1
|
Nie Y, Lei Y, Jiao H, Zhang Z, Yao J, Li H, Dai H, Zhang Z, Zhang J. Ubiquitin-mediated degradation of the inhibitor FvMYB1 and the activator FvBBX20 by FvCSN5 balances anthocyanin biosynthesis in strawberry fruit. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2025; 121:e70021. [PMID: 39993030 DOI: 10.1111/tpj.70021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 01/13/2025] [Accepted: 01/21/2025] [Indexed: 02/26/2025]
Abstract
Plant CSN5 is widely recognized as the subunit of the COP9 signalosome and CSN5 is mainly involved in plant growth and development, and tolerance to biotic and abiotic stresses. However, the molecular mechanism of CSN5 regulating anthocyanin biosynthesis in plants is still largely unknown. Here, we identified FvCSN5 from the woodland strawberry yeast two-hybrid library using the anthocyanin pathway inhibitor MYB1 as bait. We demonstrated the interaction of FvCSN5 and FvMYB1 by H2Y, Pull-down, LCI, and BiFC assays. FvCSN5 was expressed in all test tissues and localized in the nucleus and cytosol with self-activation activity. Stable overexpression of FvCSN5 in woodland strawberries reduced anthocyanin accumulation in fruits. The protein level of FvMYB1 greatly decreased in overexpressing FvCSN5 plants compared with wild-type plants. Protein degradation assay and MG-132 treatment (a proteasome inhibitor blocking 26S proteasome activity) revealed FvCSN5 degraded FvMYB1 through the ubiquitination pathway. In addition, FvCSN5 also interacted with the anthocyanin activator FvBBX20 and FvBBX20 could be degraded by FvCSN5. Moreover, transient expression analysis showed the expression of anthocyanin biosynthetic genes FvCHS and FvF3H was greatly increased and decreased when FvCSN5 was co-expressed with FvMYB1 and FvBBX20, respectively. These results indicate that FvMYB1-FvCSN5-FvBBX20 is a novel ternary complex that regulates anthocyanin biosynthesis by the ubiquitination pathway.
Collapse
Affiliation(s)
- Yuxin Nie
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Yingying Lei
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongbo Jiao
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhuo Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Jinxiang Yao
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Hongyan Dai
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| | - Junxiang Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang, 110866, China
| |
Collapse
|
2
|
Xiao W, Liu A, Lai W, Wang J, Li X, Zha Y, Zhao B, Chen X, Yu H. Combined transcriptome and metabolome analysis revealed the molecular mechanisms of fruit skin coloration in pink strawberry. FRONTIERS IN PLANT SCIENCE 2024; 15:1486892. [PMID: 39450075 PMCID: PMC11499181 DOI: 10.3389/fpls.2024.1486892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 09/20/2024] [Indexed: 10/26/2024]
Abstract
Elucidating the key genes and metabolites responsible for fruit skin color is essential for the breeding of strawberry varieties with beautiful fruit color. Here, transcriptome and metabolome analyses were used to identify the key genes and metabolites associated with fruit skin color in strawberry accessions of red skin (Kaorino), white skin (2012-W02), and the pink skin (Fenyu NO.1, the F1 hybrid of Kaorino and 2012-W02). The metabolomic data showed that the content of anthocyanin-related metabolites, such as p-Coumaroyl quinic acid, 5-Hydroxyconiferyl alcohol and Coumestrol were significantly higher in red-skinned strawberry line Kaorino than in the white-skinned line 2012-W02. The flavonoids and isoflavonoids such as syringetin and 2,7,4'-trihydroxy-isoflavone, were less expressed in the Kaorino than in the other two accessions. Transcriptome analysis revealed that the expression of genes involved in anthocyanin biosynthesis, such as BZ1, F3H, CHS, CHI, DFR, 4CL, PAL, CCR, 4CL, F5H, REF1 and UGT72E, were also significantly upregulated in the red-skinned line Kaorino compared to the white-skinned line 2012-W02, while the HCT, CYP75B1, FG3, HIDH, IF7MAT, I2'H, and VR was downregulated in Kaorino. Combined transcriptome and metabolome analyses revealed that the pathways of isoflavonoid biosynthesis and flavone and flavonol biosynthesis, and the phenylpropanoid biosynthesis pathway essential for anthocyanin synthesis were commonly enriched by DRMs and DEGs. In addition, the metabolites of peonidin 3-O-glucoside, 2'-hydroxydaidzein and daidzin, and the genes of CYP93B2_16 and UGT73C6 were detected and most accumulated in pink-skinned Fenyu NO.1. This result suggested that the main strategy for obtaining a red skin color is to enhance the upstream pathway of anthocyanin biosynthesis, including the phenylpropanoid biosynthesis pathway, and to restrict the downstream steps in the flavonoid biosynthesis pathway, such as the branch pathway of flavone and flavonol biosynthesis and isoflavonoid biosynthesis.
Collapse
Affiliation(s)
- Wenfei Xiao
- Institute of Biotechnology Research, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Aichun Liu
- Institute of Biotechnology Research, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Wenguo Lai
- Institute of Biotechnology Research, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Jianrong Wang
- Institute of Biotechnology Research, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoyuan Li
- Institute of Biotechnology Research, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Yan Zha
- Institute of Biotechnology Research, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Bo Zhao
- Institute of Biotechnology Research, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| | - Xiaoyang Chen
- Seed Center, Zhejiang Provincial Seed Management Station, Hangzhou, China
| | - Hong Yu
- Institute of Biotechnology Research, Hangzhou Academy of Agricultural Sciences, Hangzhou, China
| |
Collapse
|
3
|
Lan G, Wu M, Zhang Q, Yuan B, Shi G, Zhu N, Zheng Y, Cao Q, Qiao Q, Zhang T. Transcriptomic and Physiological Analyses for the Role of Hormones and Sugar in Axillary Bud Development of Wild Strawberry Stolon. PLANTS (BASEL, SWITZERLAND) 2024; 13:2241. [PMID: 39204677 PMCID: PMC11359144 DOI: 10.3390/plants13162241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/25/2024] [Accepted: 08/07/2024] [Indexed: 09/04/2024]
Abstract
Strawberries are mainly propagated by stolons, which can be divided into monopodial and sympodial types. Monopodial stolons consistently produce ramets at each node following the initial single dormant bud, whereas sympodial stolons develop a dormant bud before each ramet. Sympodial stolon encompasses both dormant buds and ramet buds, making it suitable for studying the formation mechanism of different stolon types. In this study, we utilized sympodial stolons from Fragaria nilgerrensis as materials and explored the mechanisms underlying sympodial stolon development through transcriptomic and phytohormonal analyses. The transcriptome results unveiled that auxin, cytokinin, and sugars likely act as main regulators. Endogenous hormone analysis revealed that the inactivation of auxin could influence bud dormancy. Exogenous cytokinin application primarily induced dormant buds to develop into secondary stolons, with the proportion of ramet formation being very low, less than 10%. Furthermore, weighted gene co-expression network analysis identified key genes involved in ramet formation, including auxin transport and response genes, the cytokinin activation gene LOG1, and glucose transport genes SWEET1 and SFP2. Consistently, in vitro cultivation experiments confirmed that glucose enhances the transition of dormant buds into ramets within two days. Collectively, cytokinin and glucose act as dormant breakers, with cytokinin mainly driving secondary stolon formation and glucose promoting ramet generation. This study improved our understanding of stolon patterning and bud development in the sympodial stolon of strawberries.
Collapse
Affiliation(s)
- Genqian Lan
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Mingzhao Wu
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Qihang Zhang
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Bo Yuan
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Guangxin Shi
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Ni Zhu
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Yibingyue Zheng
- School of Agriculture, Yunnan University, Kunming 650091, China; (G.L.); (M.W.); (Q.Z.); (B.Y.); (G.S.); (N.Z.); (Y.Z.)
| | - Qiang Cao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, Kunming 650201, China;
| | - Ticao Zhang
- Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
| |
Collapse
|
4
|
Wang Z, Dai Q, Su D, Zhang Z, Tian Y, Tong J, Chen S, Yan C, Yang J, Cui X. Comparative analysis of the microbiomes of strawberry wild species Fragaria nilgerrensis and cultivated variety Akihime using amplicon-based next-generation sequencing. Front Microbiol 2024; 15:1377782. [PMID: 38873161 PMCID: PMC11169695 DOI: 10.3389/fmicb.2024.1377782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/07/2024] [Indexed: 06/15/2024] Open
Abstract
Fragaria nilgerrensis is a wild strawberry species widely distributed in southwest China and has strong ecological adaptability. Akihime (F. × ananassa Duch. cv. Akihime) is one of the main cultivated strawberry varieties in China and is prone to infection with a variety of diseases. In this study, high-throughput sequencing was used to analyze and compare the soil and root microbiomes of F. nilgerrensis and Akihime. Results indicate that the wild species F. nilgerrensis showed higher microbial diversity in nonrhizosphere soil and rhizosphere soil and possessed a more complex microbial network structure compared with the cultivated variety Akihime. Genera such as Bradyrhizobium and Anaeromyxobacter, which are associated with nitrogen fixation and ammonification, and Conexibacter, which is associated with ecological toxicity resistance, exhibited higher relative abundances in the rhizosphere and nonrhizosphere soil samples of F. nilgerrensis compared with those of Akihime. Meanwhile, the ammonia-oxidizing archaea Candidatus Nitrososphaera and Candidatus Nitrocosmicus showed the opposite tendencies. We also found that the relative abundances of potential pathogenic genera and biocontrol bacteria in the Akihime samples were higher than those in the F. nilgerrensis samples. The relative abundances of Blastococcus, Nocardioides, Solirubrobacter, and Gemmatimonas, which are related to pesticide degradation, and genus Variovorax, which is associated with root growth regulation, were also significantly higher in the Akihime samples than in the F. nilgerrensis samples. Moreover, the root endophytic microbiomes of both strawberry species, especially the wild F. nilgerrensis, were mainly composed of potential biocontrol and beneficial bacteria, making them important sources for the isolation of these bacteria. This study is the first to compare the differences in nonrhizosphere and rhizosphere soils and root endogenous microorganisms between wild and cultivated strawberries. The findings have great value for the research of microbiomes, disease control, and germplasm innovation of strawberry.
Collapse
Affiliation(s)
- Zongneng Wang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Qingzhong Dai
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Daifa Su
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | | | - Yunxia Tian
- Kunming Academy of Agricultural Science, Kunming, China
| | - Jiangyun Tong
- Kunming Academy of Agricultural Science, Kunming, China
| | - Shanyan Chen
- Kunming Academy of Agricultural Science, Kunming, China
| | - Congwen Yan
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Junyu Yang
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- Yunnan International Joint Laboratory of Virology and Immunology, Kunming, China
| | - Xiaolong Cui
- Yunnan Institute of Microbiology, School of Life Sciences, Yunnan University, Kunming, China
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| |
Collapse
|
5
|
Meng K, Liao W, Wei S, Chen S, Li M, Ma Y, Fan Q. Chromosome-scale genome assembly and annotation of Cotoneaster glaucophyllus. Sci Data 2024; 11:406. [PMID: 38649372 PMCID: PMC11035681 DOI: 10.1038/s41597-024-03246-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
Cotoneaster glaucophyllus is a semi-evergreen plant that blossoms in late summer, producing dense, attractive, fragrant white flowers with significant ornamental and ecological value. Here, a chromosome-scale genome assembly was obtained by integrating PacBio and Illumina sequencing data with the aid of Hi-C technology. The genome assembly was 563.3 Mb in length, with contig N50 and scaffold N50 values of ~6 Mb and ~31 Mb, respectively. Most (95.59%) of the sequences were anchored onto 17 pseudochromosomes (538.4 Mb). We predicted 35,856 protein-coding genes, 1,401 miRNAs, 655 tRNAs, 425 rRNAs, and 795 snRNAs. The functions of 34,967 genes (97.52%) were predicted. The availability of this chromosome-level genome will provide valuable resources for molecular studies of this species, facilitating future research on speciation, functional genomics, and comparative genomics within the Rosaceae family.
Collapse
Affiliation(s)
- Kaikai Meng
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Wenbo Liao
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Shaolong Wei
- Guangxi Key Laboratory of Quality and Safety Control for Subtropical Fruits, Guangxi Subtropical Crops Research Institute, Nanning, 530001, China
| | - Sufang Chen
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China
| | - Mingwan Li
- College of Forestry, Henan Agricultural University, Zhengzhou, 450002, China
| | - Yongpeng Ma
- State Key Laboratory of Plant Diversity and Specialty Crops, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Qiang Fan
- State Key Laboratory of Biocontrol and Guangdong Provincial Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| |
Collapse
|
6
|
Vondracek K, Altpeter F, Liu T, Lee S. Advances in genomics and genome editing for improving strawberry ( Fragaria ×ananassa). Front Genet 2024; 15:1382445. [PMID: 38706796 PMCID: PMC11066249 DOI: 10.3389/fgene.2024.1382445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 04/04/2024] [Indexed: 05/07/2024] Open
Abstract
The cultivated strawberry, Fragaria ×ananassa, is a recently domesticated fruit species of economic interest worldwide. As such, there is significant interest in continuous varietal improvement. Genomics-assisted improvement, including the use of DNA markers and genomic selection have facilitated significant improvements of numerous key traits during strawberry breeding. CRISPR/Cas-mediated genome editing allows targeted mutations and precision nucleotide substitutions in the target genome, revolutionizing functional genomics and crop improvement. Genome editing is beginning to gain traction in the more challenging polyploid crops, including allo-octoploid strawberry. The release of high-quality reference genomes and comprehensive subgenome-specific genotyping and gene expression profiling data in octoploid strawberry will lead to a surge in trait discovery and modification by using CRISPR/Cas. Genome editing has already been successfully applied for modification of several strawberry genes, including anthocyanin content, fruit firmness and tolerance to post-harvest disease. However, reports on many other important breeding characteristics associated with fruit quality and production are still lacking, indicating a need for streamlined genome editing approaches and tools in Fragaria ×ananassa. In this review, we present an overview of the latest advancements in knowledge and breeding efforts involving CRISPR/Cas genome editing for the enhancement of strawberry varieties. Furthermore, we explore potential applications of this technology for improving other Rosaceous plant species.
Collapse
Affiliation(s)
- Kaitlyn Vondracek
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Fredy Altpeter
- University of Florida, Agronomy Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Tie Liu
- University of Florida, Horticultural Sciences Department, Institute of Food and Agricultural Sciences, Gainesville, FL, United States
| | - Seonghee Lee
- Gulf Coast Research and Education Center, Institute of Food and Agricultural Sciences, University of Florida, Wimauma, FL, United States
| |
Collapse
|
7
|
Zhang G, Song Y, Chen N, Wei J, Zhang J, He C. Chromosome-level genome assembly of Hippophae tibetana provides insights into high-altitude adaptation and flavonoid biosynthesis. BMC Biol 2024; 22:82. [PMID: 38609969 PMCID: PMC11015584 DOI: 10.1186/s12915-024-01875-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND As an endemic shrub of the Qinghai-Tibetan Plateau (QTP), the distribution of Hippophae tibetana Schlecht. ranges between 2800 and 5200 m above sea level. As the most basal branch of the Hippophae genus, H. tibetana has an extensive evolutionary history. The H. tibetana is a valuable tree for studying the ecological evolution of species under extreme conditions. RESULTS Here, we generated a high-quality chromosome-level genome of H. tibetana. The total size of the assembly genome is 917 Mb. The phylogenomic analysis of 1064 single-copy genes showed a divergence between 3.4 and 12.8 Mya for H. tibetana. Multiple gene families associated with DNA repair and disease resistance were significantly expanded in H. tibetana. We also identified many genes related to DNA repair with signs of positive selection. These results showed expansion and positive selection likely play important roles in H. tibetana's adaptation to comprehensive extreme environments in the QTP. A comprehensive genomic and transcriptomic analysis identified 49 genes involved in the flavonoid biosynthesis pathway in H. tibetana. We generated transgenic sea buckthorn hairy root producing high levels of flavonoid. CONCLUSIONS Taken together, this H. tibetana high-quality genome provides insights into the plant adaptation mechanisms of plant under extreme environments and lay foundation for the functional genomic research and molecular breeding of H. tibetana.
Collapse
Affiliation(s)
- Guoyun Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Yating Song
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Ning Chen
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jihua Wei
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China
| | - Jianguo Zhang
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
- Collaborative Innovation Center of Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing, China.
| | - Caiyun He
- State Key Laboratory of Tree Genetics and Breeding & Key Laboratory of Tree Breeding and Cultivation, National Forestry and Grassland Administration, Research Institute of Forestry, Chinese Academy of Forestry, Beijing, China.
| |
Collapse
|
8
|
Li L, Yang M, Wei W, Zhao J, Yu X, Impaprasert R, Wang J, Liu J, Huang F, Srzednicki G, Yu L. Characteristics of Amorphophallus konjac as indicated by its genome. Sci Rep 2023; 13:22684. [PMID: 38114626 PMCID: PMC10730839 DOI: 10.1038/s41598-023-49963-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 12/14/2023] [Indexed: 12/21/2023] Open
Abstract
Amorphophallus konjac, belonging to the genus Amorphophallus of the Araceae family, is an economically important crop widely used in health products and biomaterials. In the present work, we performed the whole-genome assembly of A. konjac based on the NovaSeq platform sequence data. The final genome assembly was 4.58 Gb with a scaffold N50 of 3212 bp. The genome includes 39,421 protein-coding genes, and 71.75% of the assemblies were repetitive sequences. Comparative genomic analysis showed 1647 gene families have expanded and 2685 contracted in the A. konjac genome. Likewise, genome evolution analysis indicated that A. konjac underwent whole-genome duplication, possibly contributing to the expansion of certain gene families. Furthermore, we identified many candidate genes involved in the tuber formation and development, cellulose and lignification synthesis. The genome of A. konjac obtained in this work provides a valuable resource for the further study of the genetics, genomics, and breeding of this economically important crop, as well as for evolutionary studies of Araceae family.
Collapse
Affiliation(s)
- Lifang Li
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Min Yang
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Wei Wei
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Jianrong Zhao
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Xuya Yu
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, China
| | - Rarisara Impaprasert
- Department of Microbiology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Jianguang Wang
- School of Life Sciences, Yunnan University, Kunming, China
| | - Jiani Liu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - Feiyan Huang
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China
| | - George Srzednicki
- Food Science & Technology, School of Chemical Engineering, The University of New South Wales, Sydney, Australia.
| | - Lei Yu
- College of Agronomy, Yunnan Urban Agricultural Engineering and Technological Research Center, Kunming University, Kunming, China.
| |
Collapse
|
9
|
Lyu K, Xiao J, Lyu S, Liu R. Comparative Analysis of Transposable Elements in Strawberry Genomes of Different Ploidy Levels. Int J Mol Sci 2023; 24:16935. [PMID: 38069258 PMCID: PMC10706760 DOI: 10.3390/ijms242316935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Transposable elements (TEs) make up a large portion of plant genomes and play a vital role in genome structure, function, and evolution. Cultivated strawberry (Fragaria x ananassa) is one of the most important fruit crops, and its octoploid genome was formed through several rounds of genome duplications from diploid ancestors. Here, we built a pan-genome TE library for the Fragaria genus using ten published strawberry genomes at different ploidy levels, including seven diploids, one tetraploid, and two octoploids, and performed comparative analysis of TE content in these genomes. The TEs comprise 51.83% (F. viridis) to 60.07% (F. nilgerrensis) of the genomes. Long terminal repeat retrotransposons (LTR-RTs) are the predominant TE type in the Fragaria genomes (20.16% to 34.94%), particularly in F. iinumae (34.94%). Estimating TE content and LTR-RT insertion times revealed that species-specific TEs have shaped each strawberry genome. Additionally, the copy number of different LTR-RT families inserted in the last one million years reflects the genetic distance between Fragaria species. Comparing cultivated strawberry subgenomes to extant diploid ancestors showed that F. vesca and F. iinumae are likely the diploid ancestors of the cultivated strawberry, but not F. viridis. These findings provide new insights into the TE variations in the strawberry genomes and their roles in strawberry genome evolution.
Collapse
Affiliation(s)
- Keliang Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.L.); (S.L.)
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Jiajing Xiao
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| | - Shiheng Lyu
- College of Horticulture, Fujian Agriculture and Forestry University, Fuzhou 350002, China; (K.L.); (S.L.)
| | - Renyi Liu
- Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, Fuzhou 350002, China;
| |
Collapse
|
10
|
Wang W, Zhang X, Xu X, Xu X, Fu L, Chen H. Systematic identification of reference genes for qRT-PCR of Ardisia kteniophylla A. DC under different experimental conditions and for anthocyanin-related genes studies. FRONTIERS IN PLANT SCIENCE 2023; 14:1284007. [PMID: 38023897 PMCID: PMC10656778 DOI: 10.3389/fpls.2023.1284007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023]
Abstract
Ardisia kteniophylla A. DC, widely known as folk medicinal herb and ornamental plant, has been extensively investigated due to its unique leaf color, anti-cancer and other pharmacological activities. The quantitative real-time PCR (qRT-PCR) was an excellent tool for the analysis of gene expression with its high sensitivity and quantitative properties. Normalizing gene expression with stable reference genes was essential for qRT-PCR accuracy. In addition, no studies have yet been performed on the selection, verification and stability of internal reference genes suitable for A. kteniophylla, which has greatly hindered the biomolecular researches of this species. In this study, 29 candidate genes were successfully screened according to stable expression patterns of large-scale RNA seq data that from a variety of tissues and the roots of different growth stages in A. kteniophylla. The candidates were then further determined via qRT-PCR in various experimental samples, including MeJA, ABA, SA, NaCl, CuSO4, AgNO3, MnSO4, CoCl2, drought, low temperature, heat, waterlogging, wounding and oxidative stress. To assess the stability of the candidates, five commonly used strategies were employed: delta-CT, geNorm, BestKeeper, NormFinder, and the comprehensive tool RefFinder. In summary, UBC2 and UBA1 were found to be effective in accurately normalizing target gene expression in A. kteniophella regardless of experimental conditions, while PP2A-2 had the lowest stability. Additionally, to verify the reliability of the recommended reference genes under different colored leaf samples, we examined the expression patterns of six genes associated with anthocyanin synthesis and regulation. Our findings suggested that PAP1 and ANS3 may be involved in leaf color change in A. kteniphella. This study successfully identified the ideal reference gene for qRT-PCR analysis in A. kteniphella, providing a foundation for future research on gene function, particularly in the biosynthesis of anthocyanins.
Collapse
Affiliation(s)
- Wentao Wang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xiaohang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xiaoxia Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Modern Agricultural Sciences, University of Chinese Acadamy of Science, Beijing, China
| | - Xingchou Xu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
- College of Life Science, Gannan Normal University, Ganzhou, China
| | - Lin Fu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Hongfeng Chen
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
11
|
Denoyes B, Prohaska A, Petit J, Rothan C. Deciphering the genetic architecture of fruit color in strawberry. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:6306-6320. [PMID: 37386925 PMCID: PMC10627153 DOI: 10.1093/jxb/erad245] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/28/2023] [Indexed: 07/01/2023]
Abstract
Fruits of Fragaria species usually have an appealing bright red color due to the accumulation of anthocyanins, water-soluble flavonoid pigments. Octoploid cultivated strawberry (Fragaria × ananassa) is a major horticultural crop for which fruit color and associated nutritional value are main breeding targets. Great diversity in fruit color intensity and pattern is observed not only in cultivated strawberry but also in wild relatives such as its octoploid progenitor F. chiloensis or the diploid woodland strawberry F. vesca, a model for fruit species in the Rosaceae. This review examines our understanding of fruit color formation in strawberry and how ongoing developments will advance it. Natural variations of fruit color as well as color changes during fruit development or in response to several cues have been used to explore the anthocyanin biosynthetic pathway and its regulation. So far, the successful identification of causal genetic variants has been largely driven by the availability of high-throughput genotyping tools and high-quality reference genomes of F. vesca and F. × ananassa. The current completion of haplotype-resolved genomes of F. × ananassa combined with QTL mapping will accelerate the exploitation of the untapped genetic diversity of fruit color and help translate the findings into strawberry improvement.
Collapse
Affiliation(s)
- Béatrice Denoyes
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Alexandre Prohaska
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
- INVENIO, MIN de Brienne, Bordeaux, France
| | - Johann Petit
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| | - Christophe Rothan
- INRAE and Univ. of Bordeaux, UMR 1332 Biologie du Fruit et Pathologie, F-33140 Villenave d’Ornon, France
| |
Collapse
|
12
|
Liu Z, Liang T, Kang C. Molecular bases of strawberry fruit quality traits: Advances, challenges, and opportunities. PLANT PHYSIOLOGY 2023; 193:900-914. [PMID: 37399254 DOI: 10.1093/plphys/kiad376] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 04/25/2023] [Accepted: 06/01/2023] [Indexed: 07/05/2023]
Abstract
The strawberry is one of the world's most popular fruits, providing humans with vitamins, fibers, and antioxidants. Cultivated strawberry (Fragaria × ananassa) is an allo-octoploid and highly heterozygous, making it a challenge for breeding, quantitative trait locus (QTL) mapping, and gene discovery. Some wild strawberry relatives, such as Fragaria vesca, have diploid genomes and are becoming laboratory models for the cultivated strawberry. Recent advances in genome sequencing and CRISPR-mediated genome editing have greatly improved the understanding of various aspects of strawberry growth and development in both cultivated and wild strawberries. This review focuses on fruit quality traits that are most relevant to the consumers, including fruit aroma, sweetness, color, firmness, and shape. Recently available phased-haplotype genomes, single nucleotide polymorphism (SNP) arrays, extensive fruit transcriptomes, and other big data have made it possible to locate key genomic regions or pinpoint specific genes that underlie volatile synthesis, anthocyanin accumulation for fruit color, and sweetness intensity or perception. These new advances will greatly facilitate marker-assisted breeding, the introgression of missing genes into modern varieties, and precise genome editing of selected genes and pathways. Strawberries are poised to benefit from these recent advances, providing consumers with fruit that is tastier, longer-lasting, healthier, and more beautiful.
Collapse
Affiliation(s)
- Zhongchi Liu
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Tong Liang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| | - Chunying Kang
- National Key Laboratory for Germplasm Innovation & Utilization of Horticultural Crops, Huazhong Agricultural University, Wuhan, 430070, China
- Hubei Hongshan Laboratory, Wuhan, 430070, China
| |
Collapse
|
13
|
Qiu Y, Cai C, Mo X, Zhao X, Wu L, Liu F, Li R, Liu C, Chen J, Tian M. Transcriptome and metabolome analysis reveals the effect of flavonoids on flower color variation in Dendrobium nobile Lindl. FRONTIERS IN PLANT SCIENCE 2023; 14:1220507. [PMID: 37680360 PMCID: PMC10481954 DOI: 10.3389/fpls.2023.1220507] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 08/08/2023] [Indexed: 09/09/2023]
Abstract
Introduction Dendrobium nobile L. is a rare orchid plant with high medicinal and ornamentalvalue, and extremely few genetic species resources are remaining in nature. In the normal purple flower population, a type of population material with a white flower variation phenotype has been discovered, and through pigment component determination, flavonoids were preliminarily found to be the main reason for the variation. Methods This study mainly explored the different genes and metabolites at different flowering stages and analysed the flower color variation mechanism through transcriptome- and flavonoid-targeted metabolomics. The experimental materials consisted of two different flower color phenotypes, purple flower (PF) and white flower (WF), observed during three different periods. Results and discussion The results identified 1382, 2421 and 989 differentially expressed genes (DEGs) in the white flower variety compared with the purple flower variety at S1 (bud stage), S2 (chromogenic stage) and S3 (flowering stage), respectively. Among these, 27 genes enriched in the ko00941, ko00942, ko00943 and ko00944 pathways were screened as potential functional genes affecting flavonoid synthesis and flower color. Further analysis revealed that 15 genes are potential functional genes that lead to flavonoid changes and flower color variations. The metabolomics results at S3 found 129 differentially accumulated metabolites (DAMs), which included 8 anthocyanin metabolites, all of which (with the exception of delphinidin-3-o-(2'''-o-malonyl) sophoroside-5-o-glucoside) were found at lower amounts in the WF variety compared with the PF variety, indicating that a decrease in the anthocyanin content was the main reason for the inability to form purple flowers. Therefore, the changes in 19 flavone and 62 flavonol metabolites were considered the main reasons for the formation of white flowers. In this study, valuable materials responsible for flower color variation in D. nobile were identified and further analyzed the main pathways and potential genes affecting changes in flavonoids and the flower color. This study provides a material basis and theoretical support for the hybridization and molecular-assisted breeding of D. nobile.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Ji Chen
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| | - Mengliang Tian
- College of Agronomy, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
14
|
Jin X, Du H, Zhu C, Wan H, Liu F, Ruan J, Mower JP, Zhu A. Haplotype-resolved genomes of wild octoploid progenitors illuminate genomic diversifications from wild relatives to cultivated strawberry. NATURE PLANTS 2023; 9:1252-1266. [PMID: 37537397 DOI: 10.1038/s41477-023-01473-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 07/03/2023] [Indexed: 08/05/2023]
Abstract
Strawberry is an emerging model for studying polyploid genome evolution and rapid domestication of fruit crops. Here we report haplotype-resolved genomes of two wild octoploids (Fragaria chiloensis and Fragaria virginiana), the progenitor species of cultivated strawberry. Substantial variation is identified between species and between haplotypes. We redefine the four subgenomes and track the genetic contributions of diploid species by additional sequencing of the diploid F. nipponica genome. We provide multiple lines of evidence that F. vesca and F. iinumae, rather than other described extant species, are the closest living relatives of these wild and cultivated octoploids. In response to coexistence with quadruplicate gene copies, the octoploid strawberries have experienced subgenome dominance, homoeologous exchanges and coordinated expression of homoeologous genes. However, some homoeologues have substantially altered expression bias after speciation and during domestication. These findings enhance our understanding of the origin, genome evolution and domestication of strawberries.
Collapse
Affiliation(s)
- Xin Jin
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chumeng Zhu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hong Wan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Jiwei Ruan
- Flower Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, China.
| | - Jeffrey P Mower
- Center for Plant Science Innovation, University of Nebraska, Lincoln, NE, USA.
- Department of Agronomy and Horticulture, University of Nebraska, Lincoln, NE, USA.
| | - Andan Zhu
- Germplasm Bank of Wild Species, Yunnan Key Laboratory of Crop Wild Relatives Omics, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China.
| |
Collapse
|
15
|
Wang A, Ma H, Zhang X, Zhang B, Li F. Transcriptomic analysis reveals the mechanism underlying the anthocyanin changes in Fragaria nilgerrensis Schlecht. and its interspecific hybrids. BMC PLANT BIOLOGY 2023; 23:356. [PMID: 37434140 DOI: 10.1186/s12870-023-04361-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 06/22/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND Fragaria nilgerrensis (FN) provides a rich source of genetic variations for strawberry germplasm innovation. The color of strawberry fruits is a key factor affecting consumer preferences. However, the genetic basis of the fruit color formation in F. nilgerrensis and its interspecific hybrids has rarely been researched. RESULTS In this study, the fruit transcriptomes and flavonoid contents of FN (white skin; control) and its interspecific hybrids BF1 and BF2 (pale red skin) were compared. A total of 31 flavonoids were identified. Notably, two pelargonidin derivatives (pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside) were revealed as potential key pigments for the coloration of BF1 and BF2 fruits. Additionally, dihydroflavonol 4-reductase (DFR) (LOC101293459 and LOC101293749) and anthocyanidin 3-O-glucosyltransferase (BZ1) (LOC101300000), which are crucial structural genes in the anthocyanidin biosynthetic pathway, had significantly up-regulated expression levels in the two FN interspecific hybrids. Moreover, most of the genes encoding transcription factors (e.g., MYB, WRKY, TCP, bHLH, AP2, and WD40) related to anthocyanin accumulation were differentially expressed. We also identified two DFR genes (LOC101293749 and LOC101293459) that were significantly correlated with members in bHLH, MYB, WD40, AP2, and bZIP families. Two chalcone synthase (CHS) (LOC101298162 and LOC101298456) and a BZ1 gene (LOC101300000) were highly correlated with members in bHLH, WD40 and AP2 families. CONCLUSIONS Pelargonidin-3-O-glucoside and pelargonidin-3-O-rutinoside may be the key pigments contributing to the formation of pale red fruit skin. DFR and BZ1 structural genes and some bHLH, MYB, WD40, AP2, and bZIP TF family members enhance the accumulation of two pelargonidin derivatives. This study provides important insights into the regulation of anthocyanidin biosynthesis in FN and its interspecific hybrids. The presented data may be relevant for improving strawberry fruit coloration via genetic engineering.
Collapse
Affiliation(s)
- Aihua Wang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, 234000, Anhui, China
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Hongye Ma
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Xingtao Zhang
- School of Biological and Food Engineering, Engineering Research Center for Development and High Value Utilization of Genuine Medicinal Materials in North Anhui Province, Suzhou University, Suzhou, 234000, Anhui, China
| | - Baohui Zhang
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China
| | - Fei Li
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Caenter), Guizhou Academy of Agricultural Sciences, Guiyang, 550006, China.
| |
Collapse
|
16
|
Chen W, Wan H, Liu F, Du H, Zhang C, Fan W, Zhu A. Rapid evolution of T2/S-RNase genes in Fragaria linked to multiple transitions from self-incompatibility to self-compatibility. PLANT DIVERSITY 2023; 45:219-228. [PMID: 37069931 PMCID: PMC10105083 DOI: 10.1016/j.pld.2022.04.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 04/23/2022] [Indexed: 06/18/2023]
Abstract
The T2/RNase gene family is widespread in eukaryotes, and particular members of this family play critical roles in the gametophytic self-incompatibility (GSI) system in plants. Wild diploid strawberry (Fragaria) species have diversified their sexual systems via self-incompatible and self-compatible traits, yet how these traits evolved in Fragaria remains elusive. By integrating the published and de novo assembled genomes and the newly generated RNA-seq data, members of the RNase T2 gene family were systematically identified in six Fragaria species, including three self-incompatible species (Fragaria nipponica, Fragaria nubicola, and Fragaria viridis) and three self-compatible species (Fragaria nilgerrensis, Fragaria vesca, and Fragaria iinumae). In total, 115 RNase T2 genes were identified in the six Fragaria genomes and can be classified into three classes (I-III) according to phylogenetic analysis. The identified RNase T2 genes could be divided into 22 homologous gene sets according to amino acid sequence similarity and phylogenetic and syntenic relationships. We found that extensive gene loss and pseudogenization coupled with small-scale duplications mainly accounted for variations in the RNase T2 gene numbers in Fragaria. Multiple copies of homologous genes were mainly generated from tandem and segmental duplication events. Furthermore, we newly identified five S-RNase genes in three self-incompatible Fragaria genomes, including two in F. nipponica, two in F. viridis, and one in F. nubicola, which fit for typical features of a pistil determinant, including highly pistil-specific expression, highly polymorphic proteins and alkaline isoelectric point (pI), while no S-RNase genes were found in all three self-compatible Fragaria species. Surprisingly, these T2/S-RNase genes contain at least one large intron (>10 kb). This study revealed that the rapid evolution of T2/S-RNase genes within the Fragaria genus could be associated with its sexual mode, and repeated evolution of the self-compatible traits in Fragaria was convergent via losses of S-RNase.
Collapse
Affiliation(s)
- Wu Chen
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hong Wan
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, Kunming, Yunnan 650205, China
| | - Fang Liu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Haiyuan Du
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Weishu Fan
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| | - Andan Zhu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan 650201, China
| |
Collapse
|
17
|
Targeting ripening regulators to develop fruit with high quality and extended shelf life. Curr Opin Biotechnol 2023; 79:102872. [PMID: 36621222 DOI: 10.1016/j.copbio.2022.102872] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 09/26/2022] [Accepted: 11/04/2022] [Indexed: 01/07/2023]
Abstract
Fruit quality directly impacts fruit marketability and consumer acceptance. Breeders have focused on fruit quality traits to extend shelf life, primarily through fruit texture, but, in some cases, have neglected other qualities such as flavor and nutrition. In recent years, integrative biotechnology and consumer-minded approaches have surfaced, aiding in the development of flavorful, long-lasting fruit. Here, we discussed how specific transcription factors and hormones involved in fruit ripening can be targeted to generate high-quality fruit through traditional breeding and bioengineering. We highlight regulators that can be used to generate novel-colored fruit or biofortify fresh produce with health-promoting nutrients, such as vitamin C. Overall, we argue that addressing grower and industry needs must be balanced with consumer-based traits.
Collapse
|
18
|
Mao J, Wang Y, Wang B, Li J, Zhang C, Zhang W, Li X, Li J, Zhang J, Li H, Zhang Z. High-quality haplotype-resolved genome assembly of cultivated octoploid strawberry. HORTICULTURE RESEARCH 2023; 10:uhad002. [PMID: 37077373 PMCID: PMC10108017 DOI: 10.1093/hr/uhad002] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 01/03/2023] [Indexed: 05/03/2023]
Abstract
Cultivated strawberry (Fragaria × ananassa), a perennial herb belonging to the family Rosaceae, is a complex octoploid with high heterozygosity at most loci. However, there is no research on the haplotype of the octoploid strawberry genome. Here we aimed to obtain a high-quality genome of the cultivated strawberry cultivar, "Yanli", using single molecule real-time sequencing and high-throughput chromosome conformation capture technology. The "Yanli" genome was 823 Mb in size, with a long terminal repeat assembly index of 14.99. The genome was phased into two haplotypes, Hap1 (825 Mb with contig N50 of 26.70 Mb) and Hap2 (808 Mb with contig N50 of 27.51 Mb). Using the combination of Hap1 and Hap2, we obtained for the first time a haplotype-resolved genome with 56 chromosomes for the cultivated octoploid strawberry. We identified a ~ 10 Mb inversion and translocation on chromosome 2-1. 104 957 and 102 356 protein-coding genes were annotated in Hap1 and Hap2, respectively. Analysis of the genes related to the anthocyanin biosynthesis pathway revealed the structural diversity and complexity in the expression of the alleles in the octoploid F. × ananassa genome. In summary, we obtained a high-quality haplotype-resolved genome assembly of F. × ananassa, which will provide the foundation for investigating gene function and evolution of the genome of cultivated octoploid strawberry.
Collapse
Affiliation(s)
| | | | - Baotian Wang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jiqi Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Chao Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Wenshuo Zhang
- School of Information Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai 201210, China
| | - Xue Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Jie Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
| | - Junxiang Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | - He Li
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, 120 Dongling Road, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | | |
Collapse
|
19
|
Cao Q, Huang L, Li J, Qu P, Tao P, Crabbe MJC, Zhang T, Qiao Q. Integrated transcriptome and methylome analyses reveal the molecular regulation of drought stress in wild strawberry (Fragaria nilgerrensis). BMC PLANT BIOLOGY 2022; 22:613. [PMID: 36575384 PMCID: PMC9795625 DOI: 10.1186/s12870-022-04006-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND Fragaria nilgerrensis, which is a diploid wild strawberry with excellent drought-resistance, would provide useful candidate genes for improving drought resistance of cultivated strawberry. So far, its molecular regulatory networks involved in drought stress are unclear. We therefore investigated the drought response regulatory networks of F. nilgerrensis based on the integrated analysis of DNA methylation, transcriptome and physiological traits during four time points under drought stress. RESULTS: The most differentially expressed genes and the physiological changes were found at 8 days (T8) compared with 0 day (T0, control). Methylome analysis revealed slight dynamic changes in genome-wide mC levels under drought conditions, while the most hypomethylated and hypermethylated regions were identified at T4 and T8. Association analysis of the methylome and transcriptome revealed that unexpressed genes exhibited expected hypermethylation levels in mCHG and mCHH contexts, and highly expressed genes exhibited corresponding hypomethylation levels in the gene body, but mCG contexts showed the opposite trend. Then, 835 differentially methylated and expressed genes were identified and grouped into four clustering patterns to characterize their functions. The genes with either negative or positive correlation between methylation and gene expression were mainly associated with kinases, Reactive Oxygen Species (ROS) synthesis, scavenging, and the abscisic acid (ABA) signal pathway. Consistently, weighted gene co-expression network analysis (WGCNA) revealed Hub genes including NCED, CYP707A2, PP2Cs and others that play important roles in the ABA signaling pathway. CONCLUSION F. nilgerrensis drought is dominated by ABA-dependent pathways, possibly accompanied by ABA-independent crosstalk. DNA methylation may affect gene expression, but their correlation was more subtle and multiple types of association exist. Maintaining the balance between ROS regeneration and scavenging is an important factor in drought resistance in F. nilgerrensis. These results deepen our understanding of drought resistance and its application in breeding in strawberry plants.
Collapse
Affiliation(s)
- Qiang Cao
- School of Agriculture, Yunnan University, 650091, Kunming, China
| | - Lin Huang
- School of Agriculture, Yunnan University, 650091, Kunming, China
| | - Jiamin Li
- School of Agriculture, Yunnan University, 650091, Kunming, China
| | - Peng Qu
- School of Agriculture, Yunnan University, 650091, Kunming, China
| | - Pang Tao
- Horticultural Research Institute, Yunnan Academy of Agricultural Sciences, 650205, Kunming, China
| | - M James C Crabbe
- Wolfson College, Oxford University, Oxford, OX26UD, UK
- Institute of Biomedical and Environmental Science and Technology, School of Life Sciences, University of Bedfordshire, Park Square, LU1 3JU, Luton, UK
- School of Life Science, Shanxi University, 030006, Taiyuan, Shanxi, China
| | - Ticao Zhang
- College of Chinese Material Medica, Yunnan University of Chinese Medicine, 650500, Kunming, China.
| | - Qin Qiao
- College of Horticulture and Landscape, Yunnan Agricultural University, 650201, Kunming, China.
| |
Collapse
|
20
|
Bian R, Yu S, Song X, Yao J, Zhang J, Zhang Z. An Integrated Metabolomic and Gene Expression Analysis of 'Sachinoka' Strawberry and Its Somaclonal Mutant Reveals Fruit Color and Volatiles Differences. PLANTS (BASEL, SWITZERLAND) 2022; 12:82. [PMID: 36616212 PMCID: PMC9824559 DOI: 10.3390/plants12010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/18/2022] [Accepted: 12/19/2022] [Indexed: 06/17/2023]
Abstract
Plant tissue culture produces a wide range of genetic variations which are useful for quality improvement of the plant species. However, the differences in metabolic components and the key genes responsible for the difference in metabolic components between somaclonal variation and the original parent are still largely unknown. In this study, a mutant named 'Mixue' was identified with somaclonal variation of the 'Sachinoka' strawberry. The contents of pelargonidin-3-O-glucoside and cyanidin-3-O-glucoside in the red fruit of 'Mixue' were significantly decreased compared with 'Sachinoka'. In comparison with 'Sachinoka', the expression levels of FaMYB10, FaMYB11.2, FaWD40 and FaTT19 in the turning fruit of 'Mixue' were significantly down-regulated, while the expression of FaMYB1 was significantly up-regulated in the red fruit. 'Sachinoka' and 'Mixue' fruits were found to have 110 volatile components. Among them, 15 volatile components in the red fruit of 'Mixue' were significantly increased compared with 'Sachinoka', such as nerolidol, benzaldehyde, ethyl hexanoate, ethyl isovalerate, which led to an enhanced aroma in 'Mixue' and might result from the up-regulated expression of FaNES1, FaCNL and FaAATs in 'Mixue'. These results provide useful information on the effect of somaclonal variation on metabolic components of strawberry fruit and lay the foundation for the improvement in quality of strawberry.
Collapse
Affiliation(s)
- Ruiqing Bian
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | - Shuang Yu
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | - Xinyu Song
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | - Jinxiang Yao
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | - Junxiang Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
| | - Zhihong Zhang
- Liaoning Key Laboratory of Strawberry Breeding and Cultivation, College of Horticulture, Shenyang Agricultural University, Shenyang 110866, China
- Laboratory of Protected Horticulture (Shenyang Agricultural University), Ministry of Education, Shenyang 110866, China
- Analytical and Testing Center, Shenyang Agricultural University, Shenyang 110866, China
| |
Collapse
|
21
|
Yuan H, Cai W, Chen X, Pang F, Wang J, Zhao M. Heterozygous frameshift mutation in FaMYB10 is responsible for the natural formation of red and white-fleshed strawberry ( Fragaria x ananassa Duch). FRONTIERS IN PLANT SCIENCE 2022; 13:1027567. [PMID: 36388497 PMCID: PMC9644031 DOI: 10.3389/fpls.2022.1027567] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
During natural evolution and artificial selection, the fruit color of many species has been repeatedly gained or lost and is generally associated with mutations in genes encoding R2R3-MYB transcription factors, especially MYB10. In this study, we show that a heterozygous frameshift mutation (FaMYB10AG-insert/FaMYB10wild ) is responsible for the loss of anthocyanins in the flesh of cultivated strawberry. Comparative transcriptomic and metabolomic analyses of red- and white-fleshed strawberry indicated that the low expression level of FaUFGT (flavonol-O-glucosyltransferases) was responsible for the loss of anthocyanins and accumulation of proanthocyanidin in the white-fleshed strawberry and was the crucial gene that encodes enzymes of the anthocyanin biosynthesis pathway. Accordingly, overexpression and silencing of FaUFGT altered anthocyanin content and changed the flesh color of strawberry fruits. Furthermore, whole-genome resequencing analyses identified an AG insertion in the FaMYB10 coding region (FaMYB10AG-insert ) of white-fleshed strawberry. Y1H and EMSA assays showed that FaMYB10wild was able to bind to the promoter of the FaUFGT gene, while the FaMYB10AG-insert could not. The skin and flesh color were tightly linked to the number of fully functional FaMYB10 copies in the selfing progeny of white-fleshed strawberry. Our results suggested that heterozygous frameshift mutation of FaMYB10 resulted in the loss of the ability to activate the expression of the FaUFGT gene, was responsible for the natural formation of red and white-fleshed strawberry.
Collapse
|
22
|
Sun R, Li S, Chang L, Dong J, Zhong C, Zhang H, Wei L, Gao Y, Wang G, Zhang Y, Sun J. Chromosome-level genome assembly of Fragaria pentaphylla using PacBio and Hi-C technologies. Front Genet 2022; 13:873711. [PMID: 36147512 PMCID: PMC9485601 DOI: 10.3389/fgene.2022.873711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/12/2022] [Indexed: 11/18/2022] Open
Abstract
Fragaria pentaphylla, a wild diploid quinquefoliolate species of Fragaria, is native to Southwest China. It has two morphs of red and white fruit color in nature and has characteristics of unique fragrance and resistance, which made it not only a valuable breeding material but also a potential model plant for molecular function researches. Here, we generate a high-quality chromosome-level genome assembly of a F. pentaphylla accession, BAAFS-FP039 employing a combination of PacBio Long-Read Sequencing, Illumina Short-Read Sequencing, and Hi-C Sequencing. The assembled genome contained 256.74 Mb and a contig N50 length of 32.38 Mb, accounting for 99.9% of the estimated genome (256.77 Mb). Based on Hi-C data, seven pseudo-chromosomes of F. pentaphylla-FP039 genome were assembled, covering 99.39% of the genome assembly. The genome was composed of 44.61% repetitive sequences and 29,623 protein-coding genes, 97.62% of protein-coding genes could be functionally annotated. Phylogenetic and chromosome syntenic analysis revealed that F. pentaphylla-FP039 was closely related to F. nubicola. This high-quality genome could provides fundamental molecular resources for evolutionary studies, breeding efforts, and exploring the unique biological characteristics of F. pentaphylla.
Collapse
Affiliation(s)
- Rui Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Shuangtao Li
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Linlin Chang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Jing Dong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Chuanfei Zhong
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Hongli Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Lingzhi Wei
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Yongshun Gao
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
| | - Guixia Wang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- *Correspondence: Guixia Wang, ; Yuntao Zhang, ; Jian Sun,
| | - Yuntao Zhang
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- *Correspondence: Guixia Wang, ; Yuntao Zhang, ; Jian Sun,
| | - Jian Sun
- Institute of Forestry and Pomology, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- Beijing Engineering Research Center for Strawberry, Beijing, China
- Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (North China), Ministry of Agriculture, Beijing, China
- *Correspondence: Guixia Wang, ; Yuntao Zhang, ; Jian Sun,
| |
Collapse
|
23
|
Shao D, Liang Q, Wang X, Zhu QH, Liu F, Li Y, Zhang X, Yang Y, Sun J, Xue F. Comparative Metabolome and Transcriptome Analysis of Anthocyanin Biosynthesis in White and Pink Petals of Cotton ( Gossypium hirsutum L.). Int J Mol Sci 2022; 23:ijms231710137. [PMID: 36077538 PMCID: PMC9456042 DOI: 10.3390/ijms231710137] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 08/27/2022] [Accepted: 08/29/2022] [Indexed: 11/30/2022] Open
Abstract
Upland cotton (Gossypium hirsutum L.) is one of the important fiber crops. Cotton flowers usually appear white (or cream-colored) without colored spots at the petal base, and turn pink on the next day after flowering. In this study, using a mutant showing pink petals with crimson spots at their base, we conducted comparative metabolome and transcriptome analyses to investigate the molecular mechanism of coloration in cotton flowers. Metabolic profiling showed that cyanidin-3-O-glucoside and glycosidic derivatives of pelargonidins and peonidins are the main pigments responsible for the coloration of the pink petals of the mutant. A total of 2443 genes differentially expressed (DEGs) between the white and pink petals were identified by RNA-sequencing. Many DEGs are structural genes and regulatory genes of the anthocyanin biosynthesis pathway. Among them, MYB21, UGT88F3, GSTF12, and VPS32.3 showed significant association with the accumulation of cyanidin-3-O-glucoside in the pink petals. Taken together, our study preliminarily revealed the metabolites responsible for the pink petals and the key genes regulating the biosynthesis and accumulation of anthocyanins in the pink petals. The results provide new insights into the biochemical and molecular mechanism underlying anthocyanin biosynthesis in upland cotton.
Collapse
Affiliation(s)
- Dongnan Shao
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Qian Liang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Xuefeng Wang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Qian-Hao Zhu
- CSIRO Agriculture and Food, GPO Box 1700, Canberra 2601, Australia
| | - Feng Liu
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yanjun Li
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Xinyu Zhang
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
| | - Yonglin Yang
- Cotton Research Institute, Shihezi Academy of Agriculture Science, Shihezi 832000, China
| | - Jie Sun
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Correspondence: (J.S.); (F.X.)
| | - Fei Xue
- Key Laboratory of Oasis Eco-Agriculture, College of Agriculture, Shihezi University, Shihezi 832003, China
- Correspondence: (J.S.); (F.X.)
| |
Collapse
|
24
|
Wang AH, Ma HY, Zhang BH, Mo CY, Li EH, Li F. Transcriptomic and Metabolomic Analyses Provide Insights into the Formation of the Peach-like Aroma of Fragaria nilgerrensis Schlecht. Fruits. Genes (Basel) 2022; 13:genes13071285. [PMID: 35886068 PMCID: PMC9318527 DOI: 10.3390/genes13071285] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 01/24/2023] Open
Abstract
Fragaria nilgerrensis Schlecht. is a wild diploid strawberry species. The intense peach-like aroma of its fruits makes F. nilgerrensis an excellent resource for strawberry breeding programs aimed at enhancing flavors. However, the formation of the peach-like aroma of strawberry fruits has not been comprehensively characterized. In this study, fruit metabolome and transcriptome datasets for F. nilgerrensis (HA; peach-like aroma) and its interspecific hybrids PA (peach-like aroma) and NA (no peach-like aroma; control) were compared. In total, 150 differentially accumulated metabolites were detected. The K-means analysis revealed that esters/lactones, including acetic acid, octyl ester, δ-octalactone, and δ-decalactone, were more abundant in HA and PA than in NA. These metabolites may be important for the formation of the peach-like aroma of F. nilgerrensis fruits. The significantly enriched gene ontology terms assigned to the differentially expressed genes (DEGs) were fatty acid metabolic process and fatty acid biosynthetic process. Twenty-seven DEGs were predicted to be associated with ester and lactone biosynthesis, including AAT, LOX, AOS, FAD, AIM1, EH, FAH, ADH, and cytochrome P450 subfamily genes. Thirty-five transcription factor genes were predicted to be associated with aroma formation, including bHLH, MYB, bZIP, NAC, AP2, GATA, and TCPfamily members. Moreover, we identified differentially expressed FAD, AOS, and cytochrome P450 family genes and NAC, MYB, and AP2 transcription factor genes that were correlated with δ-octalactone and δ-decalactone. These findings provide key insights into the formation of the peach-like aroma of F. nilgerrensis fruits, with implications for the increased use of wild strawberry resources.
Collapse
Affiliation(s)
- Ai-Hua Wang
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (A.-H.W.); (H.-Y.M.); (B.-H.Z.); (C.-Y.M.)
- College of Biological and Food Engineering, Suzhou University, Suzhou 234099, China
| | - Hong-Ye Ma
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (A.-H.W.); (H.-Y.M.); (B.-H.Z.); (C.-Y.M.)
| | - Bao-Hui Zhang
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (A.-H.W.); (H.-Y.M.); (B.-H.Z.); (C.-Y.M.)
| | - Chuan-Yuan Mo
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (A.-H.W.); (H.-Y.M.); (B.-H.Z.); (C.-Y.M.)
| | - En-Hong Li
- Guizhou Seed Management Station, Guiyang 550001, China;
| | - Fei Li
- Horticulture Institute (Guizhou Horticultural Engineering Technology Research Center), Guizhou Academy of Agricultural Sciences, Guiyang 550006, China; (A.-H.W.); (H.-Y.M.); (B.-H.Z.); (C.-Y.M.)
- Correspondence: author:
| |
Collapse
|
25
|
Yan L, Yang H, Ye Q, Huang Z, Zhou H, Cui D. Metabolome and transcriptome profiling reveal regulatory network and mechanism of flavonoid biosynthesis during color formation of Dioscorea cirrhosa L. PeerJ 2022; 10:e13659. [PMID: 35811818 PMCID: PMC9261937 DOI: 10.7717/peerj.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 06/09/2022] [Indexed: 01/17/2023] Open
Abstract
Dioscorea cirrhosa is a plant that is used as a dye as well as in medicine. Many metabolites with pharmacological activity exist in the tubers of D. cirrhosa. However, little is known about the mechanism regulating biosynthesis in these metabolites. In this study, transcriptome and metabolome profiling were performed in four color tubers. A total of 531 metabolites, including 62 flavonoids, were identified. Epicatechin and proanthocyanin B2 were the key metabolites that exhibited high content levels in the four tubers. These metabolites were divided into nine classes with distinct change patterns. A total of 22,865 differentially expressed genes (DEGs) were identified by transcriptome analysis. Among these DEGs, we identified 67 candidate genes related to the flavonoid biosynthesis pathway and three genes that played pivotal roles in proanthocyanin (PA) synthesis. A weighted gene co-expression network analysis (WGCNA) revealed that the two modules, "MEblue" and "MEblack," were two key gene sets strongly associated with phenylpropanoid and flavonoid biosynthesis. We also found that the plant hormone signal transduction biological process exhibited activity in the late stage of tuber color formation. Additionally, we identified 37 hub transcript factors related to flavonoid biosynthesis, of which 24 were found to be highly associated with flavonoid pathway genes. In addition to the MYB-bHLH-WD40 (MBW) genes, we found that the plant hormone gene families exhibited high expression levels. This study provides a reference for understanding the synthesis of D. cirrhosa tuber metabolites at the molecular level and provides a foundation for the further development of D. cirrhosa related plant pigments as well as its further use in the pharmaceutical industry.
Collapse
Affiliation(s)
- Lin Yan
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Haijun Yang
- Center of Experimental Teaching for Common Basic Courses, South China Agricultural University, Guangzhou, Guangdong, China
| | - Qiang Ye
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| | - Zhihua Huang
- Shenzhen Liangzi Fashion Industeial Co. Ltd., Shenzhen, Guangdong, China
| | - Hongying Zhou
- Shenzhen Tianyi Xunyuan Ecological Culture Investment Co.Ltd., Shenzhen, Guangdong, China
| | - Dafang Cui
- College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Davik J, Røen D, Lysøe E, Buti M, Rossman S, Alsheikh M, Aiden EL, Dudchenko O, Sargent DJ. A chromosome-level genome sequence assembly of the red raspberry (Rubus idaeus L.). PLoS One 2022; 17:e0265096. [PMID: 35294470 PMCID: PMC8926247 DOI: 10.1371/journal.pone.0265096] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/22/2022] [Indexed: 12/15/2022] Open
Abstract
Rubus idaeus L. (red raspberry), is a perennial woody plant species of the Rosaceae family that is widely cultivated in the temperate regions of world and is thus an economically important soft fruit species. It is prized for its flavour and aroma, as well as a high content of healthful compounds such as vitamins and antioxidants. Breeding programs exist globally for red raspberry, but variety development is a long and challenging process. Genomic and molecular tools for red raspberry are valuable resources for breeding. Here, a chromosome-length genome sequence assembly and related gene predictions for the red raspberry cultivar 'Anitra' are presented, comprising PacBio long read sequencing scaffolded using Hi-C sequence data. The assembled genome sequence totalled 291.7 Mbp, with 247.5 Mbp (84.8%) incorporated into seven sequencing scaffolds with an average length of 35.4 Mbp. A total of 39,448 protein-coding genes were predicted, 75% of which were functionally annotated. The seven chromosome scaffolds were anchored to a previously published genetic linkage map with a high degree of synteny and comparisons to genomes of closely related species within the Rosoideae revealed chromosome-scale rearrangements that have occurred over relatively short evolutionary periods. A chromosome-level genomic sequence of R. idaeus will be a valuable resource for the knowledge of its genome structure and function in red raspberry and will be a useful and important resource for researchers and plant breeders.
Collapse
Affiliation(s)
- Jahn Davik
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
- * E-mail:
| | - Dag Røen
- Graminor Breeding Ltd., Ås, Norway
| | - Erik Lysøe
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Matteo Buti
- Department of Agriculture, Food, Environment and Forestry (DAGRI), University of Florence, Florence, Italy
| | - Simeon Rossman
- Department of Molecular Plant Biology, Norwegian Institute of Bioeconomy Research, Ås, Norway
| | - Muath Alsheikh
- Graminor Breeding Ltd., Ås, Norway
- Department of Plant Sciences, Norwegian University of Life Sciences, Ås, Norway
| | - Erez Lieberman Aiden
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, Texas, United States of America
- UWA School of Agriculture and Environment, The University of Western Australia, Crawley, Australia
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- Shanghai Institute for Advanced Immunochemical Studies, Shanghai Tech, Pudong, China
| | - Olga Dudchenko
- The Center for Genome Architecture, Baylor College of Medicine, Houston, Texas, United States of America
- Center for Theoretical Biological Physics and Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Daniel James Sargent
- Department of Genetics, Genomics and Breeding, NIAB-EMR, East Malling, United Kingdom
- Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
| |
Collapse
|
27
|
Lian X, Zhang H, Jiang C, Gao F, Yan L, Zheng X, Cheng J, Wang W, Wang X, Ye X, Li J, Zhang L, Li Z, Tan B, Feng J. De novo chromosome-level genome of a semi-dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature-sensitive semi-dwarf trait and PpB3-1 for flower type and size. PLANT BIOTECHNOLOGY JOURNAL 2022. [PMID: 34919780 PMCID: PMC9055816 DOI: 10.1111/pbi.v20.5 10.1111/pbi.13767] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2023]
Abstract
Peach (Prunus persica) is one of the most important fruit crops globally, but its cultivation can be hindered by large tree size. 'Zhongyoutao 14' (CN14) is a temperature-sensitive semi-dwarf (TSSD) cultivar which might be useful as breeding stock. The genome of CN14 was sequenced and assembled de novo using single-molecule real-time sequencing and chromosome conformation capture assembly. A high-quality genome was assembled and annotated, with 228.82 Mb mapped to eight chromosomes. Eighty-six re-sequenced F1 individuals and 334 previously re-sequenced accessions were used to identify candidate genes controlling TSSD and flower type and size. An aquaporin tonoplast intrinsic protein (PpTIP2) was a strong candidate gene for control of TSSD. Sequence variations in the upstream regulatory region of PpTIP2 correlated with different transcriptional activity at different temperatures. PpB3-1, a candidate gene for flower type (SH) and flower size, contributed to petal development and promoted petal enlargement. The locus of another 12 agronomic traits was identified through genome-wide association study. Most of these loci exhibited consistent and precise association signals, except for flesh texture and flesh adhesion. A 6015-bp insertion in exon 3 and a 26-bp insertion upstream of PpMYB25 were associated with fruit hairless. Along with a 70.5-Kb gap at the F-M locus in CN14, another two new alleles were identified in peach accessions. Our findings will not only promote genomic research and agronomic breeding in peach but also provide a foundation for the peach pan-genome.
Collapse
Affiliation(s)
- Xiaodong Lian
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Haipeng Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Chao Jiang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Fan Gao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Liu Yan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xianbo Zheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jun Cheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xiaobei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xia Ye
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jidong Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Langlang Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Zhiqian Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Bin Tan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jiancan Feng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| |
Collapse
|
28
|
Lian X, Zhang H, Jiang C, Gao F, Yan L, Zheng X, Cheng J, Wang W, Wang X, Ye X, Li J, Zhang L, Li Z, Tan B, Feng J. De novo chromosome-level genome of a semi-dwarf cultivar of Prunus persica identifies the aquaporin PpTIP2 as responsible for temperature-sensitive semi-dwarf trait and PpB3-1 for flower type and size. PLANT BIOTECHNOLOGY JOURNAL 2022; 20:886-902. [PMID: 34919780 PMCID: PMC9055816 DOI: 10.1111/pbi.13767] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/02/2021] [Accepted: 12/10/2021] [Indexed: 05/16/2023]
Abstract
Peach (Prunus persica) is one of the most important fruit crops globally, but its cultivation can be hindered by large tree size. 'Zhongyoutao 14' (CN14) is a temperature-sensitive semi-dwarf (TSSD) cultivar which might be useful as breeding stock. The genome of CN14 was sequenced and assembled de novo using single-molecule real-time sequencing and chromosome conformation capture assembly. A high-quality genome was assembled and annotated, with 228.82 Mb mapped to eight chromosomes. Eighty-six re-sequenced F1 individuals and 334 previously re-sequenced accessions were used to identify candidate genes controlling TSSD and flower type and size. An aquaporin tonoplast intrinsic protein (PpTIP2) was a strong candidate gene for control of TSSD. Sequence variations in the upstream regulatory region of PpTIP2 correlated with different transcriptional activity at different temperatures. PpB3-1, a candidate gene for flower type (SH) and flower size, contributed to petal development and promoted petal enlargement. The locus of another 12 agronomic traits was identified through genome-wide association study. Most of these loci exhibited consistent and precise association signals, except for flesh texture and flesh adhesion. A 6015-bp insertion in exon 3 and a 26-bp insertion upstream of PpMYB25 were associated with fruit hairless. Along with a 70.5-Kb gap at the F-M locus in CN14, another two new alleles were identified in peach accessions. Our findings will not only promote genomic research and agronomic breeding in peach but also provide a foundation for the peach pan-genome.
Collapse
Affiliation(s)
- Xiaodong Lian
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Haipeng Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Chao Jiang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Fan Gao
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Liu Yan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xianbo Zheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jun Cheng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Wei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xiaobei Wang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Xia Ye
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jidong Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Langlang Zhang
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Zhiqian Li
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Bin Tan
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| | - Jiancan Feng
- College of HorticultureHenan Agricultural UniversityZhengzhouChina
- Henan Key Laboratory of Fruit and Cucurbit BiologyZhengzhouChina
| |
Collapse
|
29
|
Comparative Analysis of Transposable Elements and the Identification of Candidate Centromeric Elements in the Prunus Subgenus Cerasus and Its Relatives. Genes (Basel) 2022; 13:genes13040641. [PMID: 35456447 PMCID: PMC9028240 DOI: 10.3390/genes13040641] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/29/2022] [Accepted: 03/31/2022] [Indexed: 12/04/2022] Open
Abstract
The subgenus Cerasus and its relatives include many crucial economic drupe fruits and ornamental plants. Repetitive elements make up a large part of complex genomes, and some of them play an important role in gene regulation that can affect phenotypic variation. However, the variation in their genomes remains poorly understood. This work conducted a comprehensive repetitive sequence identification across the draft genomes of eight taxa of the genus Prunus, including four of the Prunus subgenus Cerasus (Prunus pseudocerasus, P. avium, P. yedoensis and P. × yedoensis) as well as congeneric species (Prunus salicina, P. armeniaca, P. dulcis and P. persica). Annotation results showed high proportions of transposable elements in their genomes, ranging from 52.28% (P. armeniaca) to 61.86% (P. pseudocerasus). The most notable differences in the contents of long terminal repeat retrotransposons (LTR-RTs) and tandem repeats (TRs) were confirmed with de novo identification based on the structure of each genome, which significantly contributed to their genome size variation, especially in P. avium and P.salicina. Sequence comparisons showed many similar LTR-RTs closely related to their phylogenetic relationships, and a highly similar monomer unit of the TR sequence was conserved among species. Additionally, the predicted centromere-associated sequence was located in centromeric regions with FISH in the 12 taxa of Prunus. It presented significantly different signal intensities, even within the diverse interindividual phenotypes for Prunus tomentosa. This study provides insight into the LTR-RT and TR variation within Prunus and increases our knowledge about its role in genome evolution.
Collapse
|
30
|
Fan G, Andrés J, Olbricht K, Koskela E, Hytönen T. Natural Variation in the Control of Flowering and Shoot Architecture in Diploid Fragaria Species. FRONTIERS IN PLANT SCIENCE 2022; 13:832795. [PMID: 35310677 PMCID: PMC8926021 DOI: 10.3389/fpls.2022.832795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 02/04/2022] [Indexed: 06/14/2023]
Abstract
In perennial fruit and berry crops of the Rosaceae family, flower initiation occurs in late summer or autumn after downregulation of a strong repressor TERMINAL FLOWER1 (TFL1), and flowering and fruiting takes place the following growing season. Rosaceous fruit trees typically form two types of axillary shoots, short flower-bearing shoots called spurs and long shoots that are, respectively, analogous to branch crowns and stolons in strawberry. However, regulation of flowering and shoot architecture differs between species, and environmental and endogenous controlling mechanisms have just started to emerge. In woodland strawberry (Fragaria vesca L.), long days maintain vegetative meristems and promote stolon formation by activating TFL1 and GIBBERELLIN 20-OXIDASE4 (GA20ox4), respectively, while silencing of these factors by short days and cool temperatures induces flowering and branch crown formation. We characterized flowering responses of 14 accessions of seven diploid Fragaria species native to diverse habitats in the northern hemisphere and selected two species with contrasting environmental responses, Fragaria bucharica Losinsk. and Fragaria nilgerrensis Schlecht. ex J. Gay for detailed studies together with Fragaria vesca. Similar to F. vesca, short days at 18°C promoted flowering in F. bucharica, and the species was induced to flower regardless of photoperiod at 11°C after silencing of TFL1. F. nilgerrensis maintained higher TFL1 expression level and likely required cooler temperatures or longer exposure to inductive treatments to flower. We also found that high expression of GA20ox4 was associated with stolon formation in all three species, and its downregulation by short days and cool temperature coincided with branch crown formation in F. vesca and F. nilgerrensis, although the latter did not flower. F. bucharica, in contrast, rarely formed branch crowns, regardless of flowering or GA20ox4 expression level. Our findings highlighted diploid Fragaria species as rich sources of genetic variation controlling flowering and plant architecture, with potential applications in breeding of Rosaceous crops.
Collapse
Affiliation(s)
- Guangxun Fan
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Javier Andrés
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Klaus Olbricht
- Thaer-Institute for Agricultural and Horticultural Sciences, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Elli Koskela
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
| | - Timo Hytönen
- Department of Agricultural Sciences, Viikki Plant Science Center, University of Helsinki, Helsinki, Finland
- Department of Genetics, Genomics and Breeding, NIAB EMR, Kent, United Kingdom
| |
Collapse
|
31
|
Labadie M, Vallin G, Potier A, Petit A, Ring L, Hoffmann T, Gaston A, Munoz-Blanco J, Caballero JL, Schwab W, Rothan C, Denoyes B. High Resolution Quantitative Trait Locus Mapping and Whole Genome Sequencing Enable the Design of an Anthocyanidin Reductase-Specific Homoeo-Allelic Marker for Fruit Colour Improvement in Octoploid Strawberry ( Fragaria × ananassa). FRONTIERS IN PLANT SCIENCE 2022; 13:869655. [PMID: 35371183 PMCID: PMC8972132 DOI: 10.3389/fpls.2022.869655] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 02/24/2022] [Indexed: 05/02/2023]
Abstract
Fruit colour is central to the sensorial and nutritional quality of strawberry fruit and is therefore a major target in breeding programmes of the octoploid cultivated strawberry (Fragaria × ananassa). The red colour of the fruit is caused by the accumulation of anthocyanins, which are water-soluble flavonoids. To facilitate molecular breeding, here we have mapped with high resolution fruit colour quantitative trait loci (QTLs) (COLOUR, scored visually as in selection programmes) and associated flavonoid metabolic QTLs (5 anthocyanins compounds together with 8 flavonols and flavan-3-ols) to specific subgenomes of cultivated strawberry. Two main colour-related QTLs were located on the LG3A linkage group (Fragaria vesca subgenome). Genetic mapping, transcriptome analysis and whole genome sequencing enabled the detection of a homoeo-allelic variant of ANTHOCYANIDIN REDUCTASE (ANR) underlying the major male M3A COLOUR and pelargonidin-3-glucoside (PgGs) QTLs (up to ∼20% of explained variance). Consistent with previously published functional studies, ANR transcript abundance was inversely related with PgGs content in contrasted progeny individuals. Genetic segregation analyses further indicated that a molecular marker designed using an 18 bp deletion found in the 5'UTR of the candidate ANR homoeo-allelic variant is effective in identifying genotypes with intense red fruit colour. Our study provides insights into the genetic and molecular control of colour-related traits in strawberry and further defines a genetic marker for marker-assisted selection of new strawberry varieties with improved colour. The QTLs detected and the underlying candidate genes are different from those described to date, emphasising the importance of screening a wide diversity of genetic resources in strawberry.
Collapse
Affiliation(s)
- Marc Labadie
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | - Guillaume Vallin
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | - Aline Potier
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | | | - Ludwig Ring
- Biotechnology of Natural Products, Technical University of Munich, Freising, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technical University of Munich, Freising, Germany
| | - Amèlia Gaston
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
| | - Juan Munoz-Blanco
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - José L. Caballero
- Departamento de Bioquímica y Biología Molecular, Universidad de Córdoba, Córdoba, Spain
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University of Munich, Freising, Germany
| | - Christophe Rothan
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
- Christophe Rothan, , orcid.org/0000-0002-6831-2823
| | - Béatrice Denoyes
- Université de Bordeaux, INRAE, UMR BFP, Villenave d’Ornon, France
- *Correspondence: Béatrice Denoyes, , orcid.org/0000-0002-0369-9609
| |
Collapse
|
32
|
Abstract
Strawberry species (Fragaria spp.) are known as the “queen of fruits” and are cultivated around the world. Over the past few years, eight strawberry genome sequences have been released. The reuse of these large amount of genomic data, and the more large-scale comparative analyses are very challenging to both plant biologists and strawberry breeders. To promote the reuse and exploration of strawberry genomic data and enable extensive analyses using various bioinformatics tools, we have developed the Genome Database for Strawberry (GDS). This platform integrates the genome collection, storage, integration, analysis, and dissemination of large amounts of data for researchers engaged in the study of strawberry. We collected and formatted the eight published strawberry genomes. We constructed the GDS based on Linux, Apache, PHP and MySQL. Different bioinformatic software were integrated. The GDS contains data from eight strawberry species, as well as multiple tools such as BLAST, JBrowse, synteny analysis, and gene search. It has a designed interface and user-friendly tools that perform a variety of query tasks with a few simple operations. In the future, we hope that the GDS will serve as a community resource for the study of strawberries.
Collapse
|
33
|
Manivannan A, Han K, Lee SY, Lee HE, Hong JP, Kim J, Lee YR, Lee ES, Kim DS. Genome-Wide Analysis of MYB10 Transcription Factor in Fragaria and Identification of QTLs Associated with Fruit Color in Octoploid Strawberry. Int J Mol Sci 2021; 22:ijms222212587. [PMID: 34830464 PMCID: PMC8620777 DOI: 10.3390/ijms222212587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 11/24/2022] Open
Abstract
The genus Fragaria encompass fruits with diverse colors influenced by the distribution and accumulation of anthocyanin. Particularly, the fruit colors of strawberries with different ploidy levels are determined by expression and natural variations in the vital structural and regulatory genes involved in the anthocyanin pathway. Among the regulatory genes, MYB10 transcription factor is crucial for the expression of structural genes in the anthocyanin pathway. In the present study, we performed a genome wide investigation of MYB10 in the diploid and octoploid Fragaria species. Further, we identified seven quantitative trait loci (QTLs) associated with fruit color in octoploid strawberry. In addition, we predicted 20 candidate genes primarily influencing the fruit color based on the QTL results and transcriptome analysis of fruit skin and flesh tissues of light pink, red, and dark red strawberries. Moreover, the computational and transcriptome analysis of MYB10 in octoploid strawberry suggests that the difference in fruit colors could be predominantly influenced by the expression of MYB10 from the F. iinumae subgenome. The outcomes of the present endeavor will provide a platform for the understanding and tailoring of anthocyanin pathway in strawberry for the production of fruits with aesthetic colors.
Collapse
|
34
|
Evolutionary history and pan-genome dynamics of strawberry ( Fragaria spp.). Proc Natl Acad Sci U S A 2021; 118:2105431118. [PMID: 34697247 PMCID: PMC8609306 DOI: 10.1073/pnas.2105431118] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2021] [Indexed: 01/29/2023] Open
Abstract
Strawberry (Fragaria spp.) has emerged as a model system for various fundamental and applied research in recent years. In total, the genomes of five different species have been sequenced over the past 10 y. Here, we report chromosome-scale reference genomes for five strawberry species, including three newly sequenced species' genomes, and genome resequencing data for 128 additional accessions to estimate the genetic diversity, structure, and demographic history of key Fragaria species. Our analyses obtained fully resolved and strongly supported phylogenies and divergence times for most diploid strawberry species. These analyses also uncovered a new diploid species (Fragaria emeiensis Jia J. Lei). Finally, we constructed a pan-genome for Fragaria and examined the evolutionary dynamics of gene families. Notably, we identified multiple independent single base mutations of the MYB10 gene associated with white pigmented fruit shared by different strawberry species. These reference genomes and datasets, combined with our phylogenetic estimates, should serve as a powerful comparative genomic platform and resource for future studies in strawberry.
Collapse
|
35
|
Genetic Variability and Structure of Fragaria nilgerrensis Schlecht. Germplasm in Sichuan Province. HORTICULTURAE 2021. [DOI: 10.3390/horticulturae7100353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fragaria nilgerrensis Schlecht. (wild strawberry) is widely distributed in Southwest China, characterized by stress tolerance and the fruits of a notable peach aroma. So far there is only limited knowledge of variability and genetic structure in this species. Using AFLP markers, we investigated the genetic variability of 37 plants of F. nilgerrensis sampled in six main mountain areas of Sichuan Province and analyzed their genetic structure. Genetic similarity according to Nei and Li was used for cluster analysis based on UPGMA method and Agglomerative Hierarchical Clustering. Stratification of plants into more distinctive genetic groups was determined using Bayesian structure analysis. Six primer combinations produced a total of 1302 fragments of which 818 (62.8%) were polymorphic. Bayesian analysis showed the 37 plants of F. nilgerrensis grouped into five distinctive genetic groups. Most of the plants from the same mountain area clustered into the same genetic group, indicating each area as an area with the unique genetic profile. The genetic parameters analyzed here indicate a huge genetic variability of F. nilgerrensis in Sichuan Province. Our results provide reference data for surveying and protecting the germplasm resources of F. nilgerrensis that could be used in strawberry breeding programs.
Collapse
|
36
|
Chen F, Su L, Hu S, Xue JY, Liu H, Liu G, Jiang Y, Du J, Qiao Y, Fan Y, Liu H, Yang Q, Lu W, Shao ZQ, Zhang J, Zhang L, Chen F, Cheng ZMM. A chromosome-level genome assembly of rugged rose (Rosa rugosa) provides insights into its evolution, ecology, and floral characteristics. HORTICULTURE RESEARCH 2021; 8:141. [PMID: 34145222 PMCID: PMC8213826 DOI: 10.1038/s41438-021-00594-z] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/12/2021] [Accepted: 05/11/2021] [Indexed: 05/09/2023]
Abstract
Rosa rugosa, commonly known as rugged rose, is a perennial ornamental shrub. It produces beautiful flowers with a mild fragrance and colorful seed pods. Unlike many other cultivated roses, R. rugosa adapts to a wide range of habitat types and harsh environmental conditions such as salinity, alkaline, shade, drought, high humidity, and frigid temperatures. Here, we produced and analyzed a high-quality genome sequence for R. rugosa to understand its ecology, floral characteristics and evolution. PacBio HiFi reads were initially used to construct the draft genome of R. rugosa, and then Hi-C sequencing was applied to assemble the contigs into 7 chromosomes. We obtained a 382.6 Mb genome encoding 39,704 protein-coding genes. The genome of R. rugosa appears to be conserved with no additional whole-genome duplication after the gamma whole-genome triplication (WGT), which occurred ~100 million years ago in the ancestor of core eudicots. Based on a comparative analysis of the high-quality genome assembly of R. rugosa and other high-quality Rosaceae genomes, we found a unique large inverted segment in the Chinese rose R. chinensis and a retroposition in strawberry caused by post-WGT events. We also found that floral development- and stress response signaling-related gene modules were retained after the WGT. Two MADS-box genes involved in floral development and the stress-related transcription factors DREB2A-INTERACTING PROTEIN 2 (DRIP2) and PEPTIDE TRANSPORTER 3 (PTR3) were found to be positively selected in evolution, which may have contributed to the unique ability of this plant to adapt to harsh environments. In summary, the high-quality genome sequence of R. rugosa provides a map for genetic studies and molecular breeding of this plant and enables comparative genomic studies of Rosa in the near future.
Collapse
Affiliation(s)
- Fei Chen
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Liyao Su
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shuaiya Hu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jia-Yu Xue
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
- Academy for Advanced Interdisciplinary Studies, Nanjing Agricultural University, Nanjing, 210095, China
| | - Hui Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Guanhua Liu
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yifan Jiang
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jianke Du
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yushan Qiao
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yannan Fan
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Huan Liu
- BGI-Shenzhen, Beishan Industrial Zone, Yantian District, Shenzhen, 518083, China
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Qi Yang
- Grandomics Biosciences Co., Ltd, Wuhan, China
| | - Wenjie Lu
- Grandomics Biosciences Co., Ltd, Wuhan, China
| | - Zhu-Qing Shao
- School of Life Sciences, Nanjing University, Nanjing, China
| | - Jian Zhang
- College of life science, Nantong University, Nantong, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, China
| | - Feng Chen
- Department of plant sciences, University of Tennessee, Knoxville, TN, USA
| | - Zong-Ming Max Cheng
- College of Horticulture, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
37
|
Zhao F, Song P, Zhang X, Li G, Hu P, Aslam A, Zhao X, Zhou H. Identification of candidate genes influencing anthocyanin biosynthesis during the development and ripening of red and white strawberry fruits via comparative transcriptome analysis. PeerJ 2021; 9:e10739. [PMID: 33604178 PMCID: PMC7863778 DOI: 10.7717/peerj.10739] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 12/18/2020] [Indexed: 11/20/2022] Open
Abstract
Strawberries are one of the most economically important berry fruits worldwide and exhibit colours ranging from white to dark red, providing a rich genetic resource for strawberry quality improvement. In the present study, we conducted transcriptome analyses of three strawberry cultivars, namely, 'Benihoppe', 'Xiaobai', and 'Snow White', and compared their gene expression profiles. Among the high-quality sequences, 5,049 and 53,200 differentially expressed genes (DEGs) were obtained when comparing the diploid and octoploid strawberry genomes and analysed to identify anthocyanin-related candidate genes. Sixty-five DEGs in the diploid genome (transcriptome data compared to the diploid strawberry genome) and 317 DEGs in the octoploid genome (transcriptome data compared to the octoploid strawberry genome) were identified among the three cultivars. Among these DEGs, 19 and 70 anthocyanin pathway genes, six and 42 sugar pathway genes, 23 and 101 hormone pathway genes, and 17 and 104 transcription factors in the diploid and octoploid genomes, respectively, correlated positively or negatively with the anthocyanin accumulation observed among the three cultivars. Real-time qPCR analysis of nine candidate genes showed a good correlation with the transcriptome data. For example, the expression of PAL was higher in 'Benihoppe' and 'Xiaobai' than in 'Snow White', consistent with the RNA-seq data. Thus, the RNA-seq data and candidate DEGs identified in the present study provide a sound basis for further studies of strawberry fruit colour formation.
Collapse
Affiliation(s)
- Fengli Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Pan Song
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangfen Zhang
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Gang Li
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Panpan Hu
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Ali Aslam
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Xia Zhao
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| | - Houcheng Zhou
- Zhengzhou Fruit Research Institute, Chinese Academy of Agricultural Sciences, Zhengzhou, China
| |
Collapse
|
38
|
Hu Y, Wu X, Jin G, Peng J, Leng R, Li L, Gui D, Fan C, Zhang C. Rapid Genome Evolution and Adaptation of Thlaspi arvense Mediated by Recurrent RNA-Based and Tandem Gene Duplications. FRONTIERS IN PLANT SCIENCE 2021; 12:772655. [PMID: 35058947 PMCID: PMC8764390 DOI: 10.3389/fpls.2021.772655] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/09/2021] [Indexed: 05/21/2023]
Abstract
Retrotransposons are the most abundant group of transposable elements (TEs) in plants, providing an extraordinarily versatile source of genetic variation. Thlaspi arvense, a close relative of the model plant Arabidopsis thaliana with worldwide distribution, thrives from sea level to above 4,000 m elevation in the Qinghai-Tibet Plateau (QTP), China. Its strong adaptability renders it an ideal model system for studying plant adaptation in extreme environments. However, how the retrotransposons affect the T. arvense genome evolution and adaptation is largely unknown. We report a high-quality chromosome-scale genome assembly of T. arvense with a scaffold N50 of 59.10 Mb. Long terminal repeat retrotransposons (LTR-RTs) account for 56.94% of the genome assembly, and the Gypsy superfamily is the most abundant TEs. The amplification of LTR-RTs in the last six million years primarily contributed to the genome size expansion in T. arvense. We identified 351 retrogenes and 303 genes flanked by LTRs, respectively. A comparative analysis showed that orthogroups containing those retrogenes and genes flanked by LTRs have a higher percentage of significantly expanded orthogroups (SEOs), and these SEOs possess more recent tandem duplicated genes. All present results indicate that RNA-based gene duplication (retroduplication) accelerated the subsequent tandem duplication of homologous genes resulting in family expansions, and these expanded gene families were implicated in plant growth, development, and stress responses, which were one of the pivotal factors for T. arvense's adaptation to the harsh environment in the QTP regions. In conclusion, the high-quality assembly of the T. arvense genome provides insights into the retroduplication mediated mechanism of plant adaptation to extreme environments.
Collapse
Affiliation(s)
- Yanting Hu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaopei Wu
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Guihua Jin
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Junchu Peng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Rong Leng
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Ling Li
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Daping Gui
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
| | - Chuanzhu Fan
- Department of Biological Sciences, Wayne State University, Detroit, MI, United States
- Chuanzhu Fan,
| | - Chengjun Zhang
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- Haiyan Engineering & Technology Center, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
- *Correspondence: Chengjun Zhang,
| |
Collapse
|
39
|
Mehmood N, Yuan Y, Ali M, Ali M, Iftikhar J, Cheng C, Lyu M, Wu B. Early transcriptional response of terpenoid metabolism to Colletotrichum gloeosporioides in a resistant wild strawberry Fragaria nilgerrensis. PHYTOCHEMISTRY 2021; 181:112590. [PMID: 33232864 DOI: 10.1016/j.phytochem.2020.112590] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/13/2020] [Accepted: 11/14/2020] [Indexed: 05/24/2023]
Abstract
Modern strawberry production is often threatened by microbe pathogens. Anthracnose is among the most prominent fungal disease caused mainly by Colletotrichum gloeosporioides and leads to large-scale losses both in quality and yield. Little is known regarding the mechanisms underlying the genetics in the strawberry-C. gloeosporioides interaction. In the current research, a wild accession 'Fragaria nilgerrensis' is used as a resistant model to study the roles of terpenoid and terpene genes in leaf response to C. gloeosporioides. We found that several terpenoids and terpene genes were up-regulated at early time points after challenged with C. gloeosporioides. Among the metabolites detected, sesquiterpenes were the most significantly accumulated compounds, increasing up to ~12-fold at 18 h post infection (hpi), followed by monoterpenes which showed a slight increase upon infection. Consistently, the time-resolved transcriptome data revealed that genes pertaining to terpenoid metabolism were rapidly up-regulated and co-expressed with signaling pathway genes relevant to defense response. Notably, quantitative real-time PCR confirmed that the expression of five terpene synthase genes (TPS) were greatly enhanced, by a factor of one to three orders of magnitude at 3-6 hpi. Our results reveal a possible link between rapidly induced terpenoid metabolism and the autoimmunity underlying anthracnose resistance in a wild strawberry species.
Collapse
Affiliation(s)
- Nasir Mehmood
- College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Yuan Yuan
- College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Mohammed Ali
- Egyptian Deserts Gene Bank, Department of Genetic Resources, Desert Research Center, Egypt.
| | - Muhammad Ali
- College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, 310058, China.
| | - Junaid Iftikhar
- College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Chunzhen Cheng
- College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Meiling Lyu
- College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| | - Binghua Wu
- College of Horticulture and the Fujian provincial Key Laboratory of Plant Functional Biology, Fujian Agriculture and Forestry University, Fuzhou, 350002, China.
| |
Collapse
|
40
|
Ning Z, Hu K, Zhou Z, Zhao D, Tang J, Wang H, Li L, Ding C, Chen X, Yao G, Zhang H. IbERF71, with IbMYB340 and IbbHLH2, coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potato (Ipomoea batatas L.). PLANT CELL REPORTS 2021; 40:157-169. [PMID: 33084965 DOI: 10.1007/s00299-020-02621-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/03/2020] [Indexed: 06/11/2023]
Abstract
KEY MESSAGE The transcription factor (TF) IbERF71 forms a novel complex, IbERF71-IbMYB340-IbbHLH2, to coregulate anthocyanin biosynthesis by binding to the IbANS1 promoter in purple-fleshed sweet potatoes. Purple-fleshed sweet potato (Ipomoea batatas L.) is very popular because of its abundant anthocyanins, which are natural pigments with multiple physiological functions. TFs involved in regulating anthocyanin biosynthesis have been identified in many plants. However, the molecular mechanism of anthocyanin biosynthesis in purple-fleshed sweet potatoes has rarely been examined. In this study, TF IbERF71 and its partners were screened by bioinformatics and RT-qPCR analysis. The results showed that the expression levels of IbERF71 and partners IbMYB340 and IbbHLH2 were higher in purple-fleshed sweet potatoes than in other colors and that the expression levels positively correlated with anthocyanin contents. Moreover, transient expression assays showed that cotransformation of IbMYB340+IbbHLH2 resulted in anthocyanin accumulation in tobacco leaves and strawberry receptacles, and additional IbERF71 significantly increased visual aspects. Furthermore, the combination of the three TFs significantly increased the expression levels of FvANS and FvGST, which are involved in anthocyanin biosynthesis and transport of strawberry receptacles. The dual-luciferase reporter system verified that cotransformation of the three TFs enhanced the transcription activity of IbANS1. In addition, yeast two-hybrid and firefly luciferase complementation assays revealed that IbMYB340 interacted with IbbHLH2 and IbERF71 but IbERF71 could not interact with IbbHLH2 in vitro. In summary, our findings provide novel evidence that IbERF71 and IbMYB340-IbbHLH2 form the regulatory complex IbERF71-IbMYB340-IbbHLH2 that coregulates anthocyanin accumulation by binding to the IbANS1 promoter in purple-fleshed sweet potatoes. Thus, the present study provides a new regulatory network of anthocyanin biosynthesis and strong insight into the color development of purple-fleshed sweet potatoes.
Collapse
Affiliation(s)
- Zhiyuan Ning
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangdi Hu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Zhilin Zhou
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Donglan Zhao
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Jun Tang
- Xuzhou Institute of Agricultural Sciences of the Xuhuai District of Jiangsu Province, Jiangsu Xuzhou Sweetpotato Research Center, Xuzhou, 221131, China
| | - Hong Wang
- Institute of Pomology/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Jiangsu Academy of Agricultural Sciences, Nanjing, 210014, China
| | - Lixia Li
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chen Ding
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xiaoyan Chen
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Gaifang Yao
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| | - Hua Zhang
- School of Food and Biological Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
41
|
Chen G, Xu P, Pan J, Li Y, Zhou J, Kuang H, Lian H. Inhibition of FvMYB10 transcriptional activity promotes color loss in strawberry fruit. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2020; 298:110578. [PMID: 32771176 DOI: 10.1016/j.plantsci.2020.110578] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 06/17/2020] [Accepted: 06/22/2020] [Indexed: 06/11/2023]
Abstract
FvMYB10 protein has been proved to be a transcriptional switch for anthocyanin biosynthesis in strawberry. A single nucleotide mutation in R2 domain of FvMYB10, named as FvmMYB10, is found to be responsible for the white color in strawberry variety 'Yellow Wonder'. However, the mechanism of FvmMYB10 suppresses anthocyanin biosynthesis in strawberry is largely unknown. Here, we show that the transcriptional level of FvMYB10 and key enzyme genes involved in anthocyanin biosynthesis in 'Yellow Wonder' were lower than that in red color variety 'Ruegen', especially at turning to ripening stage. The low expression level of FvmMYB10 may due to his inability to bind to its promoter region and activate its own expression. We found FvMYB10-overexpressing, but not FvmMYB10-overexpressing, promote anthocyanin accumulation in Arabidopsis and strawberry fruit despite of their similar expression levels. In addition, subcellular localization assay indicated that FvMYB10-YFP, but not FvmMYB10-YFP, localized to sub-nucleus foci (speckles) in the nucleus, implying the mutation of FvMYB10 might inhibit its transcription factor activity and eventually interfere with its function. Subsequently, we confirmed that FvMYB10 bind to the promoter region of some specific key enzyme genes, including FvCHS2 and FvDFR1 and activated their expression. While FvmMYB10 failed to binding and transcriptional activating these genes. Our findings provide insights into molecular mechanism of anthocyanin biosynthesis regulated by MYB10 in strawberry fruits.
Collapse
Affiliation(s)
- Guanqun Chen
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China; School of Design, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Pengbo Xu
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jian Pan
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Yang Li
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Junhui Zhou
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA.
| | - Huiyun Kuang
- Shanghai Shumei Agriculture Investment Co., Ltd, Shanghai, 201711, China.
| | - Hongli Lian
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
42
|
Labadie M, Vallin G, Petit A, Ring L, Hoffmann T, Gaston A, Potier A, Schwab W, Rothan C, Denoyes B. Metabolite Quantitative Trait Loci for Flavonoids Provide New Insights into the Genetic Architecture of Strawberry ( Fragaria × ananassa) Fruit Quality. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:6927-6939. [PMID: 32469530 DOI: 10.1021/acs.jafc.0c01855] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Flavonoids are products from specialized metabolism that contribute to fruit sensorial (color) and nutritional (antioxidant properties) quality. Here, using a pseudo full-sibling F1 progeny previously studied for fruit sensorial quality of cultivated strawberry (Fragaria × ananassa), we explored over two successive years the genetic architecture of flavonoid-related traits using liquid chromatography electrospray ionization tandem mass spectrometry (13 compounds including anthocyanins, flavonols, and flavan-3-ols) and colorimetric assays (anthocyanins, flavonoids, phenolics, and total antioxidant capacity (ferric reducing antioxidant power and Trolox equivalent antioxidant capacity)). Network correlation analysis highlighted the high connectivity of flavonoid compounds within each chemical class and low correlation with colorimetric traits except for anthocyanins. Mapping onto the female and male linkage maps of 152 flavonoid metabolic quantitative trait loci (mQTLs) and of 26 colorimetric QTLs indicated colocalization on few linkage groups of major flavonoid- and taste-related QTLs previously uncovered. These results pave the way for the discovery of genetic variations underlying flavonoid mQTLs and for marker-assisted selection of strawberry varieties with improved sensorial and nutritional quality.
Collapse
Affiliation(s)
- Marc Labadie
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Guillaume Vallin
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Aurélie Petit
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
- INVENIO, MIN de Brienne, 110 quai de Paludate, Bordeaux 33800, France
| | - Ludwig Ring
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Thomas Hoffmann
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | - Amèlia Gaston
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Aline Potier
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| | - Wilfried Schwab
- Biotechnology of Natural Products, Technical University Munich, Liesel-Beckmann-Str. 1, Freising 85354, Germany
| | | | - Béatrice Denoyes
- INRAE, Univ. Bordeaux, UMR BFP, Villenave d'Ornon F-33140, France
| |
Collapse
|
43
|
Li T, Fan Y, Qin H, Dai G, Li G, Li Y, Wang J, Yin Y, Chen F, Qin X, Cao Y, Tang L. Transcriptome and Flavonoids Metabolomic Analysis Identifies Regulatory Networks and Hub Genes in Black and White Fruits of Lycium ruthenicum Murray. FRONTIERS IN PLANT SCIENCE 2020; 11:1256. [PMID: 32922426 PMCID: PMC7456873 DOI: 10.3389/fpls.2020.01256] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Accepted: 07/30/2020] [Indexed: 05/03/2023]
Abstract
Lycium ruthenicum Murry. is a highly nutritional cash crop due to its fruit abundant anthocyanins. To understand the complex metabolic networks underlying the color formation in black and white fruits of L. ruthenicum, we conducted transcriptome and flavonoid metabolic profiling to identify the candidate genes possibly involved in flavonoid biosynthesis. As a result, 147 flavonoids were identified and there was almost no anthocyanin in white fruits, while luteolin, kaempferol, and quercetin derivatives showed markedly higher abundance. Furthermore, applying weighted gene co-expression network analyses, 3 MYB, 2 bHLH, 1WRKY and 1 NAC transcription factor, associated with anthocyanin biosynthesis were identified. A bHLH transcription factor, LrAN1b showed the greatest correlations with anthocyanin accumulation with no expression in white fruits. In addition, gene function analysis and qRT-PCR experiments identified a new activated anthocyanin MYB transcription factor designed as LrAN2-like. Yeast two-hybrid and transient tobacco overexpression experiments showed that LrAN1b could interact with LrAN2-like and LrAN11 to form MBW complex to activate the anthocyanin pathway. The yeast one-hybrid experiment indicated that LrAN2-like bonded anthocyanin structural gene LrDFR and LrANS promoters. Heterologous expression of LrAN1b in tobacco can significantly increase the anthocyanin content of tobacco florals and capsules, and activate anthocyanin synthesis related genes. Taken together, an anthocyanin regulatory network model in L. ruthenicum fruit was proposed firstly and we speculate that the white fruit phenotype was due to abnormal expression of LrAN1b. The findings provide new insight into the underlying mechanism of flavonoids, laying the foundation for future functional and molecular biological research in L. ruthenicum.
Collapse
Affiliation(s)
- Tingting Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yunfang Fan
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- National Wolfberry Engineering Technology Research Center, Yinchuan, China
| | - Huan Qin
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Guoli Dai
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- National Wolfberry Engineering Technology Research Center, Yinchuan, China
| | - Guoxiu Li
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yanlong Li
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- National Wolfberry Engineering Technology Research Center, Yinchuan, China
| | - Jingjin Wang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Yue Yin
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- National Wolfberry Engineering Technology Research Center, Yinchuan, China
| | - Fang Chen
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xiaoya Qin
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- National Wolfberry Engineering Technology Research Center, Yinchuan, China
| | - Youlong Cao
- Institute of Wolfberry Engineering Technology, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, China
- National Wolfberry Engineering Technology Research Center, Yinchuan, China
- *Correspondence: Youlong Cao, ; Lin Tang,
| | - Lin Tang
- Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, China
- *Correspondence: Youlong Cao, ; Lin Tang,
| |
Collapse
|