant genomes from 1482 plant species have been published. Various large sequence initiatives are running, which are planning to produce tens of thousands of sequenced plant genomes in the near future. In this review, we give an overview on the status of sequenced plant genomes and on the use of genome information in different research areas.
Collapse
Affiliation(s)
- Judith Jazmin Bernal-Gallardo
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico
| | - Stefan de Folter
- Unidad de Genómica Avanzada (UGA-Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato, Mexico.
| |
Collapse
|
29
|
Nogué F, Causse M, Debaeke P, Déjardin A, Lemarié S, Richard G, Rogowsky P, Caranta C. Can genome editing help transitioning to agroecology? iScience 2024; 27:109159. [PMID: 38405612 PMCID: PMC10884958 DOI: 10.1016/j.isci.2024.109159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2024] Open
Abstract
Meeting the challenges of agroecological transition in a context of climate change requires the use of various strategies such as biological regulations, adapted animal and plant genotypes, diversified production systems, and digital technologies. Seeds and plants, through plant breeding, play a crucial role in driving these changes. The emergence of genome editing presents a new opportunity in plant breeding practices. However, like any technological revolution involving living organisms, it is essential to assess its potential contributions, limits, risks, socio-economic implications, and the associated controversies. This article aims to provide a comprehensive review of scientific knowledge on genome editing for agroecological transition, drawing on multidisciplinary approaches encompassing biological, agronomic, economic, and social sciences.
Collapse
Affiliation(s)
- Fabien Nogué
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin (IJPB), 78000 Versailles, France
| | - Mathilde Causse
- INRAE, UR1052, Génétique et Amélioration des Fruits et Légumes, 67 Allée des Chênes, Centre de Recherche PACA, Domaine Saint Maurice, CS60094, 84143 Montfavet Avignon, France
| | - Philippe Debaeke
- University Toulouse, INRAE, UMR AGIR, 31320 Castanet-Tolosan, France
| | - Annabelle Déjardin
- INRAE, ONF, BioForA, 2163 Avenue de la pomme de pin, 45075 Orléans, France
| | - Stéphane Lemarié
- Université Grenoble Alpes, CNRS, INRAE, Grenoble INP, 38400 Saint-Martin-d'Hères, France
| | - Guy Richard
- INRAE Direction de l’expertise scientifique collective, de la prospective et des études (DEPE), 147 rue de l’Université 75338 PARIS Cedex 07, France
| | - Peter Rogowsky
- Laboratoire Reproduction et Développement des Plantes, University Lyon, ENS de Lyon, UCB Lyon 1, CNRS, INRAE, 69342 Lyon, France
| | - Carole Caranta
- INRAE, 147 rue de l'Université, 75338 Paris cedex 07, France
| |
Collapse
|
30
|
Bai M, Lin W, Peng C, Song P, Kuang H, Lin J, Zhang J, Wang J, Chen B, Li H, Kong F, Jia G, Guan Y. Expressing a human RNA demethylase as an assister improves gene-editing efficiency in plants. MOLECULAR PLANT 2024; 17:363-366. [PMID: 38368507 DOI: 10.1016/j.molp.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 01/03/2024] [Accepted: 02/14/2024] [Indexed: 02/19/2024]
Affiliation(s)
- Mengyan Bai
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Wenxin Lin
- College of Agronomy, China Agricultural University, Beijing 100193, China
| | - Chunyan Peng
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Peizhe Song
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China
| | - Huaqin Kuang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jieni Lin
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jieping Zhang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Jiyao Wang
- Kingagroot Co., Ltd., Qingdao, Shandong 266000, China
| | - Bo Chen
- Kingagroot Co., Ltd., Qingdao, Shandong 266000, China
| | - Huarong Li
- Kingagroot Co., Ltd., Qingdao, Shandong 266000, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China
| | - Guifang Jia
- Synthetic and Functional Biomolecules Center, Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China; Tsinghua University-Peking University Joint Center for Life Sciences, Beijing 100871, China.
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| |
Collapse
|
31
|
He J, Zeng C, Li M. Plant Functional Genomics Based on High-Throughput CRISPR Library Knockout Screening: A Perspective. ADVANCED GENETICS (HOBOKEN, N.J.) 2024; 5:2300203. [PMID: 38465224 PMCID: PMC10919289 DOI: 10.1002/ggn2.202300203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/19/2023] [Indexed: 03/12/2024]
Abstract
Plant biology studies in the post-genome era have been focused on annotating genome sequences' functions. The established plant mutant collections have greatly accelerated functional genomics research in the past few decades. However, most plant genome sequences' roles and the underlying regulatory networks remain substantially unknown. Clustered, regularly interspaced short palindromic repeat (CRISPR)-associated systems are robust, versatile tools for manipulating plant genomes with various targeted DNA perturbations, providing an excellent opportunity for high-throughput interrogation of DNA elements' roles. This study compares methods frequently used for plant functional genomics and then discusses different DNA multi-targeted strategies to overcome gene redundancy using the CRISPR-Cas9 system. Next, this work summarizes recent reports using CRISPR libraries for high-throughput gene knockout and function discoveries in plants. Finally, this work envisions the future perspective of optimizing and leveraging CRISPR library screening in plant genomes' other uncharacterized DNA sequences.
Collapse
Affiliation(s)
- Jianjie He
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Can Zeng
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| | - Maoteng Li
- Department of BiotechnologyCollege of Life Science and TechnologyHuazhong University of Science and TechnologyWuhan430074China
- Key Laboratory of Molecular Biophysics of the Ministry of EducationWuhan430074China
| |
Collapse
|
32
|
Gupta P, Dholaniya PS, Princy K, Madhavan AS, Sreelakshmi Y, Sharma R. Augmenting tomato functional genomics with a genome-wide induced genetic variation resource. FRONTIERS IN PLANT SCIENCE 2024; 14:1290937. [PMID: 38328621 PMCID: PMC10848261 DOI: 10.3389/fpls.2023.1290937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/22/2023] [Indexed: 02/09/2024]
Abstract
Induced mutations accelerate crop improvement by providing novel disease resistance and yield alleles. However, the alleles with no perceptible phenotype but have an altered function remain hidden in mutagenized plants. The whole-genome sequencing (WGS) of mutagenized individuals uncovers the complete spectrum of mutations in the genome. Genome-wide induced mutation resources can improve the targeted breeding of tomatoes and facilitate functional genomics. In this study, we sequenced 132 doubly ethyl methanesulfonate (EMS)-mutagenized lines of tomato and detected approximately 41 million novel mutations and 5.5 million short InDels not present in the parental cultivar. Approximately 97% of the genome had mutations, including the genes, promoters, UTRs, and introns. More than one-third of genes in the mutagenized population had one or more deleterious mutations predicted by Sorting Intolerant From Tolerant (SIFT). Nearly one-fourth of deleterious genes mapped on tomato metabolic pathways modulate multiple pathway steps. In addition to the reported GC>AT transition bias for EMS, our population also had a substantial number of AT>GC transitions. Comparing mutation frequency among synonymous codons revealed that the most preferred codon is the least mutagenic toward EMS. The validation of a potato leaf-like mutation, reduction in carotenoids in ζ-carotene isomerase mutant fruits, and chloroplast relocation loss in phototropin1 mutant validated the mutation discovery pipeline. Our database makes a large repertoire of mutations accessible to functional genomics studies and breeding of tomatoes.
Collapse
Affiliation(s)
- Prateek Gupta
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
- Department of Biological Sciences, SRM University-AP, Amaravati, Andhra Pradesh, India
| | - Pankaj Singh Dholaniya
- Department of Biotechnology and Bioinformatics, University of Hyderabad, Hyderabad, India
| | - Kunnappady Princy
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Athira Sethu Madhavan
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Yellamaraju Sreelakshmi
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| | - Rameshwar Sharma
- Repository of Tomato Genomics Resources, Department of Plant Sciences, University of Hyderabad, Hyderabad, India
| |
Collapse
|
33
|
Shen L, Feng J. NIN-at the heart of NItrogen-fixing Nodule symbiosis. FRONTIERS IN PLANT SCIENCE 2024; 14:1284720. [PMID: 38283980 PMCID: PMC10810997 DOI: 10.3389/fpls.2023.1284720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 12/27/2023] [Indexed: 01/30/2024]
Abstract
Legumes and actinorhizal plants establish symbiotic relationships with nitrogen-fixing bacteria, resulting in the formation of nodules. Nodules create an ideal environment for nitrogenase to convert atmospheric nitrogen into biological available ammonia. NODULE INCEPTION (NIN) is an indispensable transcription factor for all aspects of nodule symbiosis. Moreover, NIN is consistently lost in non-nodulating species over evolutions. Here we focus on recent advances in the signaling mechanisms of NIN during nodulation and discuss the role of NIN in the evolution of nitrogen-fixing nodule symbiosis.
Collapse
Affiliation(s)
- Lisha Shen
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Jian Feng
- Key Laboratory of Seed Innovation, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
- College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
- CAS−JIC Centre of Excellence for Plant and Microbial Science (CEPAMS), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
34
|
Sun L, Alariqi M, Wang Y, Wang Q, Xu Z, Zafar MN, Yang G, Jia R, Hussain A, Chen Y, Ding X, Zhou J, Wang G, Wang F, Li J, Zou J, Zhu X, Yu L, Sun Y, Liang S, Hui F, Chen L, Guo W, Wang Y, Zhu H, Lindsey K, Nie X, Zhang X, Jin S. Construction of Host Plant Insect-Resistance Mutant Library by High-Throughput CRISPR/Cas9 System and Identification of A Broad-Spectrum Insect Resistance Gene. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306157. [PMID: 38032126 PMCID: PMC10811493 DOI: 10.1002/advs.202306157] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/17/2023] [Indexed: 12/01/2023]
Abstract
Insects pose significant challenges in cotton-producing regions. Here, they describe a high-throughput CRISPR/Cas9-mediated large-scale mutagenesis library targeting endogenous insect-resistance-related genes in cotton. This library targeted 502 previously identified genes using 968 sgRNAs, generated ≈2000 T0 plants and achieved 97.29% genome editing with efficient heredity, reaching upto 84.78%. Several potential resistance-related mutants (10% of 200 lines) their identified that may contribute to cotton-insect molecular interaction. Among these, they selected 139 and 144 lines showing decreased resistance to pest infestation and targeting major latex-like protein 423 (GhMLP423) for in-depth study. Overexpression of GhMLP423 enhanced insect resistance by activating the plant systemic acquired resistance (SAR) of salicylic acid (SA) and pathogenesis-related (PR) genes. This activation is induced by an elevation of cytosolic calcium [Ca2+ ]cyt flux eliciting reactive oxygen species (ROS), which their demoted in GhMLP423 knockout (CR) plants. Protein-protein interaction assays revealed that GhMLP423 interacted with a human epidermal growth factor receptor substrate15 (EPS15) protein at the cell membrane. Together, they regulated the systemically propagating waves of Ca2+ and ROS, which in turn induced SAR. Collectively, this large-scale mutagenesis library provides an efficient strategy for functional genomics research of polyploid plant species and serves as a solid platform for genetic engineering of insect resistance.
Collapse
Affiliation(s)
- Lin Sun
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
- Institute of Industrial CropsShandong Academy of Agricultural SciencesJinanShandong250100China
| | - Muna Alariqi
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
- Department of Agronomy and Pastures, Faculty of AgricultureSana’a UniversitySana’aYemen
| | - Yaxin Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Qiongqiong Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Zhongping Xu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Muhammad Naeem Zafar
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guangqin Yang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Ruoyu Jia
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Amjad Hussain
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Yilin Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xiao Ding
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jiawei Zhou
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Guanying Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Fuqiu Wang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jianying Li
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Jiawei Zou
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Xiangqian Zhu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Lu Yu
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Yiwen Sun
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Sijia Liang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Fengjiao Hui
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Luo Chen
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Weifeng Guo
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinTarim UniversityAlaerXinjiang843300China
| | - Yanqin Wang
- Xinjiang Production and Construction Corps Key Laboratory of Protection and Utilization of Biological Resources in Tarim BasinTarim UniversityAlaerXinjiang843300China
| | - Huaguo Zhu
- College of Biology and Agricultural ResourcesHuanggang Normal UniversityHuanggangHubei438000China
| | - Keith Lindsey
- Department of BiosciencesDurham UniversityDurhamDH1 3LEUK
| | - Xinhui Nie
- Key Laboratory of Oasis Ecology Agricultural of Xinjiang BingtuanAgricultural CollegeShihezi UniversityShiheziXinjiangChina
| | - Xianlong Zhang
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| | - Shuangxia Jin
- Hubei Hongshan LaboratoryNational Key Laboratory of Crop Genetic ImprovementHuazhong Agricultural UniversityWuhanHubei430070P. R. China
| |
Collapse
|
35
|
Freitas-Alves NS, Moreira-Pinto CE, Arraes FBM, Costa LSDL, de Abreu RA, Moreira VJV, Lourenço-Tessutti IT, Pinheiro DH, Lisei-de-Sa ME, Paes-de-Melo B, Pereira BM, Guimaraes PM, Brasileiro ACM, de Almeida-Engler J, Soccol CR, Morgante CV, Basso MF, Grossi-de-Sa MF. An ex vitro hairy root system from petioles of detached soybean leaves for in planta screening of target genes and CRISPR strategies associated with nematode bioassays. PLANTA 2023; 259:23. [PMID: 38108903 DOI: 10.1007/s00425-023-04286-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/09/2023] [Indexed: 12/19/2023]
Abstract
MAIN CONCLUSION The ex vitro hairy root system from petioles of detached soybean leaves allows the functional validation of genes using classical transgenesis and CRISPR strategies (e.g., sgRNA validation, gene activation) associated with nematode bioassays. Agrobacterium rhizogenes-mediated root transformation has been widely used in soybean for the functional validation of target genes in classical transgenesis and single-guide RNA (sgRNA) in CRISPR-based technologies. Initial data showed that in vitro hairy root induction from soybean cotyledons and hypocotyls were not the most suitable strategies for simultaneous performing genetic studies and nematode bioassays. Therefore, an ex vitro hairy root system was developed for in planta screening of target molecules during soybean parasitism by root-knot nematodes (RKNs). Applying this method, hairy roots were successfully induced by A. rhizogenes from petioles of detached soybean leaves. The soybean GmPR10 and GmGST genes were then constitutively overexpressed in both soybean hairy roots and tobacco plants, showing a reduction in the number of Meloidogyne incognita-induced galls of up to 41% and 39%, respectively. In addition, this system was evaluated for upregulation of the endogenous GmExpA and GmExpLB genes by CRISPR/dCas9, showing high levels of gene activation and reductions in gall number of up to 58.7% and 67.4%, respectively. Furthermore, morphological and histological analyses of the galls were successfully performed. These collective data validate the ex vitro hairy root system for screening target genes, using classical overexpression and CRISPR approaches, directly in soybean in a simple manner and associated with nematode bioassays. This system can also be used in other root pathosystems for analyses of gene function and studies of parasite interactions with plants, as well as for other purposes such as studies of root biology and promoter characterization.
Collapse
Affiliation(s)
- Nayara S Freitas-Alves
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná-UFPR, Curitiba, PR, Brazil
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Clidia E Moreira-Pinto
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Fabrício B M Arraes
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Lorena S de L Costa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- Molecular Biology Graduate Program, University of Brasília-UNB, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Rayane A de Abreu
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Valdeir J V Moreira
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- Molecular Biology Graduate Program, University of Brasília-UNB, Brasília, DF, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Isabela T Lourenço-Tessutti
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Daniele H Pinheiro
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Maria E Lisei-de-Sa
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Bruno Paes-de-Melo
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Bruna M Pereira
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
| | - Patricia M Guimaraes
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Ana C M Brasileiro
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Janice de Almeida-Engler
- INRAE, Université Côte d'Azur, CNRS, 06903, Sophia Antipolis, ISA, France
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Carlos R Soccol
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná-UFPR, Curitiba, PR, Brazil
| | - Carolina V Morgante
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- Embrapa Semiarid, Petrolina, PE, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Marcos F Basso
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil
| | - Maria F Grossi-de-Sa
- Bioprocess Engineering and Biotechnology Graduate Program, Federal University of Paraná-UFPR, Curitiba, PR, Brazil.
- Embrapa Genetic Resources and Biotechnology, PqEB Final, W5 Norte, PO Box 02372, Brasília, DF, 70770-917, Brazil.
- Molecular Biology Graduate Program, University of Brasília-UNB, Brasília, DF, Brazil.
- National Institute of Science and Technology, INCT PlantStress Biotech, Embrapa, Brazil.
- Catholic University of Brasília, Brasília, DF, Brazil.
| |
Collapse
|
36
|
Tao S, Hu C, Fang Y, Zhang H, Xu Y, Zheng L, Chen L, Liang W. Targeted elimination of Vancomycin resistance gene vanA by CRISPR-Cas9 system. BMC Microbiol 2023; 23:380. [PMID: 38049763 PMCID: PMC10694887 DOI: 10.1186/s12866-023-03136-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 11/28/2023] [Indexed: 12/06/2023] Open
Abstract
OBJECTIVE The purpose of this study is to reduce the spread of the vanA gene by curing the vanA-harboring plasmid of vancomycin-resistant using the CRISPR-Cas9 system. METHODS Two specific spacer sequence (sgRNAs) specific was designed to target the vanA gene and cloned into plasmid CRISPR-Cas9. The role of the CRISPR-Cas system in the plasmid elimination of drug-resistance genes was verified by chemically transformation and conjugation delivery methods. Moreover, the elimination efficiency in strains was evaluated by plate counting, PCR, and quantitative real-time PCR (qPCR). Susceptibility testing was performed by broth microdilution assay and by Etest strips (bioMérieux, France) to detect changes in bacterial drug resistance phenotype after drug resistance plasmid clearance. RESULTS In the study, we constructed a specific prokaryotic CRISPR-Cas9 system plasmid targeting cleavage of the vanA gene. PCR and qPCR results indicated that recombinant pCas9-sgRNA plasmid can efficiently clear vanA-harboring plasmids. There was no significant correlation between sgRNA lengths and curing efficiency. In addition, the drug susceptibility test results showed that the bacterial resistance to vancomycin was significantly reduced after the vanA-containing drug-resistant plasmid was specifically cleaved by the CRISPR-Cas system. The CRISPR-Cas9 system can block the horizontal transfer of the conjugated plasmid pUC19-vanA. CONCLUSION In conclusion, our study demonstrated that CRISPR-Cas9 achieved plasmid clearance and reduced antimicrobial resistance. The CRISPR-Cas9 system could block the horizontal transfer of plasmid carrying vanA. This strategy provided a great potential to counteract the ever-worsening spread of the vanA gene among bacterial pathogens and laid the foundation for subsequent research using the CRISPR-Cas9 system as adjuvant antibiotic therapy.
Collapse
Affiliation(s)
- Shuan Tao
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Chunwei Hu
- The Biobank of The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China
| | - He Zhang
- Bengbu Medical College, Bengbu, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Lin Zheng
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China
| | - Luyan Chen
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, No 59. Liuting Road, Haishu District, Ningbo, 315010, China.
| |
Collapse
|
37
|
Chen Y, Xiang H, Jia L, Yang Q, Zhang J, Jiang J, Zeng W, Deng L, Jin J, Gao Q, Li X. High-throughput creation of Nicotiana tabacum gene-targeted mutants based on CRISPR/Cas9. PLANT CELL REPORTS 2023; 42:2039-2042. [PMID: 37700173 DOI: 10.1007/s00299-023-03050-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 07/12/2023] [Indexed: 09/14/2023]
Abstract
KEY MESSAGE 4382 available sgRNAs targeting 1060 tobacco genes were obtained, and 10,682 targeted mutants were created using high-throughput methods. Four optimization experiments were established to solve problems encountered during genetic transformation.
Collapse
Affiliation(s)
- Yudong Chen
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Haiying Xiang
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Ling Jia
- Biological Science Research Center, Southwest University, Chongqing, 400715, China
| | - Qianxu Yang
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Jianduo Zhang
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Jiarui Jiang
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Wanli Zeng
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Lele Deng
- Yunnan Academy of Tobacco Science, Kunming, 650106, China
| | - Jingjing Jin
- China Tobacco Gene Research Center, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou, 450001, China
| | - Qian Gao
- Yunnan Academy of Tobacco Science, Kunming, 650106, China.
| | - Xuemei Li
- Yunnan Academy of Tobacco Science, Kunming, 650106, China.
| |
Collapse
|
38
|
Bi M, Wang Z, Cheng K, Cui Y, He Y, Ma J, Qi M. Construction of transcription factor mutagenesis population in tomato using a pooled CRISPR/Cas9 plasmid library. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 205:108094. [PMID: 37995578 DOI: 10.1016/j.plaphy.2023.108094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 09/25/2023] [Accepted: 10/12/2023] [Indexed: 11/25/2023]
Abstract
Adequate mutant materials are the prerequisite for conducting gene function research or screening novel functional genes in plants. The strategy of constructing a large-scale mutant population using the pooled CRISPR/Cas9-sgRNA library has been implemented in several crops. However, the effective application of this CRISPR/Cas9 large-scale screening strategy to tomato remains to be attempted. Here, we identified 990 transcription factors in the tomato genome, designed and synthesized a CRISPR/Cas9 plasmid library containing 4379 sgRNAs. Using this pooled library, 487 T0 positive plants were obtained, among which 92 plants harbored a single sgRNA sequence, targeting 65 different transcription factors, with a mutation rate of 23%. In the T0 mutant population, the occurrence of homozygous and biallelic mutations was observed at higher frequencies. Additionally, the utilization of a small-scale CRISPR/Cas9 library targeting 30 transcription factors could enhance the efficacy of single sgRNA recognition in positive plants, increasing it from 19% to 42%. Phenotypic characterization of several mutants identified from the mutant population demonstrated the utility of our CRISPR/Cas9 mutant library. Taken together, our study offers insights into the implementation and optimization of CRISPR/Cas9-mediated large-scale knockout library in tomato.
Collapse
Affiliation(s)
- Mengxi Bi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Zhijun Wang
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Keyan Cheng
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Yiqing Cui
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Yi He
- National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China
| | - Jian Ma
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China
| | - Mingfang Qi
- College of Horticulture, Shenyang Agricultural University, Shenyang, China; National & Local Joint Engineering Research Center of Northern Horticultural Facilities Design & Application Technology (Liaoning), Shenyang, China; Key Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang, China; Key Laboratory of Horticultural Equipment, Ministry of Agriculture and Rural Affairs, Shenyang, China.
| |
Collapse
|
39
|
Di Q, Dong L, Jiang L, Liu X, Cheng P, Liu B, Yu G. Genome-wide association study and RNA-seq identifies GmWRI1-like transcription factor related to the seed weight in soybean. FRONTIERS IN PLANT SCIENCE 2023; 14:1268511. [PMID: 38046612 PMCID: PMC10691256 DOI: 10.3389/fpls.2023.1268511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/30/2023] [Indexed: 12/05/2023]
Abstract
The cultivated soybean (Glycine max (L.) Merrill) is domesticated from wild soybean (Glycine soja) and has heavier seeds with a higher oil content than the wild soybean. In this study, we identified a novel candidate gene associated with SW using a genome-wide association study (GWAS). The candidate gene GmWRI14-like was detected by GWAS analysis in three consecutive years. By constructing transgenic soybeans overexpressing the GmWRI14-like gene and gmwri14-like soybean mutants, we found that overexpression of GmWRI14-like increased the SW and increased total fatty acid content. We then used RNA-seq and qRT-PCR to identify the target genes directly or indirectly regulated by GmWRI14-like. Transgenic soyabeans overexpressing GmWRI14-like showed increased accumulation of GmCYP78A50 and GmCYP78A69 than non-transgenic soybean lines. Interestingly, we also found that GmWRI14-like proteins could interact with GmCYP78A69/GmCYP78A50 using yeast two-hybrid and bimolecular fluorescence complementation. Our results not only shed light on the genetic architecture of cultivated soybean SW, but also lays a theoretical foundation for improving the SW and oil content of soybeans.
Collapse
Affiliation(s)
- Qin Di
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
- Innovative Center of Molecular Genetics and Evolution, College of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Lidong Dong
- Innovative Center of Molecular Genetics and Evolution, College of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Li Jiang
- Innovative Center of Molecular Genetics and Evolution, College of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Xiaoyi Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| | - Baohui Liu
- Innovative Center of Molecular Genetics and Evolution, College of Life Sciences, Guangzhou University, Guangzhou, Guangdong, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, China
| |
Collapse
|
40
|
Qin D, Xing J, Cheng P, Yu G. Genome-wide association and RNA-seq analyses reveal a potential gene related to linolenic acid in soybean seeds. PeerJ 2023; 11:e16138. [PMID: 37933254 PMCID: PMC10625760 DOI: 10.7717/peerj.16138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 08/29/2023] [Indexed: 11/08/2023] Open
Abstract
Linolenic acid (LA) has poor oxidative stability since it is a polyunsaturated fatty acid. Soybean oil has a high LA content and thus has poor oxidative stability. To identify candidate genes that affect the linolenic acid (LA) content in soybean seeds, a genome-wide association study (GWAS) was performed with 1,060 soybean cultivars collected in China between 2019-2021 and which LA content was measured using matrix-assisted laser desorption/ionization time-of-flight imaging mass spectrometry (MALDI-TOF IMS). A candidate gene, GmWRI14, encoding an APETALA2 (AP2)-type transcription factor, was detected by GWAS in cultivars from all three study years. Multiple sequence alignments showed that GmWRI14 belongs to the plant WRI1 family. The fatty acid contents of different soybean lines were evaluated in transgenic lines with a copy of GmWRI14, control lines without GmWRI14, and the gmwri14 mutant. MALDI-TOF IMS revealed that GmWRI14 transgenic soybeans had a lower LA content with a significant effect on seed size and shape, whereas gmwri14 mutants had a higher LA content. compared to control. The RNA-seq results showed that GmWRI14 suppresses GmFAD3s (GmFAD3B and GmFAD3C) and GmbZIP54 expression in soybean seeds, leading to decreased LA content. Based on the RNA-seq data, yeast one-hybrid (Y1H) and qRT-PCR were performed to confirm the transcriptional regulation of FAD3s by GmWRI14. Our results suggest that FAD3 is indirectly regulated by GmWRI14, representing a new molecular mechanism of fatty acid biosynthesis, in which GmWRI14 regulates LA content in soybean seeds.
Collapse
Affiliation(s)
- Di Qin
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Guangzhou University, Guangzhou, Guangdong, China
| | - Jiehua Xing
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
| | - Ping Cheng
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
| | - Guohui Yu
- Innovative Institute for Plant Health, Zhongkai University of Agriculture and Engineering, Guangzhou, Gongdong, China
| |
Collapse
|
41
|
Zhou X, Zhao Y, Ni P, Ni Z, Sun Q, Zong Y. CRISPR-mediated acceleration of wheat improvement: advances and perspectives. J Genet Genomics 2023; 50:815-834. [PMID: 37741566 DOI: 10.1016/j.jgg.2023.09.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 09/13/2023] [Accepted: 09/14/2023] [Indexed: 09/25/2023]
Abstract
Common wheat (Triticum aestivum) is one of the most widely cultivated and consumed crops globally. In the face of limited arable land and climate changes, it is a great challenge to maintain current and increase future wheat production. Enhancing agronomic traits in wheat by introducing mutations across all three homoeologous copies of each gene has proven to be a difficult task due to its large genome with high repetition. However, clustered regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated nuclease (Cas) genome editing technologies offer a powerful means of precisely manipulating the genomes of crop species, thereby opening up new possibilities for biotechnology and breeding. In this review, we first focus on the development and optimization of the current CRISPR-based genome editing tools in wheat, emphasizing recent breakthroughs in precise and multiplex genome editing. We then describe the general procedure of wheat genome editing and highlight different methods to deliver the genome editing reagents into wheat cells. Furthermore, we summarize the recent applications and advancements of CRISPR/Cas technologies for wheat improvement. Lastly, we discuss the remaining challenges specific to wheat genome editing and its future prospects.
Collapse
Affiliation(s)
- Ximeng Zhou
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yidi Zhao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Pei Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yuan Zong
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
42
|
Cheng Y, Li Y, Yang J, He H, Zhang X, Liu J, Yang X. Multiplex CRISPR-Cas9 knockout of EIL3, EIL4, and EIN2L advances soybean flowering time and pod set. BMC PLANT BIOLOGY 2023; 23:519. [PMID: 37884905 PMCID: PMC10604859 DOI: 10.1186/s12870-023-04543-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023]
Abstract
BACKGROUND Ethylene inhibitor treatment of soybean promotes flower bud differentiation and early flowering, suggested that there is a close relationship between ethylene signaling and soybean growth and development. The short-lived ETHYLENE INSENSITIVE2 (EIN2) and ETHYLENE INSENSITIVE3 (EIN3) proteins play central roles in plant development. The objective of this study was carried out gene editing of EIL family members in soybeans and to examine the effects on soybean yield and other markers of growth. METHODS AND RESULTS By editing key-node genes in the ethylene signaling pathway using a multi-sgRNA-in-one strategy, we obtained a series of gene edited lines with variable edit combinations among 15 target genes. EIL3, EIL4, and EIN2L were editable genes favored by the T0 soybean lines. Pot experiments also show that the early flowering stage R1 of the EIL3, EIL4, and EIN2L triple mutant was 7.05 d earlier than that of the wild-type control. The yield of the triple mutant was also increased, being 1.65-fold higher than that of the control. Comparative RNA-seq revealed that sucrose synthase, AUX28, MADS3, type-III polyketide synthase A/B, ABC transporter G family member 26, tetraketide alpha-pyrone reductase, and fatty acyl-CoA reductase 2 may be involved in regulating early flowering and high-yield phenotypes in triple mutant soybean plants. CONCLUSION Our results provide a scientific basis for genetic modification to promote the development of earlier-flowering and higher-yielding soybean cultivars.
Collapse
Affiliation(s)
- Yunqing Cheng
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Yujie Li
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jing Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China
| | - Hongli He
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Xingzheng Zhang
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China
| | - Jianfeng Liu
- Jilin Provincial Key Laboratory of Plant Resource Science and Green Production, Jilin Normal University, Siping, Jilin Province, 136000, China.
| | - Xiangdong Yang
- Jilin Provincial Key Laboratory of Agricultural Biotechnology, Jilin Academy of Agricultural Sciences, Changchun, 130024, China.
| |
Collapse
|
43
|
Tao S, Chen H, Li N, Fang Y, Zhang H, Xu Y, Chen L, Liang W. Elimination of bla KPC-2-mediated carbapenem resistance in Escherichia coli by CRISPR-Cas9 system. BMC Microbiol 2023; 23:310. [PMID: 37884864 PMCID: PMC10601263 DOI: 10.1186/s12866-023-03058-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
OBJECTIVE The purpose of this study is to re-sensitive bacteria to carbapenemases and reduce the transmission of the blaKPC-2 gene by curing the blaKPC-2-harboring plasmid of carbapenem-resistant using the CRISPR-Cas9 system. METHODS The single guide RNA (sgRNA) specifically targeted to the blaKPC-2 gene was designed and cloned into plasmid pCas9. The recombinant plasmid pCas9-sgRNA(blaKPC-2) was transformed into Escherichia coli (E.coli) carrying pET24-blaKPC-2. The elimination efficiency in strains was evaluated by polymerase chain reaction (PCR) and quantitative real-time PCR (qPCR). Susceptibility testing was performed by broth microdilution assay and by E-test strips (bioMérieux, France) to detect changes in bacterial drug resistance phenotype after drug resistance plasmid clearance. RESULTS In the present study, we constructed a specific prokaryotic CRISPR-Cas9 system plasmid targeting cleavage of the blaKPC-2 gene. PCR and qPCR results indicated that prokaryotic CRISPR-Cas9 plasmid transforming drug-resistant bacteria can efficiently clear blaKPC-2-harboring plasmids. In addition, the drug susceptibility test results showed that the bacterial resistance to imipenem was significantly reduced and allowed the resistant model bacteria to restore susceptibility to antibiotics after the blaKPC-2-containing drug-resistant plasmid was specifically cleaved by the CRISPR-Cas system. CONCLUSION In conclusion, our study demonstrated that the one plasmid-mediated CRISPR-Cas9 system can be used as a novel tool to remove resistance plasmids and re-sensitize the recipient bacteria to antibiotics. This strategy provided a great potential to counteract the ever-worsening spread of the blaKPC-2 gene among bacterial pathogens and laid the foundation for subsequent research using the CRISPR-Cas9 system as adjuvant antibiotic therapy.
Collapse
Affiliation(s)
- Shuan Tao
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
- School of Medicine, Jiangsu University, Zhenjiang, China
| | - Huimin Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Na Li
- Bengbu Medical College, Bengbu, China
| | - Yewei Fang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - He Zhang
- Bengbu Medical College, Bengbu, China
| | - Yao Xu
- School of Medicine, Ningbo University, Ningbo, China
| | - Luyan Chen
- Department of Blood Transfusion, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wei Liang
- Department of Clinical Laboratory, The First Affiliated Hospital of Ningbo University, Ningbo, China.
| |
Collapse
|
44
|
Yuan S, Ke D, Liu B, Zhang M, Li X, Chen H, Zhang C, Huang Y, Sun S, Shen J, Yang S, Zhou S, Leng P, Guan Y, Zhou X. The Bax inhibitor GmBI-1α interacts with a Nod factor receptor and plays a dual role in the legume-rhizobia symbiosis. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5820-5839. [PMID: 37470327 DOI: 10.1093/jxb/erad276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 07/19/2023] [Indexed: 07/21/2023]
Abstract
The gene networks surrounding Nod factor receptors that govern the symbiotic process between legumes and rhizobia remain largely unexplored. Here, we identify 13 novel GmNFR1α-associated proteins by yeast two-hybrid screening, and describe a potential interacting protein, GmBI-1α. GmBI-1α had the highest positive correlation with GmNFR1α in a co-expression network analysis, and its expression at the mRNA level in roots was enhanced by rhizobial infection. Moreover, GmBI-1α-GmNFR1α interaction was shown to occur in vitro and in vivo. The GmBI-1α protein was localized to multiple subcellular locations, including the endoplasmic reticulum and plasma membrane. Overexpression of GmBI-1α increased the nodule number in transgenic hairy roots or transgenic soybean, whereas down-regulation of GmBI-1α transcripts by RNA interference reduced the nodule number. In addition, the nodules in GmBI-1α-overexpressing plants became smaller in size and infected area with reduced nitrogenase activity. In GmBI-1α-overexpressing transgenic soybean, the elevated GmBI-1α also promoted plant growth and suppressed the expression of defense signaling-related genes. Infection thread analysis of GmBI-1α-overexpressing plants showed that GmBI-1α promoted rhizobial infection. Collectively, our findings support a GmNFR1α-associated protein in the Nod factor signaling pathway and shed new light on the regulatory mechanism of GmNFR1α in rhizobial symbiosis.
Collapse
Affiliation(s)
- Songli Yuan
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Danxia Ke
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Bo Liu
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Mengke Zhang
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Xiangyong Li
- College of Life Sciences and Institute for Conservation and Utilization of Agro-bioresources in Dabie Mountains, Xinyang Normal University, Xinyang, 464000, China
| | - Haifeng Chen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Chanjuan Zhang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yi Huang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shuai Sun
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Jiafang Shen
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shuqi Yang
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Shunxin Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Piao Leng
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| | - Yuefeng Guan
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fujian, 350002, China
| | - Xinan Zhou
- Key Laboratory of Biology and Genetic Improvement of Oil Crops, Ministry of Agriculture and Rural Affairs, Oil Crops Research Institute of Chinese Academy of Agricultural Sciences, Wuhan, 430062, China
| |
Collapse
|
45
|
Yao L, Wang X, Ke R, Chen K, Xie K. FLASH Genome Editing Pipeline: An Efficient and High-Throughput Method to Construct Arrayed CRISPR Library for Plant Functional Genomics. Curr Protoc 2023; 3:e905. [PMID: 37755326 DOI: 10.1002/cpz1.905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2023]
Abstract
CRISPR/Cas9 genome editing is a revolutionary technology for plant functional genomics and crop breeding. In this system, the Cas9 nuclease is directed by a guide RNA (gRNA) to cut the DNA target and introduce mutation through error-prone DNA break repair. Owing to its simplicity, CRISPR/Cas9-mediated targeted gene knockout is widely used for high-throughput genetic screening in animal cell cultures and bacteria. However, high-throughput genetic screening using CRISPR/Cas9 is still challenging in plants. We recently established a new approach, named the FLASH genome editing pipeline, to construct an arrayed CRISPR library in plants. In this pipeline, a set of 12 PCR fragments with different lengths (referred to as FLASH tags) are used to index the Cas9/gRNA vectors. Subsequently, a mixture of 12 Agrobacterium strains, in which each strain contained a FLASH-tag indexed vector, was transformed into rice plants. As a result, a unique link between the target gene/gRNA and FLASH tag is generated, which allows reading gRNA information in bacterial strains and gene-edited plants using regular PCR and gel electrophoresis. This protocol includes step-by-step instructions for gRNA design, high throughput assembly of FLASH-tag indexed Cas9/gRNA plasmids, Agrobacterium-mediated transformation of 12 indexed plasmids, and fast assignment of target gene information in primary transformants. The arrayed CRISPR library described here is suitable for small- to large-scale genetic screening and allows fast and comprehensive gene function discovery in plants. © 2023 Wiley Periodicals LLC. Basic Protocol 1: Assembly of FLASH-tag-indexed Cas9/gRNA plasmids Basic Protocol 2: Preparation of the Cas9/gRNA plasmid library Basic Protocol 3: Library preparation of Agrobacterium strains and mixing FLASH-tag indexed strains Basic Protocol 4: Grouped transformation and assignments of gRNA information of gene-edited plants.
Collapse
Affiliation(s)
- Lu Yao
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Xiaochun Wang
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, People's Republic of China
- Current affiliation: Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Runnan Ke
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, People's Republic of China
| | - Kaiyuan Chen
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, People's Republic of China
- Current affiliation: Guangdong Laboratory of Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture and Rural Affairs, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, People's Republic of China
| | - Kabin Xie
- National Key Laboratory of Crop Genetic Improvement and Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, People's Republic of China
| |
Collapse
|
46
|
Shi L, Su J, Cho MJ, Song H, Dong X, Liang Y, Zhang Z. Promoter editing for the genetic improvement of crops. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:4349-4366. [PMID: 37204916 DOI: 10.1093/jxb/erad175] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/06/2023] [Indexed: 05/21/2023]
Abstract
Gene expression plays a fundamental role in the regulation of agronomically important traits in crop plants. The genetic manipulation of plant promoters through genome editing has emerged as an effective strategy to create favorable traits in crops by altering the expression pattern of the pertinent genes. Promoter editing can be applied in a directed manner, where nucleotide sequences associated with favorable traits are precisely generated. Alternatively, promoter editing can also be exploited as a random mutagenic approach to generate novel genetic variations within a designated promoter, from which elite alleles are selected based on their phenotypic effects. Pioneering studies have demonstrated the potential of promoter editing in engineering agronomically important traits as well as in mining novel promoter alleles valuable for plant breeding. In this review, we provide an update on the application of promoter editing in crops for increased yield, enhanced tolerance to biotic and abiotic stresses, and improved quality. We also discuss several remaining technical bottlenecks and how this strategy may be better employed for the genetic improvement of crops in the future.
Collapse
Affiliation(s)
- Lu Shi
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Jing Su
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Myeong-Je Cho
- Innovative Genomics Institute, University of California, Berkeley, CA 94704, USA
| | - Hao Song
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaoou Dong
- State Key Laboratory of Crop Genetics & Germplasm Enhancement and Utilization, Province and Ministry Co-sponsored Collaborative Innovation Center for Modern Crop Production, Jiangsu Engineering Research Center for Plant Genome Editing, Nanjing Agricultural University, Nanjing 210095, China
- Hainan Yazhou Bay Seed Laboratory, Sanya 572025, China
- Zhongshan Biological Breeding Laboratory, No. 50 Zhongling Street, Nanjing, Jiangsu 210014, China
| | - Ying Liang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Zhiyong Zhang
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| |
Collapse
|
47
|
Wang X, Qiu Z, Zhu W, Wang N, Bai M, Kuang H, Cai C, Zhong X, Kong F, Lü P, Guan Y. The NAC transcription factors SNAP1/2/3/4 are central regulators mediating high nitrogen responses in mature nodules of soybean. Nat Commun 2023; 14:4711. [PMID: 37543605 PMCID: PMC10404276 DOI: 10.1038/s41467-023-40392-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 07/26/2023] [Indexed: 08/07/2023] Open
Abstract
Legumes can utilize atmospheric nitrogen via symbiotic nitrogen fixation, but this process is inhibited by high soil inorganic nitrogen. So far, how high nitrogen inhibits N2 fixation in mature nodules is still poorly understood. Here we construct a co-expression network in soybean nodule and find that a dynamic and reversible transcriptional network underlies the high N inhibition of N2 fixation. Intriguingly, several NAC transcription factors (TFs), designated as Soybean Nitrogen Associated NAPs (SNAPs), are amongst the most connected hub TFs. The nodules of snap1/2/3/4 quadruple mutants show less sensitivity to the high nitrogen inhibition of nitrogenase activity and acceleration of senescence. Integrative analysis shows that these SNAP TFs largely influence the high nitrogen transcriptional response through direct regulation of a subnetwork of senescence-associated genes and transcriptional regulators. We propose that the SNAP-mediated transcriptional network may trigger nodule senescence in response to high nitrogen.
Collapse
Affiliation(s)
- Xin Wang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Zhimin Qiu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Wenjun Zhu
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Nan Wang
- School of Life Sciences, Inner Mongolia University, Hohhot, 010000, China
| | - Mengyan Bai
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China
| | - Huaqin Kuang
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Chenlin Cai
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Xiangbin Zhong
- College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China
| | - Fanjiang Kong
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China
| | - Peitao Lü
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China.
| | - Yuefeng Guan
- Guangdong Provincial Key Laboratory of Plant Adaptation and Molecular Design, Innovative Center of Molecular Genetics and Evolution, School of Life Sciences, Guangzhou University, Guangzhou, 510006, China.
- FAFU-UCR Joint Center for Horticultural Biology and Metabolomics, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
48
|
Zhu X, Fang D, Li D, Zhang J, Jiang H, Guo L, He Q, Zhang T, Macho AP, Wang E, Shen QH, Wang Y, Zhou JM, Ma W, Qiao Y. Phytophthora sojae boosts host trehalose accumulation to acquire carbon and initiate infection. Nat Microbiol 2023; 8:1561-1573. [PMID: 37386076 DOI: 10.1038/s41564-023-01420-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 06/01/2023] [Indexed: 07/01/2023]
Abstract
Successful infection by pathogenic microbes requires effective acquisition of nutrients from their hosts. Root and stem rot caused by Phytophthora sojae is one of the most important diseases of soybean (Glycine max). However, the specific form and regulatory mechanisms of carbon acquired by P. sojae during infection remain unknown. In the present study, we show that P. sojae boosts trehalose biosynthesis in soybean through the virulence activity of an effector PsAvh413. PsAvh413 interacts with soybean trehalose-6-phosphate synthase 6 (GmTPS6) and increases its enzymatic activity to promote trehalose accumulation. P. sojae directly acquires trehalose from the host and exploits it as a carbon source to support primary infection and development in plant tissue. Importantly, GmTPS6 overexpression promoted P. sojae infection, whereas its knockdown inhibited the disease, suggesting that trehalose biosynthesis is a susceptibility factor that can be engineered to manage root and stem rot in soybean.
Collapse
Affiliation(s)
- Xiaoguo Zhu
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Di Fang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Die Li
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Jianing Zhang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Haixin Jiang
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Liang Guo
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China
| | - Qingyuan He
- College of Life and Health Science, Anhui Science and Technology University, Fengyang, China
| | - Tianyu Zhang
- Key Laboratory of RNA Biology, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Alberto P Macho
- Shanghai Center for Plant Stress Biology, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Ertao Wang
- National Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
| | - Qian-Hua Shen
- Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Yuanchao Wang
- Department of Plant Pathology, Nanjing Agricultural University, Nanjing, China
| | - Jian-Min Zhou
- Institute of Genetics and Developmental Biology, Innovation Academy for Seed Design, Chinese Academy of Sciences, Beijing, China
| | - Wenbo Ma
- The Sainsbury Laboratory, Norwich Research Park, Norwich, UK
| | - Yongli Qiao
- Shanghai Key Laboratory of Plant Molecular Sciences, College of Life Sciences, Shanghai Normal University, Shanghai, China.
| |
Collapse
|
49
|
Zhu X, Xu W, Liu B, Zhan Y, Xia T. Adaptation of high-efficiency CRISPR/Cas9-based multiplex genome editing system in white lupin by using endogenous promoters. PHYSIOLOGIA PLANTARUM 2023; 175:e13976. [PMID: 37616014 DOI: 10.1111/ppl.13976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 07/10/2023] [Indexed: 08/25/2023]
Abstract
White lupin (Lupinus albus L.) is an important crop with high phosphorus (P) use efficiency; however, technologies for its functional genomic and molecular analyses are limited. Cluster regularly interspaced short palindromic repeat (CRISPR)/CRISPR-associated protein 9 (Cas9) (CRISPR/Cas9) system has been applied to gene editing and function genomics in many crops, but its application in white lupin has not been well documented. Here, we adapted the CRISPR/Cas9-based multiplex genome editing system by using the native U3/U6 and ubiquitin (UBQ) promoters to drive sgRNAs and Cas9. Two target sites (T1 and T2) within the Lalb_Chr05g0223881 gene, encoding a putative trehalase, were selected to validate its efficacy in white lupin based on the Agrobacterium rhizogenes-mediated transformation. We found that the T0 hairy roots were efficiently mutated at T1 and T2 with a frequency of 6.25%-35% and 50%-92.31%, respectively. The mutation types include nucleotide insertion, deletion, substitution, and complicated variant. Simultaneous mutations of the two targets were also observed with a range of 6.25%-35%. The combination of LaU6.6 promoter for sgRNA and LaUBQ12 promoter for Cas9 generated the highest frequency of homozygous/biallelic mutations at 38.46%. In addition, the target-sgRNA sequence also contributes to the editing efficiency of the CRISPR/Cas9 system in white lupin. In conclusion, our results expand the toolbox of the CRISPR/Cas9 system and benefit the basic research in white lupin.
Collapse
Affiliation(s)
- Xiaoqi Zhu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Weifeng Xu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Bowen Liu
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Yujie Zhan
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Tianyu Xia
- Joint International Research Laboratory of Water and Nutrient in Crop and College of Resource and Environment, Center for Plant Water-use and Nutrition Regulation and College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| |
Collapse
|
50
|
Li Y, Wang C, Zheng L, Ma W, Li M, Guo Z, Zhao Q, Zhang K, Liu R, Liu Y, Tian Z, Bai Y, Zhong Y, Liao H. Natural variation of GmRj2/Rfg1 determines symbiont differentiation in soybean. Curr Biol 2023; 33:2478-2490.e5. [PMID: 37301200 DOI: 10.1016/j.cub.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023]
Abstract
Symbiotic nitrogen fixation (SNF) provides much of the N utilized by leguminous plants throughout growth and development. Legumes may simultaneously establish symbiosis with different taxa of microbial symbionts. Yet, the mechanisms used to steer associations toward symbionts that are most propitious across variations in soil types remain mysterious. Here, we demonstrate that GmRj2/Rfg1 is responsible for regulating symbiosis with multiple taxa of soybean symbionts. In our experiments, the GmRj2/Rfg1SC haplotype favored association with Bradyrhizobia, which is mostly distributed in acid soils, whereas the GmRj2/Rfg1HH haplotype and knockout mutants of GmRj2/Rfg1SC associated equally with Bradyrhizobia and Sinorhizobium. Association between GmRj2/Rfg1 and NopP, furthermore, appeared to be involved in symbiont selection. Furthermore, geographic distribution analysis of 1,821 soybean accessions showed that GmRj2/Rfg1SC haplotypes were enriched in acidic soils where Bradyrhizobia were the dominant symbionts, whereas GmRj2/Rfg1HH haplotypes were most prevalent in alkaline soils dominated by Sinorhizobium, and neutral soils harbored no apparent predilections toward either haplotype. Taken together, our results suggest that GmRj2/Rfg1 regulates symbiosis with different symbionts and is a strong determinant of soybean adaptability across soil regions. As a consequence, the manipulation of the GmRj2/Rfg1 genotype or application of suitable symbionts according to the haplotype at the GmRj2/Rfg1 locus might be suitable strategies to explore for increasing soybean yield through the management of SNF.
Collapse
Affiliation(s)
- Yanjun Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Cunhu Wang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Lei Zheng
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Wenjing Ma
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Mingjia Li
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Zilong Guo
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qingsong Zhao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Kefei Zhang
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Ran Liu
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Yucheng Liu
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China
| | - Zhixi Tian
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Innovative Academy for Seed Design, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yang Bai
- State Key Laboratory of Plant Genomics, Institute of Genetics and Developmental Biology, The Innovative Academy of Seed Design, Chinese Academy of Sciences, Beijing 100101, China; CAS-JIC Centre of Excellence for Plant and Microbial Science, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongjia Zhong
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
| | - Hong Liao
- Root Biology Center, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| |
Collapse
|