1
|
Ma X, Liu Y, Liang W, Dong J, Zhao D, Qin Y, Han X, Zou X, Wu J. Genetic Modifications of the Pyrroline-5-Carboxylate Metabolic Pathway to Intensify Rice Aroma. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025. [PMID: 40466041 DOI: 10.1021/acs.jafc.5c01896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Rice (Oryza sativa L.) is a staple food for more than half of the world's population, with aromatic varieties especially prized for their distinctive fragrance. This aroma is primarily attributed to 2-acetyl-1-pyrroline (2-AP). However, enhancing 2-AP levels without compromising yield or other key agronomic traits remains a major challenge in rice breeding. In this study, we adopted a synergistic genetic strategy to boost 2-AP production by targeting key enzymes in the proline and Δ1-pyrroline-5-carboxylate (P5C) metabolic pathway. We used miRNA-induced gene silencing (MIGS) to knock down the endogenous OsP5CR (Pyrroline-5-carboxylate reductase) and OsP5CDH (Pyrroline-5-carboxylate dehydrogenase) genes, resulting in increased P5C accumulation and enhanced flux toward 2-AP synthesis. Additionally, exogenous overexpression of bacterial feedback-insensitive proB74-proA genes further enhanced the levels of proline and P5C accumulation, thereby promoting 2-AP production. Notably, crossbred lines combining MIGS-mediated knockdown of OsP5CR and OsP5CDH with proB74-proA overexpression exhibited synergistically elevated 2-AP levels. Agronomic evaluations confirmed that these genetic modifications did not adversely affect yield-related traits or grain quality. Our findings highlight the potential of a multigene, integrative metabolic engineering approach to enhance rice aroma, offering a promising strategy for developing high-quality aromatic rice cultivars that meet market demands without sacrificing yield.
Collapse
Affiliation(s)
- Xiaowen Ma
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Ying Liu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Wenkan Liang
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Junxi Dong
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Duanmu Zhao
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Yifei Qin
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xinqi Han
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Xutao Zou
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| | - Jian Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Basic Research Center of Excellence for Precise Breeding of Future Crops, Key Laboratory for Enhancing Resource Use Efficiency of Crops in South China, Ministry of Agriculture and Rural Affairs, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|
2
|
Yang C, Huang L, Wang BC, Zhong Y, Ma X, Zhang C, Sun Q, Wu Y, Yao Y, Liu Q. Enhancing quality traits in staple crops: current advances and future perspectives. J Genet Genomics 2025:S1673-8527(25)00132-8. [PMID: 40348082 DOI: 10.1016/j.jgg.2025.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/30/2025] [Accepted: 05/03/2025] [Indexed: 05/14/2025]
Abstract
Staple crops such as rice, wheat and maize are crucial for global food security; however, improving their quality remains a significant challenge. This review summarizes recent advances in enhancing crop quality, focusing on key areas such as the molecular mechanisms underlying endosperm filling initiation, starch granule synthesis, protein body formation, and the interactions between carbon and nitrogen metabolism. It also highlights ten unresolved questions related to starch-protein spatial distribution, epigenetic regulation, and the environmental impacts on quality traits. The integration of multi-omics approaches, and rational design strategies presents opportunities to develop high-yield "super-crop" varieties with enhanced nutritional value, better processing characteristics, and attributes preferred by consumers. Addressing these challenges is crucial to promote sustainable agriculture and achieve the dual objectives of food security and environmental conservation.
Collapse
Affiliation(s)
- Changfeng Yang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lichun Huang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China
| | - Bai-Chen Wang
- State Key Laboratory of Forage Breeding-by-Design and Utilization, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Yingxin Zhong
- National Technique Innovation Center for Regional Wheat Production/Key Laboratory of Crop Physiology and Ecology in Southern China, Ministry of Agriculture/Nanjing Agricultural University, Nanjing 210095, China
| | - Xiaohui Ma
- Key Laboratory of Plant Molecular Physiology, Institute of Botany, Chinese Academy of Sciences, Beijing, 100093, China
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongrui Wu
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Shanghai Institute of Plant Physiology & Ecology, Shanghai 200032, China.
| | - Yingyin Yao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization (MOE), and Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Zhongshan Biological Breeding Laboratory, Yangzhou Modern Seed Innovation Institute (Gaoyou), Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
3
|
Wang W, Li S, Yang J, Li J, Yan L, Zhang C, He Y, Xia L. Exploiting the efficient Exo:Cas12i3-5M fusions for robust single and multiplex gene editing in rice. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2025; 67:1246-1253. [PMID: 39873911 PMCID: PMC12060748 DOI: 10.1111/jipb.13850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Accepted: 01/07/2025] [Indexed: 01/30/2025]
Abstract
The development of a single and multiplex gene editing system is highly desirable for either functional genomics or pyramiding beneficial alleles in crop improvement. CRISPR/Cas12i3, which belongs to the Class II Type V-I Cas system, has attracted extensive attention recently due to its smaller protein size and less restricted canonical "TTN" protospacer adjacent motif (PAM). However, due to its relatively lower editing efficiency, Cas12i3-mediated multiplex gene editing has not yet been documented in plants. Here, we fused four 5' exonucleases (Exo) including T5E, UL12, PapE, ME15 to the N terminal of an optimized Cas12i3 variant (Cas12i3-5M), respectively, and systematically evaluated the editing activities of these Exo:Cas12i3-5M fusions across six endogenous targets in rice stable lines. We demonstrated that the Exo:Cas12i3-5M fusions increased the gene editing efficiencies by up to 12.46-fold and 1.25-fold compared with Cas12i3 and Cas12i3-5M, respectively. Notably, the UL12:Cas12i3-5M fusion enabled robust single gene editing with editing efficiencies of up to 90.42%-98.61% across the six tested endogenous genes. We further demonstrated that, although all the Exo:Cas12i5-5M fusions were capable of multiplex gene editing, UL12:Cas12i3-5M exhibited a superior performance in the simultaneous editing of three, four, five or six genes with efficiencies of 82.76%, 61.36%, 52.94%, and 51.06% in rice stable lines, respectively. Together, we evaluated different Exo:Cas12i3-5M fusions systemically and established UL12:Cas12i3-5M as the more robust system for single and multiplex gene editing in rice. The development of an alternative robust single and multiplex gene editing system will enrich plant genome editing toolkits and facilitate pyramiding of agronomically important traits for crop improvement.
Collapse
Affiliation(s)
- Wenxue Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)Beijing100081China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs /National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanya572024China
| | - Shaoya Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)Beijing100081China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs /National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanya572024China
| | - Jiaying Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)Beijing100081China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs /National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanya572024China
| | - Jingying Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)Beijing100081China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs /National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanya572024China
| | - Lei Yan
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)Beijing100081China
| | - Chen Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)Beijing100081China
| | - Yubing He
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)Beijing100081China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs /National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanya572024China
| | - Lanqin Xia
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences (ICS)Chinese Academy of Agricultural Sciences (CAAS)Beijing100081China
- Key Laboratory of Gene Editing Technologies (Hainan), Ministry of Agricultural and Rural Affairs /National Nanfan Research Institute (Sanya)Chinese Academy of Agricultural SciencesSanya572024China
| |
Collapse
|
4
|
Kaur N, Qadir M, Francis DV, Alok A, Tiwari S, Ahmed ZFR. CRISPR/Cas9: a sustainable technology to enhance climate resilience in major Staple Crops. Front Genome Ed 2025; 7:1533197. [PMID: 40171546 PMCID: PMC11958969 DOI: 10.3389/fgeed.2025.1533197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 02/27/2025] [Indexed: 04/03/2025] Open
Abstract
Climate change is a global concern for agriculture, food security, and human health. It affects several crops and causes drastic losses in yield, leading to severe disturbances in the global economy, environment, and community. The consequences on important staple crops, such as rice, maize, and wheat, will worsen and create food insecurity across the globe. Although various methods of trait improvements in crops are available and are being used, clustered regularly interspaced short palindromic repeats and CRISPR-associated protein 9 (CRISPR/Cas9) mediated genome manipulation have opened a new avenue for functional genomics and crop improvement. This review will discuss the progression in crop improvement from conventional breeding methods to advanced genome editing techniques and how the CRISPR/Cas9 technology can be applied to enhance the tolerance of the main cereal crops (wheat, rice, and maize) against any harsh climates. CRISPR/Cas endonucleases and their derived genetic engineering tools possess high accuracy, versatile, more specific, and easy to design, leading to climate-smart or resilient crops to combat food insecurity and survive harsh environments. The CRISPR/Cas9-mediated genome editing approach has been applied to various crops to make them climate resilient. This review, supported by a bibliometric analysis of recent literature, highlights the potential target genes/traits and addresses the significance of gene editing technologies in tackling the vulnerable effects of climate change on major staple crops staple such as wheat, rice, and maize.
Collapse
Affiliation(s)
- Navjot Kaur
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Muslim Qadir
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
- College of Agriculture, South China Agricultural University (SCAU), Guangzhou, Guangdong, China
| | - Dali V. Francis
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Anshu Alok
- Department of Plant Pathology, University of Minnesota, Saint Paul, MN, United States
| | - Siddharth Tiwari
- Plant Tissue Culture and Genetic Engineering Lab, BRIC-National Agri-Food and Biomanufacturing Institute (BRIC-NABI) (Formerly National Agri-Food Biotechnology Institute), Department of Biotechnology, Ministry of Science and Technology (Government of India), Mohali, Punjab, India
| | - Zienab F. R. Ahmed
- Department of Integrative Agriculture, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al-Ain, United Arab Emirates
| |
Collapse
|
5
|
Wu W, Miao R, Li Z, Fang Z. CRISPR/Cas9-mediated editing of BADH2 and Wx genes for the development of novel aromatic and soft-textured black and red rice. PHYSIOLOGIA PLANTARUM 2025; 177:e70194. [PMID: 40171918 DOI: 10.1111/ppl.70194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 04/04/2025]
Abstract
Black and red rice are known for their rich nutritional content, yet most varieties suffer from a firm texture and insufficient fragrance. In this study, we aimed to develop a fragrant and soft-textured black and red rice variety using the CRISPR/Cas9 technology to knock out the OsWx gene, which is associated with amylose content (AC), and the OsBADH2 gene, responsible for rice aroma. Our results showed that, compared to wild-type, CRISPR lines of XHZ, HM, NWZ, and PGZ targeting OsWx and OsBADH2 exhibited a reduction in AC content, altered gel consistency, and a more than 50% increase in gel consistency. Headspace solid-phase microextraction gas chromatography-mass spectrometry (HS-SPME-GC-MS) analysis revealed that the 2-acetyl-1-pyrroline (2-AP) content in the grains of xhz-cBADH2 Wx and hm-cBADH2 Wx reached 189.04 μg kg-1 and 309.03 μg kg-1, respectively. Furthermore, we observed a slight increase in anthocyanins and proanthocyanidins in these co-edited lines, without significant effects on their agronomic traits. Furthermore, to investigate the genes involved in the quality formation of black and red rice for the knockout of OsBADH2 and OsWx, we conducted RNA-seq analysis. The results indicated that knockout of OsBADH2 and OsWx affected the expression of genes involved in carotenoid biosynthesis, multiple amino acid metabolism genes, and endosperm starch and sucrose metabolic pathways. These findings suggest that the CRISPR/Cas9 technology can effectively target OsBADH2 and OsWx to develop high-quality black and red rice varieties with enhanced aroma and softer texture, providing a new strategy for the improvement of colored rice.
Collapse
Affiliation(s)
- Wenhao Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Rui Miao
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Zhenghan Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
6
|
Wang J, Yang L, Xu B, Cao R, Charagh S, Hui S, Zhou L, Zhang Y, Chen Y, Sheng Z, Jiao G, Shao G, Wang L, Zhao F, Xie L, Lyu Y, Tang S, Hu S, Hu P. Chloroplast-localized transporter OsNTP1 mediates cadmium transport from root to shoot and sugar metabolism in rice. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136766. [PMID: 39644857 DOI: 10.1016/j.jhazmat.2024.136766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/01/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Cadmium (Cd) is an element with high toxicity to living organisms, and its accumulation in rice grains poses a threat to human health. In this study, we report a novel nickel-transport family protein, OsNTP1, that is involved in Cd transport from root to shoot. Heterologous expression of OsNTP1 in yeast enhanced Ni and Cd tolerance. In rice, the transporter OsNTP1 is localized at the chloroplast and the expression of OsNTP1 was rapidly induced by Cd treatment. Under Cd²⁺ treatment, the Cd content in the shoots of OsNTP1-RNAi lines was significantly increased. Notably, knockdown of OsNTP1 significantly reduces Cd accumulation in the grains, highlighting its critical role in minimizing Cd contamination in edible parts of the plant. In addition, knockout or knockdown OsNTP1 also increased sensitivity to sucrose. Sucrose treatment led to more starch particles at the OsNTP1-RNAi shoot base, and exogenous sucrose can alleviate the inhibitory effects of Cd stress on sugar metabolism and starch synthesis in OsNTP1-RNAi lines. The present study provides a new genetic resource for breeding low-Cd grains and exploring the response mechanisms of sugar metabolism to Cd stress.
Collapse
Affiliation(s)
- Jingxin Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Lingwei Yang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Bo Xu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Ruijie Cao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Sidra Charagh
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yuanyuan Zhang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yujuan Chen
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Ling Wang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Lihong Xie
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Yusong Lyu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China.
| | - Shikai Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China.
| | - Peisong Hu
- State Key Laboratory of Rice Biology and Breeding, China National Rice Research Institute, Hangzhou 310006, China.
| |
Collapse
|
7
|
Li Y, Zhang W, Li M, Ling X, Guo D, Yang Y, Liu Q, Zhang B, Wang J. Discovery of OsODC as a key enhancer of aroma and development of highly fragrant rice. PLANT COMMUNICATIONS 2025; 6:101141. [PMID: 39360381 PMCID: PMC11783878 DOI: 10.1016/j.xplc.2024.101141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 09/23/2024] [Accepted: 09/30/2024] [Indexed: 10/04/2024]
Affiliation(s)
- Yang Li
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Wenting Zhang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China
| | - Mingyue Li
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Xitie Ling
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Dongshu Guo
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Yuwen Yang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing 210014, China
| | - Qing Liu
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing 210014, China; College of Agriculture, Yangzhou University, Yangzhou 225009, China
| | - Baolong Zhang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China.
| | - Jinyan Wang
- Provincial Key Laboratory of Agrobiology and Institute of Germplasm Resources and Biotechnology, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; Zhongshan Biological Breeding Laboratory, Nanjing 210014, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212000, China.
| |
Collapse
|
8
|
Wu J, Xu J, He A, Ren S, Ye Y, Lei W, Liu Y, Hua X, Wei C, Lin L, Zhang H, Wang Y. Generating fragrant oilseed rape using CRISPR/Cas9-mediated gene editing. PLANT PHYSIOLOGY 2024; 197:kiae660. [PMID: 39715452 PMCID: PMC11702980 DOI: 10.1093/plphys/kiae660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/31/2024] [Accepted: 11/16/2024] [Indexed: 12/25/2024]
Abstract
Knocking out 2 functionally redundant aldehyde dehydrogenase-encoding genes via gene editing leads to 2-acetyl-1-pyrroline accumulation in oilseed rape, which can be used to develop fragrant lines.
Collapse
Affiliation(s)
- Jian Wu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Jingyi Xu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Ancheng He
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Sichao Ren
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yi Ye
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Wenjing Lei
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Yu Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Xia Hua
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Chunjie Wei
- College of Life Science, Shanghai Normal University, Shanghai 200234, China
| | - Li Lin
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
| | - Hui Zhang
- College of Life Science, Shanghai Normal University, Shanghai 200234, China
| | - Youping Wang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou 225009, China
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
9
|
Li Y, Miao Y, Yuan H, Huang F, Sun M, He L, Liu X, Luo J. Volatilome-based GWAS identifies OsWRKY19 and OsNAC021 as key regulators of rice aroma. MOLECULAR PLANT 2024; 17:1866-1882. [PMID: 39533713 DOI: 10.1016/j.molp.2024.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/21/2024] [Accepted: 11/07/2024] [Indexed: 11/16/2024]
Abstract
Aromatic rice is globally favored for its distinctive scent, which not only increases its nutritional value but also enhances its economic importance. However, apart from 2-acetyl-1-pyrroline (2-AP), the metabolic basis of aroma remains to be clarified, and the genetic basis of the accumulation of fragrance metabolites is largely unknown. In this study, we revealed 2-AP and fatty acid-derived volatiles (FAVs) as key contributors to rice aroma by combining aroma rating with molecular docking. Using a volatilome-based genome-wide association study, we identified two regulatory genes that determine the natural variation of these fragrance metabolites. Genetic and molecular analyses showed that OsWRKY19 not only enhances fragrance by negatively regulating OsBADH2 but also improves agricultural traits in rice. Furthermore, we revealed that OsNAC021 negatively regulates FAV contents via the lipoxygenase pathway, and its knockout resulted in over-accumulation of grain FAVs without a yield penalty. Collectively, our study not only identifies two key regulators of rice aroma but also provides a compelling example about how to deciphering the genetic regulatory mechanisms that underlie rice fragrance, thereby paving the way for the creation of aromatic rice varieties.
Collapse
Affiliation(s)
- Yan Li
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China
| | - Yuanyuan Miao
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Honglun Yuan
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Fengkun Huang
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Mingqi Sun
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Liqiang He
- School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Xianqing Liu
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; School of Tropical Agriculture and Forestry, Hainan University, Haikou, Hainan 570288, China
| | - Jie Luo
- School of Breeding and Multiplication (Sanya Institute of Breeding and Multiplication), Hainan University, Sanya 572025, China; Yazhouwan National Laboratory, Sanya 572025, China.
| |
Collapse
|
10
|
Hu S, Zhou L, Wang J, Mawia AM, Hui S, Xu B, Jiao G, Sheng Z, Shao G, Wei X, Wang L, Xie L, Zhao F, Tang S, Hu P. Production of grains with ultra-low heavy metal accumulation by pyramiding novel Alleles of OsNramp5 and OsLsi2 in two-line hybrid rice. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:2921-2931. [PMID: 38898780 PMCID: PMC11536454 DOI: 10.1111/pbi.14414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 04/29/2024] [Accepted: 05/31/2024] [Indexed: 06/21/2024]
Abstract
Ensuring rice yield and grain safety quality are vital for human health. In this study, we developed two-line hybrid rice (TLHR) with ultra-low grain cadmium (Cd) and arsenic (As) accumulation by pyramiding novel alleles of OsNramp5 and OsLsi2. We first generated low Cd accumulation restorer (R) lines by editing OsNramp5, OsLCD, and OsLCT1 in japonica and indica. After confirming that OsNramp5 was most efficient in reducing Cd, we edited this gene in C815S, a genic male sterile line (GMSL), and screened it for alleles with low Cd accumulation. Next, we generated R and GMSL lines with low As accumulation by editing OsLsi2 in a series of YK17 and C815S lines. When cultivated in soils that were heavily polluted with Cd and As, the edited R, GMSL, and TLHR plants showed significantly reduced heavy metal accumulation, while maintaining a relatively stable yield potential. This study provides an effective scheme for the safe production of grains in As- and/or Cd-polluted paddy fields.
Collapse
Affiliation(s)
- Shikai Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Liang Zhou
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Jingxin Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Amos Musyoki Mawia
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Suozhen Hui
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Bo Xu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Guiai Jiao
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Zhonghua Sheng
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Gaoneng Shao
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Ling Wang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Lihong Xie
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Fengli Zhao
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Shaoqing Tang
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| | - Peisong Hu
- State Key Laboratory of Rice Biology and BreedingChina National Rice Research InstituteHangzhouPeople's Republic of China
| |
Collapse
|
11
|
Huang Y, Huang L, Cheng M, Li C, Zhou X, Ullah A, Sarfraz S, Khatab A, Xie G. Progresses in biosynthesis pathway, regulation mechanism and potential application of 2-acetyl-1-pyrroline in fragrant rice. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:109047. [PMID: 39153390 DOI: 10.1016/j.plaphy.2024.109047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/12/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The formation of rice aroma is a complex process that is influenced by genetic and environmental factors. More than 500 fragrance compounds have been documented in fragrant rice, among which 2-AP dominates the aroma of rice. This paper introduced the identification of OsBadh2 in the biosynthesis of 2-AP in rice. Then, non-enzymatic and enzymatic pathways of the 2-AP biosynthesis have been comprehensively investigated. In detail, 2-AP biosynthesis-associated enzyme, such as OsBADH2, OsP5CS, OsGAD, OsGAPDH, OsProDH, OsOAT, OsODC and OsDAO, have been summarized, while MG and fatty acids are also implicated in modulating the biosynthesis of 2-AP by providing the acetyl groups. Moreover, extensive collections of traditional fragrant rice varieties have been collated, together with the OsBadh2 haplotypes of 312 fragrant rice germplasm in China. And finally, genetic engineering of OsBadh2 and other genes in the 2-AP biosynthesis to develop fragrant rice are discussed.
Collapse
Affiliation(s)
- Yajing Huang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Lei Huang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; The People's Government of Zougang Town, Xiaochang County, Xiaogan City, Hubei, 432910, China
| | - Maozhi Cheng
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chuanhao Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xiaofeng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Aman Ullah
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Samina Sarfraz
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China; Rice Research and Training Center, 33717, Sakha, Kafr El-Sheikh, Egypt
| | - Guosheng Xie
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
12
|
Imran M, Widemann E, Shafiq S, Bakhsh A, Chen X, Tang X. Salicylic Acid and Melatonin Synergy Enhances Boron Toxicity Tolerance via AsA-GSH Cycle and Glyoxalase System Regulation in Fragrant Rice. Metabolites 2024; 14:520. [PMID: 39452901 PMCID: PMC11509829 DOI: 10.3390/metabo14100520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/17/2024] [Accepted: 09/25/2024] [Indexed: 10/26/2024] Open
Abstract
Background: Boron is an essential micronutrient for plant growth and productivity, yet excessive boron leads to toxicity, posing significant challenges for agriculture. Fragrant rice is popular among consumers, but the impact of boron toxicity on qualitative traits of fragrant rice, especially aroma, remains largely unexplored. The individual potentials of melatonin and salicylic acid in reducing boron toxicity are less known, while their synergistic effects and mechanisms in fragrant rice remain unclear. Methods: Thus, this study investigates the combined application of melatonin and salicylic acid on fragrant rice affected by boron toxicity. One-week-old seedlings were subjected to boron (0 and 800 µM) and then treated with melatonin and salicylic acid (0 and 100 µM, for 3 weeks). Results: Boron toxicity significantly impaired photosynthetic pigments, plant growth, and chloroplast integrity while increasing oxidative stress markers such as hydrogen peroxide, malondialdehyde, methylglyoxal, and betaine aldehyde dehydrogenase. Likewise, boron toxicity abridged the precursors involved in the 2-acetyl-1-pyrroline (2-AP) biosynthesis pathway. However, individual as well as combined application of melatonin and salicylic acid ameliorated boron toxicity by strengthening the antioxidant defense mechanisms-including the enzymes involved during the ascorbate-glutathione (AsA-GSH) cycle and glyoxalase system-and substantially improved 2-AP precursors including proline, P5C, Δ1-pyrroline, and GABA levels, thereby restoring the 2-AP content and aroma. These findings deduce that melatonin and salicylic acid synergistically alleviate boron toxicity-induced disruptions on the 2-AP biosynthesis pathway by improving the 2-AP precursors and enzymatic activities, as well as modulating the physio-biochemical processes and antioxidant defense system of fragrant rice plants. Conclusions: The findings of this study have the potential to enhance rice productivity and stress tolerance, offering solutions to improve food security and sustainability in agricultural practices, particularly in regions affected by environmental stressors.
Collapse
Affiliation(s)
- Muhammad Imran
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Emilie Widemann
- Institut de Biologie Moléculaire des Plantes, CNRS-Université de Strasbourg, 67084 Strasbourg, France;
| | - Sarfraz Shafiq
- Thompson Rivers University, Kamloops, BC V2C 0C8, Canada;
| | - Ali Bakhsh
- Department of Plant Breeding and Genetics, Ghazi University, Dera Ghazi Khan 32200, Pakistan;
| | - Xiaoyuan Chen
- Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan 512005, China;
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China;
| |
Collapse
|
13
|
Wu B, Luo H, Chen Z, Amin B, Yang M, Li Z, Wu S, Salmen SH, Alharbi SA, Fang Z. Rice Promoter Editing: An Efficient Genetic Improvement Strategy. RICE (NEW YORK, N.Y.) 2024; 17:55. [PMID: 39212859 PMCID: PMC11364747 DOI: 10.1186/s12284-024-00735-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024]
Abstract
Gene expression levels in rice (Oryza sativa L.) and other plant species are determined by the promoters, which directly control phenotypic characteristics. As essential components of genes, promoters regulate the intensity, location, and timing of gene expression. They contain numerous regulatory elements and serve as binding sites for proteins that modulate transcription, including transcription factors and RNA polymerases. Genome editing can alter promoter sequences, thereby precisely modifying the expression patterns of specific genes, and ultimately affecting the morphology, quality, and resistance of rice. This paper summarizes research on rice promoter editing conducted in recent years, focusing on improvements in yield, heading date, quality, and disease resistance. It is expected to inform the application of promoter editing and encourage further research and development in crop genetic improvement with promote.
Collapse
Affiliation(s)
- Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Hangfei Luo
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhongbo Chen
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Bakht Amin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Manyu Yang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Zhenghan Li
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Shuai Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, 11451, Riyadh, Saudi Arabia
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial, Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, 550025, China.
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
14
|
Huang J, Chen W, Gao L, Qing D, Pan Y, Zhou W, Wu H, Li J, Ma C, Zhu C, Dai G, Deng G. Rapid improvement of grain appearance in three-line hybrid rice via CRISPR/Cas9 editing of grain size genes. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:173. [PMID: 38937300 PMCID: PMC11211133 DOI: 10.1007/s00122-024-04627-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 04/16/2024] [Indexed: 06/29/2024]
Abstract
KEY MESSAGE Genetic editing of grain size genes quickly improves three-line hybrid rice parents to increase the appearance quality and yield of hybrid rice. Grain size affects rice yield and quality. In this study, we used CRISPR/Cas9 to edit the grain size gene GW8 in the maintainer line WaitaiB (WTB) and restorer line Guanghui998 (GH998). The new slender sterile line WTEA (gw8) was obtained in the BC2F1 generation by transferring the grain mutation of the maintainer plant to the corresponding sterile line WantaiA (WTA, GW8) in the T1 generation. Two slender restorer lines, GH998E1 (gw8(II)) and GH998E2 (gw8(I)), were obtained in T1 generation. In the early stage, new sterile and restorer lines in grain mutations were created by targeted editing of GS3, TGW3, and GW8 genes. These parental lines were mated to detect the impact of grain-type mutations on hybrid rice yield and quality. Mutations in gs3, gw8, and tgw3 had a minimal impact on agronomic traits except the grain size and thousand-grain weight. The decrease in grain width in the combination mainly came from gw8/gw8, gs3/gs3 increased the grain length, gs3/gs3-gw8/gw8 had a more significant effect on the grain length, and gs3/gs3-gw8/gw8(I) contributed more to grain length than gs3/gs3-gw8/gw8(II). The heterozygous TGW3/tgw3 may not significantly increase grain length. Electron microscopy revealed that the low-chalky slender-grain variety had a cylindrical grain shape, a uniform distribution of endosperm cells, and tightly arranged starch grains. Quantitative fluorescence analysis of endospermdevelopment-related genes showed that the combination of slender grain hybrid rice caused by gs3 and gw8 mutations promoted endosperm development and improved appearance quality. An appropriate grain size mutation resulted in hybrid rice varieties with high yield and quality.
Collapse
Affiliation(s)
- Juan Huang
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Weiwei Chen
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Lijun Gao
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007, People's Republic of China
| | - Dongjin Qing
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Yinghua Pan
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Weiyong Zhou
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Hao Wu
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007, People's Republic of China
| | - Jingcheng Li
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China
| | - Chonglie Ma
- Guangxi Academy of Agricultural Sciences/Guangxi Crop Genetic Improvement and Biotechnology Laboratory, Nanning, 530007, People's Republic of China
| | - Changlan Zhu
- Key Laboratory of Crop Physiology, Ecology and Genetic Breeding, Ministry of Education, Jiangxi Agricultural University, Nanchang, 330045, People's Republic of China.
| | - Gaoxing Dai
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China.
| | - Guofu Deng
- Rice Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Rice Genetics and Breeding, Nanning, 530007, People's Republic of China.
| |
Collapse
|
15
|
Wang C, Wang Z, Cai Y, Zhu Z, Yu D, Hong L, Wang Y, Lv W, Zhao Q, Si L, Liu K, Han B. A higher-yield hybrid rice is achieved by assimilating a dominant heterotic gene in inbred parental lines. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:1669-1680. [PMID: 38450899 PMCID: PMC11123404 DOI: 10.1111/pbi.14295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/22/2023] [Accepted: 01/09/2024] [Indexed: 03/08/2024]
Abstract
The exploitation of heterosis to integrate parental advantages is one of the fastest and most efficient ways of rice breeding. The genomic architecture of heterosis suggests that the grain yield is strongly correlated with the accumulation of numerous rare superior alleles with positive dominance. However, the improvements in yield of hybrid rice have shown a slowdown or even plateaued due to the limited availability of complementary superior alleles. In this study, we achieved a considerable increase in grain yield of restorer lines by inducing an alternative splicing event in a heterosis gene OsMADS1 through CRISPR-Cas9, which accounted for approximately 34.1%-47.5% of yield advantage over their corresponding inbred rice cultivars. To achieve a higher yield in hybrid rice, we crossed the gene-edited restorer parents harbouring OsMADS1GW3p6 with the sterile lines to develop new rice hybrids. In two-line hybrid rice Guang-liang-you 676 (GLY676), the yield of modified hybrids carrying the homozygous heterosis gene OsMADS1GW3p6 significantly exceeded that of the original hybrids with heterozygous OsMADS1. Similarly, the gene-modified F1 hybrids with heterozygous OsMADS1GW3p6 increased grain yield by over 3.4% compared to the three-line hybrid rice Quan-you-si-miao (QYSM) with the homozygous genotype of OsMADS1. Our study highlighted the great potential in increasing the grain yield of hybrid rice by pyramiding a single heterosis gene via CRISPR-Cas9. Furthermore, these results demonstrated that the incomplete dominance of heterosis genes played a major role in yield-related heterosis and provided a promising strategy for breeding higher-yielding rice varieties above what is currently achievable.
Collapse
Affiliation(s)
- Changsheng Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Ziqun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yunxiao Cai
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
- School of Life Science and TechnologyShanghaiTech UniversityShanghaiChina
| | - Zhou Zhu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Danheng Yu
- Department of Life Sciences, Imperial College LondonSouth KensingtonLondonUK
| | - Lei Hong
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Yongchun Wang
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Wei Lv
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Qiang Zhao
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Lizhen Si
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Kun Liu
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| | - Bin Han
- National Center for Gene Research, State Key Laboratory of Plant Molecular Genetics, Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and EcologyChinese Academy of SciencesShanghaiChina
| |
Collapse
|
16
|
Luo H, Zhang Q, Lai R, Zhang S, Yi W, Tang X. Regulation of 2-Acetyl-1-pyrroline Content in Fragrant Rice under Different Temperatures at the Grain-Filling Stage. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:10521-10530. [PMID: 38656141 DOI: 10.1021/acs.jafc.3c08637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
2-Acetyl-1-pyrroline (2-AP) is a key volatile organic compound in fragrant rice aroma. However, the effects of temperature on 2-AP biosynthesis in fragrant rice and its regulation mechanism have been rarely reported. In the present study, three fragrant rice varieties were used as plant materials, and four temperature treatments during the grain-filling stage, i.e., (T1) 22/17 °C, (T2) 27/22 °C, (T3) 32/27 °C, and (T4) 37/32 °C, were adopted. The results showed that grain contents of 2-AP, proline, and γ-aminobutyric acid (GABA) significantly (P < 0.05) increased with decreased temperature, while the lowest and highest 2-AP contents were recorded in the T4 and T1 treatments, respectively. Higher pyrroline-5-carboxylic acid (P5C) content was recorded in low-temperature treatments (T1 and T2) than in high-temperature treatments (T3 and T4). The transcript levels of genes BADH2, PRODH, and OAT significantly (P < 0.05) decreased with decreased temperature. Lower transcript levels of genes P5CR, P5CS2, DAO2, DAO4, and DAO5 were recorded in low-temperature treatments (T1 and T2) than in high-temperature treatments (T3 and T4). In conclusion, low temperature increased 2-AP content and high temperature decreased 2-AP content in fragrant rice. We deduced that temperature regulated 2-AP biosynthesis through the metabolism of proline and GABA.
Collapse
Affiliation(s)
- Haowen Luo
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642, China
| | - Qianqian Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642, China
| | - Rifang Lai
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642, China
| | - Simin Zhang
- College of Agriculture, South China Agricultural University, Guangzhou 510642, China
| | - Wentao Yi
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642, China
| | - Xiangru Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agricultural Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, China
- Guangzhou Key Laboratory for Science and Technology of Aromatic Rice, Guangzhou 510642, China
| |
Collapse
|
17
|
Chen Y, Shi H, Yang G, Liang X, Lin X, Tan S, Guo T, Wang H. OsCRLK2, a Receptor-Like Kinase Identified by QTL Analysis, is Involved in the Regulation of Rice Quality. RICE (NEW YORK, N.Y.) 2024; 17:24. [PMID: 38587574 PMCID: PMC11001810 DOI: 10.1186/s12284-024-00702-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 03/18/2024] [Indexed: 04/09/2024]
Abstract
The quality of rice (Oryza sativa L) is determined by a combination of appearance, flavor, aroma, texture, storage characteristics, and nutritional composition. Rice quality directly influences acceptance by consumers and commercial value. The genetic mechanism underlying rice quality is highly complex, and is influenced by genotype, environment, and chemical factors such as starch type, protein content, and amino acid composition. Minor variations in these chemical components may lead to substantial differences in rice quality. Among these components, starch is the most crucial and influential factor in determining rice quality. In this study, quantitative trait loci (QTLs) associated with eight physicochemical properties related to the rapid viscosity analysis (RVA) profile were identified using a high-density sequence map constructed using recombinant inbred lines (RILs). Fifty-nine QTLs were identified across three environments, among which qGT6.4 was a novel locus co-located across all three environments. By integrating RNA-seq data, we identified the differentially expressed candidate gene OsCRLK2 within the qGT6.4 interval. osclrk2 mutants exhibited decreased gelatinization temperature (GT), apparent amylose content (AAC) and viscosity, and increased chalkiness. Furthermore, osclrk2 mutants exhibited downregulated expression of the majority of starch biosynthesis-related genes compared to wild type (WT) plants. In summary, OsCRLK2, which encodes a receptor-like protein kinase, appears to consistently influence rice quality across different environments. This discovery provides a new genetic resource for use in the molecular breeding of rice cultivars with improved quality.
Collapse
Affiliation(s)
- Ying Chen
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Hanfeng Shi
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Guili Yang
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Xueyu Liang
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Xiaolian Lin
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Siping Tan
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China
| | - Tao Guo
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China.
| | - Hui Wang
- National Engineering Research Center of Plant Aerospace-mutation Breeding, South China Agricultural University, 510642, Guangzhou, China.
| |
Collapse
|
18
|
Zhang H, Liang M, Chen J, Wang H, Ma L. Rapid generation of fragrant thermo-sensitive genic male sterile rice with enhanced disease resistance via CRISPR/Cas9. PLANTA 2024; 259:112. [PMID: 38581602 DOI: 10.1007/s00425-024-04392-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Accepted: 03/17/2024] [Indexed: 04/08/2024]
Abstract
MAIN CONCLUSION The three, by mutagenesis produced genes OsPi21, OsXa5, and OsBADH2, generated novel lines exhibiting desired fragrance and improved resistance. Elite sterile lines are the basis for hybrid rice breeding, and rice quality and disease resistance become the focus of new sterile lines breeding. Since there are few sterile lines with fragrance and high resistance to blast and bacterial blight at the same time in hybrid rice production, we here integrated the simultaneous mutagenesis of three genes, OsPi21, OsXa5, and OsBADH2, into Zhi 5012S, an elite thermo-sensitive genic male sterile (TGMS) variety, using the CRISPR/Cas9 system, thus eventually generated novel sterile lines would exhibit desired popcorn-like fragrance and improved resistance to blast and bacterial blight but without a loss in major agricultural traits such as yield. Collectively, this study develops valuable germplasm resources for the development of two-line hybrid rice with disease resistance, which provides a way to rapid generation of novel TGMS lines with elite traits.
Collapse
Affiliation(s)
- Huali Zhang
- State Key Laboratory of Rice Biology and Breeding and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Minmin Liang
- State Key Laboratory of Rice Biology and Breeding and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Junyu Chen
- State Key Laboratory of Rice Biology and Breeding and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Huimei Wang
- State Key Laboratory of Rice Biology and Breeding and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China
| | - Liangyong Ma
- State Key Laboratory of Rice Biology and Breeding and Chinese National Center for Rice Improvement, China National Rice Research Institute, Hangzhou, 311400, People's Republic of China.
| |
Collapse
|
19
|
Luo J, Amin B, Wu B, Wu B, Huang W, Salmen SH, Fang Z. Blocking of awn development-related gene OsGAD1 coordinately boosts yield and quality of Kam Sweet Rice. PHYSIOLOGIA PLANTARUM 2024; 176:e14229. [PMID: 38413386 DOI: 10.1111/ppl.14229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/04/2024] [Accepted: 02/10/2024] [Indexed: 02/29/2024]
Abstract
Kam Sweet Rice is a high-quality local variety of Guizhou province in China, but most varieties have awns on lemma. In this study, we aimed to obtain awnless varieties of Kam Sweet Rice by blocking the awn development-related gene OsGAD1 using CRISPR/Cas9 technology. We determined that natural variations of the OsGAD1 triggered different lengths of awns of Kam Sweet Rice. We found that the awning rate of the CRISPR lines of OsGAD1 in Guxiangnuo, Goujingao and Gouhuanggang decreased by over 65%, and the number of grains per panicle and yield per plant increased by more than 17% and 20% compared to the wild-types. Furthermore, we indicated that blocking OsGAD1 resulted in an increase of over 2% in the brown rice rate and milled rice rate in these varieties. In addition, the analysis of the transcriptome revealed that the regulation of awn development and yield formation in CRISPR lines of OsGAD1 may involve genes associated with phytohormone and nitrogen pathways. These results suggest that blocking OsGAD1 in Kam Sweet Rice using CRISPR/Cas9 technology can be used for breeding programs seeking high yield and grain quality of Kam Sweet Rice.
Collapse
Affiliation(s)
- Jun Luo
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Bakht Amin
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Bilong Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Bowen Wu
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| | - Weiting Huang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
| | - Saleh H Salmen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Zhongming Fang
- Institute of Rice Industry Technology Research, Key Laboratory of Functional Agriculture of Guizhou Provincial Department of Education, Key Laboratory of Molecular Breeding for Grain and Oil Crops in Guizhou Province, College of Agricultural Sciences, Guizhou University, Guiyang, Guizhou, China
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, Guizhou, China
| |
Collapse
|
20
|
Guo J, Zhou X, Chen D, Chen K, Ye C, Liu J, Liu S, Chen Y, Chen G, Liu C. Effect of Fat Content on Rice Taste Quality through Transcriptome Analysis. Genes (Basel) 2024; 15:81. [PMID: 38254970 PMCID: PMC10815682 DOI: 10.3390/genes15010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/31/2023] [Accepted: 01/03/2024] [Indexed: 01/24/2024] Open
Abstract
Rice is an important crop in the word, and fat is one of the main important nutrient components of rice. The lipid content and fatty acid composition of grains significantly influences the quality of rice. In this study, 94 homozygous recombination inbred lines (RILs) were developed and the crude fat content of them displayed a normal distribution ranging from 0.44% to 2.62%. Based on their taste quality, a positive association between fat content and eating quality was revealed. Then, two lines (FH and FL) were selected with similar agronomic characteristics and different lipid content and taste quality for RNA sequencing analysis, and a total of 619 differentiable expressed genes were detected, primarily enriched in metabolic pathways such as starch and sucrose metabolism, fatty acid metabolism, and amino acid metabolism. The expression of two genes related to fatty acid synthesis and elongation was significantly up-regulated, while the expression of three genes related to fatty acid degradation was significantly down-regulated in FH grains. By using liquid chromatography, the relative levels of palmitic acid and oleic acid were discovered significantly higher in FH grains. Additionally, the comparative genomic analysis was conducted to visualize genomic differences of five genes. Ultimately, two genes (Os07g0417200 and Os12g0102100) were selected to be the key gene to affect the lipid metabolism, especially for the synthesis of unsaturated fatty acids, significantly changing the eating quality of rice. These results provide a theoretical basis for improving the taste quality of rice.
Collapse
Affiliation(s)
- Jie Guo
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Xinqiao Zhou
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Dagang Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Ke Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chanjuan Ye
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Juan Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Shaolong Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Youding Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Guorong Chen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| | - Chuanguang Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (J.G.); (X.Z.); (G.C.)
- Key Laboratory of Genetics and Breeding of High Quality Rice in Southern China (Co-Construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Key Laboratory of New Technology in Rice Breeding, Guangzhou 510640, China
- Guangdong Rice Engineering Laboratory, Guangzhou 510640, China
| |
Collapse
|
21
|
Liao Y, Li M, Wu H, Liao Y, Xin J, Yuan X, Li Y, Wei A, Zou X, Guo D, Xue Z, Zhu G, Wang Z, Xu P, Zhang H, Chen X, Du K, Zhou H, Xia D, Ali A, Wu X. Generation of aroma in three-line hybrid rice through CRISPR/Cas9 editing of BETAINE ALDEHYDE DEHYDROGENASE2 (OsBADH2). PHYSIOLOGIA PLANTARUM 2024; 176:e14206. [PMID: 38356346 DOI: 10.1111/ppl.14206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/10/2024] [Accepted: 01/22/2024] [Indexed: 02/16/2024]
Abstract
Aroma or fragrance in rice is a genetically controlled trait; Its high appreciation by consumers increases the rice market price. Previous studies have revealed that the rice aroma is controlled by a specific gene called BETAINE ALDEHYDE DEHYDROGENASE (OsBADH2), and mutation of this gene leads to the accumulation of an aromatic substance 2-acetyl-1-pyrroline (2-AP). The use of genetic engineering to produce aroma in commercial and cultivated hybrids is a contemporary need for molecular breeding. The current study reports the generation of aroma in the three-line hybrid restorer line Shu-Hui-313 (SH313). We created knock-out (KO) lines of OsBADH2 through the CRISPR/Cas9. The analysis of KO lines revealed a significantly increased content of 2AP in the grains compared with the control. However, other phenotypic traits (plant height, seed setting rate, and 1000-grain weight) were significantly decreased. These KO lines were crossed with a non-aromatic three-line hybrid rice male sterile line (Rong-7-A) to produce Rong-7-You-626 (R7Y626), R7Y627 and R7Y628. The measurement of 2-AP revealed significantly increased contents in these cross combinations. We compared the content of 2-AP in tissues at the booting stage. Data revealed that young spike stalk base contained the highest content of 2-AP and can be used for identification (by simple chewing) of aromatic lines under field conditions. In conclusion, our dataset offers a genetic source and illustrates the generation of aroma in non-aromatic hybrids, and outlines a straightforward identification under field conditions.
Collapse
Affiliation(s)
- Yongxiang Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Mengyuan Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hezhou Wu
- Hu Nan Tao Hua Yuan Agriculture Technology Co., LTD, Changde, China
| | - Yingxiu Liao
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Jialu Xin
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xinmiao Yuan
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Yong Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Aiji Wei
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xuemei Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Daiming Guo
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhenzhen Xue
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Guoxu Zhu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Zhaoning Wang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Peizhou Xu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hongyu Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xiaoqiong Chen
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Kangxi Du
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Hao Zhou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Duo Xia
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Asif Ali
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| | - Xianjun Wu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Rice Research Institute, Sichuan Agricultural University, Chengdu, China
| |
Collapse
|
22
|
Tan J, Shen M, Chai N, Liu Q, Liu YG, Zhu Q. Genome editing for plant synthetic metabolic engineering and developmental regulation. JOURNAL OF PLANT PHYSIOLOGY 2023; 291:154141. [PMID: 38016350 DOI: 10.1016/j.jplph.2023.154141] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/31/2023] [Accepted: 11/17/2023] [Indexed: 11/30/2023]
Abstract
Plant metabolism and development are a reflection of the orderly expression of genetic information intertwined with the environment interactions. Genome editing is the cornerstone for scientists to modify endogenous genes or introduce exogenous functional genes and metabolic pathways, holding immense potential applications in molecular breeding and biosynthesis. Over the course of nearly a decade of development, genome editing has advanced significantly beyond the simple cutting of double-stranded DNA, now enabling precise base and fragment replacements, regulation of gene expression and translation, as well as epigenetic modifications. However, the utilization of genome editing in plant synthetic metabolic engineering and developmental regulation remains exploratory. Here, we provide an introduction and a comprehensive overview of the editing attributes associated with various CRISPR/Cas tools, along with diverse strategies for the meticulous control of plant metabolic pathways and developments. Furthermore, we discuss the limitations of current approaches and future prospects for genome editing-driven plant breeding.
Collapse
Affiliation(s)
- Jiantao Tan
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China.
| | - Mengyuan Shen
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Nan Chai
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qi Liu
- Rice Research Institute, Guangdong Academy of Agricultural Sciences, Key Laboratory of Genetics and Breeding of High-Quality Rice in Southern China (Co-construction by Ministry and Province), Ministry of Agriculture and Rural Affairs, Guangdong Key Laboratory of New Technology in Rice Breeding, Guangdong Rice Engineering Laboratory, Guangzhou, 510640, China
| | - Yao-Guang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Qinlong Zhu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, College of Life Sciences, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
23
|
Yadav B, Majhi A, Phagna K, Meena MK, Ram H. Negative regulators of grain yield and mineral contents in rice: potential targets for CRISPR-Cas9-mediated genome editing. Funct Integr Genomics 2023; 23:317. [PMID: 37837547 DOI: 10.1007/s10142-023-01244-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/27/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023]
Abstract
Rice is a major global staple food crop, and improving its grain yield and nutritional quality has been a major thrust research area since last decades. Yield and nutritional quality are complex traits which are controlled by multiple signaling pathways. Sincere efforts during past decades of research have identified several key genetic and molecular regulators that governed these complex traits. The advent of clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9)-mediated gene knockout approaches has accelerated the development of improved varieties; however, finding out target gene with negative regulatory function in particular trait without giving any pleiotropic effect remains a challenge. Here, we have reviewed past and recent literature and identified important negative regulators of grain yield and mineral contents which could be potential targets for CRISPR-Cas9-mediated gene knockout. Additionally, we have also compiled a list of microRNAs (miRNAs), which target positive regulators of grain yield, plant stress tolerance, and grain mineral contents. Knocking out these miRNAs could help to increase expression of such positive regulators and thus improve the plant trait. The knowledge presented in this review would help to further accelerate the CRISPR-Cas9-mediated trait improvement in rice.
Collapse
Affiliation(s)
- Banita Yadav
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Ashis Majhi
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Kanika Phagna
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India
| | - Mukesh Kumar Meena
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Hasthi Ram
- National Institute of Plant Genome Research (NIPGR), Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
24
|
Shelake RM, Jadhav AM, Bhosale PB, Kim JY. Unlocking secrets of nature's chemists: Potential of CRISPR/Cas-based tools in plant metabolic engineering for customized nutraceutical and medicinal profiles. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2023; 203:108070. [PMID: 37816270 DOI: 10.1016/j.plaphy.2023.108070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/12/2023]
Abstract
Plant species have evolved diverse metabolic pathways to effectively respond to internal and external signals throughout their life cycle, allowing adaptation to their sessile and phototropic nature. These pathways selectively activate specific metabolic processes, producing plant secondary metabolites (PSMs) governed by genetic and environmental factors. Humans have utilized PSM-enriched plant sources for millennia in medicine and nutraceuticals. Recent technological advances have significantly contributed to discovering metabolic pathways and related genes involved in the biosynthesis of specific PSM in different food crops and medicinal plants. Consequently, there is a growing demand for plant materials rich in nutrients and bioactive compounds, marketed as "superfoods". To meet the industrial demand for superfoods and therapeutic PSMs, modern methods such as system biology, omics, synthetic biology, and genome editing (GE) play a crucial role in identifying the molecular players, limiting steps, and regulatory circuitry involved in PSM production. Among these methods, clustered regularly interspaced short palindromic repeats-CRISPR associated protein (CRISPR/Cas) is the most widely used system for plant GE due to its simple design, flexibility, precision, and multiplexing capabilities. Utilizing the CRISPR-based toolbox for metabolic engineering (ME) offers an ideal solution for developing plants with tailored preventive (nutraceuticals) and curative (therapeutic) metabolic profiles in an ecofriendly way. This review discusses recent advances in understanding the multifactorial regulation of metabolic pathways, the application of CRISPR-based tools for plant ME, and the potential research areas for enhancing plant metabolic profiles.
Collapse
Affiliation(s)
- Rahul Mahadev Shelake
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea.
| | - Amol Maruti Jadhav
- Research Institute of Green Energy Convergence Technology (RIGET), Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea
| | - Jae-Yean Kim
- Division of Applied Life Science (BK21 Four Program), Plant Molecular Biology and Biotechnology Research Center, Gyeongsang National University, Jinju, 52828, Republic of Korea; Division of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828, Republic of Korea; Nulla Bio Inc, 501 Jinju-daero, Jinju, 52828, Republic of Korea.
| |
Collapse
|
25
|
Imran M, Farooq MA, Batool A, Shafiq S, Junaid M, Wang J, Tang X. Impact and mitigation of lead, cadmium and micro/nano plastics in fragrant rice. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 334:122224. [PMID: 37479167 DOI: 10.1016/j.envpol.2023.122224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/27/2023] [Accepted: 07/17/2023] [Indexed: 07/23/2023]
Abstract
Heavy metals (HMs) and micro(nano)plastics (MNPs), represent a significant risk to global food supply as well as a potential risk to humankind. Over 50% of the worldwide population eat rice every day, and rice aroma is a significant qualitative trait that is highly valued by consumers and fetches premium prices in the global market. Despite the huge commercial importance of fragrant rice, limited studies were directed to investigate the influence of HMs and MNPs on yield related traits and 2-Acetyl-1-pyrroline (2-AP) compound, mainly responsible for aroma production in fragrant rice. In this review, we found that the interaction of HMs and MNPs in fragrant rice is complex and accumulation of HMs and MNPs was higher in root as compared to the grains. Nutrients and phytohormones mediated mitigation of HMs and MNPs were most effective sustainable strategies. In addition, monitoring the checkpoints of 2-AP biosynthesis and its interaction with HMs and MNPs is challenging. Finally, we explained the potential challenges that fragrant rice faces considering the continuous rise in environmental pollutants and discussed the future avenues of research to improve fragrant rice's yield and qualitative traits.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China; Guangdong Provincial Key Laboratory of Utilization and Conservation of Food and Medicinal Resources in Northern Region, Shaoguan University, Shaoguan, 512005, China
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Ayesha Batool
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Science and Technology, Islamabad, 44000, Pakistan
| | - Sarfraz Shafiq
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, 22060, Pakistan
| | - Muhammad Junaid
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Jun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510641, China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
26
|
Tang Q, Wang X, Jin X, Peng J, Zhang H, Wang Y. CRISPR/Cas Technology Revolutionizes Crop Breeding. PLANTS (BASEL, SWITZERLAND) 2023; 12:3119. [PMID: 37687368 PMCID: PMC10489799 DOI: 10.3390/plants12173119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/10/2023]
Abstract
Crop breeding is an important global strategy to meet sustainable food demand. CRISPR/Cas is a most promising gene-editing technology for rapid and precise generation of novel germplasm and promoting the development of a series of new breeding techniques, which will certainly lead to the transformation of agricultural innovation. In this review, we summarize recent advances of CRISPR/Cas technology in gene function analyses and the generation of new germplasms with increased yield, improved product quality, and enhanced resistance to biotic and abiotic stress. We highlight their applications and breakthroughs in agriculture, including crop de novo domestication, decoupling the gene pleiotropy tradeoff, crop hybrid seed conventional production, hybrid rice asexual reproduction, and double haploid breeding; the continuous development and application of these technologies will undoubtedly usher in a new era for crop breeding. Moreover, the challenges and development of CRISPR/Cas technology in crops are also discussed.
Collapse
Affiliation(s)
- Qiaoling Tang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xujing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Xi Jin
- Hebei Technology Innovation Center for Green Management of Soi-Borne Diseases, Baoding University, Baoding 071000, China;
| | - Jun Peng
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
| | - Haiwen Zhang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| | - Youhua Wang
- National Nanfan Research Institute (Sanya), Chinese Academy of Agricultural Sciences, Sanya 572024, China;
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing 100081, China;
| |
Collapse
|
27
|
Mipeshwaree Devi A, Khedashwori Devi K, Premi Devi P, Lakshmipriyari Devi M, Das S. Metabolic engineering of plant secondary metabolites: prospects and its technological challenges. FRONTIERS IN PLANT SCIENCE 2023; 14:1171154. [PMID: 37251773 PMCID: PMC10214965 DOI: 10.3389/fpls.2023.1171154] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/17/2023] [Indexed: 05/31/2023]
Abstract
Plants produce a wide range of secondary metabolites that play vital roles for their primary functions such as growth, defence, adaptations or reproduction. Some of the plant secondary metabolites are beneficial to mankind as nutraceuticals and pharmaceuticals. Metabolic pathways and their regulatory mechanism are crucial for targeting metabolite engineering. The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9-mediated system has been widely applied in genome editing with high accuracy, efficiency, and multiplex targeting ability. Besides its vast application in genetic improvement, the technique also facilitates a comprehensive profiling approach to functional genomics related to gene discovery involved in various plant secondary metabolic pathways. Despite these wide applications, several challenges limit CRISPR/Cas system applicability in genome editing in plants. This review highlights updated applications of CRISPR/Cas system-mediated metabolic engineering of plants and its challenges.
Collapse
Affiliation(s)
| | | | | | | | - Sudripta Das
- Plant Bioresources Division, Institute of Bioresources and Sustainable Development, Imphal, Manipur, India
| |
Collapse
|
28
|
Shi T, Gao Y, Xu A, Wang R, Lyu M, Sun Y, Chen L, Liu Y, Luo R, Wang H, Liu J. A fast breeding strategy creates fragrance- and anthocyanin-enriched rice lines by marker-free gene-editing and hybridization. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:23. [PMID: 37313528 PMCID: PMC10248702 DOI: 10.1007/s11032-023-01369-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/06/2023] [Indexed: 06/15/2023]
Abstract
As rice is a staple food for nearly half of the world's population, rice varieties with excellent agronomic traits as well as high flavor and nutritional quality such as fragrant rice and purple rice are naturally favored by the market. In the current study, we adopt a fast breeding strategy to improve the aroma and anthocyanin content in the excellent rice inbred line, F25. The strategy skillfully used the advantages of obtaining editing pure lines in T0 generation of CRISPR/Cas9 editing system and easy observation of purple character and grain shape, integrated the subsequent screening of non-transgenic lines, and the elimination of undesirable edited variants from gene-editing and cross-breeding at the same time as the separation of the progeny from the purple cross, thus expediting the breeding process. Compared with conventional breeding strategies, this strategy saves about 6-8 generations and reduces breeding costs. Firstly, we edited the OsBADH2 gene associated with rice flavor using an Agrobacterium-mediated CRISPR/Cas9 system to improve the aroma of F25. In the T0 generation, a homozygous OsBADH2-edited F25 line (F25B) containing more of the scented substance 2-AP was obtained. Then, we crossed F25B (♀) with a purple rice inbred line, P351 (♂), with high anthocyanin enrichment to improve the anthocyanin content of F25. After nearly 2.5 years of screening and identification over five generations, the undesirable variation characteristics caused by gene-editing and hybridization and the transgenic components were screened out. Finally, the improved F25 line with highly stable aroma component, 2-AP, increased anthocyanin content and no exogenous transgenic components were obtained. This study not only provides high-quality aromatic anthocyanin rice lines that meet the market demand, but also offers a reference for the comprehensive use of CRISPR/Cas9 editing technology, hybridization, and marker-assisted selection to accelerate multi-trait improvement and breeding process. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-023-01369-1.
Collapse
Affiliation(s)
- Tiantian Shi
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Ying Gao
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Andi Xu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Rui Wang
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Mingjie Lyu
- Institute of Germplasm Resources and Biotechnology, Tianjin Academy of Agricultural Sciences, Tianjin, 300112 China
| | - Yinglu Sun
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Luoying Chen
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
- Tianjin Agricultural University, Tianjin, 300392 China
| | - Yuanhang Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Rong Luo
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| | - Huan Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences (CAAS), Beijing, 100081 China
- Chengdu National Agricultural Science and Technology Center, Chengdu, 610213 Sichuan China
| | - Jun Liu
- National Key Facility for Crop Gene Resources and Genetic Improvement (NFCRI), Institute of Crop Sciences, Chinese Academy of Agriculture Sciences (CAAS), Beijing, 100081 China
| |
Collapse
|
29
|
Zhang C, Yun P, Xia J, Zhou K, Wang L, Zhang J, Zhao B, Yin D, Fu Z, Wang Y, Ma T, Li Z, Wu D. CRISPR/Cas9-mediated editing of Wx and BADH2 genes created glutinous and aromatic two-line hybrid rice. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2023; 43:24. [PMID: 37313522 PMCID: PMC10248662 DOI: 10.1007/s11032-023-01368-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/02/2023] [Indexed: 06/15/2023]
Abstract
Amylose content (AC) is one of the physicochemical indexes of rice quality, which is largely determined by the Waxy (Wx) gene. Fragrance in rice is favored because it adds good flavor and a faint scent. Loss of function of the BADH2 (FGR) gene promotes the biosynthesis of 2-acetyl-1-pyrroline (2AP), which is the main compound responsible for aroma in rice. Here, we used a CRISPR/Cas9 system to simultaneously knock out Wx and FGR genes in 1892S and M858, which are the parents of an indica two-line hybrid rice, Huiliangyou 858 (HLY858). Four T-DNA-free homozygous mutants (1892Swxfgr-1, 1892Swxfgr-2, M858wxfgr-1, and M858wxfgr-2) were obtained. The 1892Swxfgr and M858wxfgr were crossed to generate double mutant hybrid lines HLY858wxfgr-1 and HLY858wxfgr-2. Size-exclusion chromatography (SEC) data indicated that true AC of the wx mutant starches ranged from 0.22 to 1.63%, much lower than those of the wild types (12.93 to 13.76%). However, the gelatinization temperature (GT) of the wx mutants in backgrounds of 1892S, M858, and HLY858 were still high, and showed no significant differences with the wild type controls. The aroma compounds 2AP content in grains of HLY858wxfgr-1 and HLY858wxfgr-2 were 153.0 μg/kg and 151.0 μg/kg, respectively. In contrast, 2AP was not detected in grains of HLY858. There were no significant differences in major agronomic traits between the mutants and HLY858. This study provides guidelines for cultivation of ideal glutinous and aromatic hybrid rice by gene editing.
Collapse
Affiliation(s)
- Caijuan Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Peng Yun
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Jiafa Xia
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Kunneng Zhou
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Lili Wang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Jingwen Zhang
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Bo Zhao
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Daokun Yin
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Zhe Fu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| | - Yuanlei Wang
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Tingchen Ma
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Zefu Li
- Rice Research Institute/Key Laboratory of Rice Genetics and Breeding of Anhui Province, Anhui Academy of Agricultural Sciences, Hefei, 230031 China
| | - Dexiang Wu
- College of Agronomy, Anhui Agricultural University, Hefei, 230036 China
| |
Collapse
|
30
|
Imran M, Shafiq S, Ashraf U, Qi J, Mo Z, Tang X. Biosynthesis of 2-Acetyl-1-pyrroline in Fragrant Rice: Recent Insights into Agro-management, Environmental Factors, and Functional Genomics. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:4201-4215. [PMID: 36880506 DOI: 10.1021/acs.jafc.2c07934] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Rice is a staple food for more than half of the world's population, and rice fragrance is a key quality attribute which is highly desired by consumers and attracts premium prices in the international market. There are around 200 volatile compounds involved in rice fragrance, but 2-acetyl-1-pyrroline (2-AP) has been considered a master regulator of aroma in fragrant rice. Consequently, efforts were made to increase the 2-AP contents in the grain by managing agronomical practices or by using modern functional genomic tools, which successfully converted nonfragrant cultivars to fragrant rice. Furthermore, environmental factors were also reported to influence the 2-AP contents. However, a comprehensive analysis of 2-AP biosynthesis in response to agro-management practices, environmental factors, and the application of functional genomic tools for fragrant rice production was missing. In this Review, we summarize how micro/macronutrients, cultivation practices, amino acid precursors, growth regulators, and environmental factors, such as drought, salinity, light, and temperature, influence the 2-AP biosynthesis to modulate the aroma of fragrant rice. Furthermore, we also summarized the successful conversion of nonfragrant rice cultivars to fragrant rice using modern gene editing tools, such as RNAi, TALENS, and CRISPR-Cas9. Finally, we discussed and highlighted the future perspective and challenges related to the aroma of fragrant rice.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan 512005, P. R. China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, 1151 Richmond St., London, ON N6A5B8, Canada
| | - Umair Ashraf
- Department of Botany, Division of Science and Technology, University of Education, Lahore 54770, Pakistan
| | - Jianying Qi
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
| | - Zhaowen Mo
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou 510642, P. R. China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou 510642, P. R. China
| |
Collapse
|
31
|
Jiang S, Zhang X, Yang X, Liu C, Wang L, Ma B, Miao Y, Hu J, Tan K, Wang Y, Jiang H, Wang J. A chromosome-level genome assembly of an early matured aromatic Japonica rice variety Qigeng10 to accelerate rice breeding for high grain quality in Northeast China. FRONTIERS IN PLANT SCIENCE 2023; 14:1134308. [PMID: 36909446 PMCID: PMC9995481 DOI: 10.3389/fpls.2023.1134308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Early-matured aromatic japonica rice from the Northeast is the most popular rice commodity in the Chinese market. The Qigeng10 (QG10) was one of the varieties with the largest planting area in this region in recent years. It was an early-matured japonica rice variety with a lot of superior traits such as semi-dwarf, lodging resistance, long grain, aromatic and good quality. Therefore, a high-quality assembly of Qigeng10 genome is critical and useful for japonica research and breeding. In this study, we produced a high-precision QG10 chromosome-level genome by using a combination of Nanopore and Hi-C platforms. Finally, we assembled the QG10 genome into 77 contigs with an N50 length of 11.80 Mb in 27 scaffolds with an N50 length of 30.55 Mb. The assembled genome size was 378.31Mb with 65 contigs and constituted approximately 99.59% of the 12 chromosomes. We identified a total of 1,080,819 SNPs and 682,392 InDels between QG10 and Nipponbare. We also annotated 57,599 genes by the Ab initio method, homology-based technique, and RNA-seq. Based on the assembled genome sequence, we detected the sequence variation in a total of 63 cloned genes involved in grain yield, grain size, disease tolerance, lodging resistance, fragrance, and many other important traits. Finally, we identified five elite alleles (qTGW2Nipponbare , qTGW3Nanyangzhan , GW5IR24 , GW6Suyunuo , and qGW8Basmati385 ) controlling long grain size, four elite alleles (COLD1Nipponbare , bZIP73Nipponbare , CTB4aKunmingxiaobaigu , and CTB2Kunmingxiaobaigu ) controlling cold tolerance, three non-functional alleles (DTH7Kitaake , Ghd7Hejiang19 , and Hd1Longgeng31 ) for early heading, two resistant alleles (PiaAkihikari and Pid4Digu ) for rice blast, a resistant allele STV11Kasalath for rice stripe virus, an NRT1.1BIR24 allele for higher nitrate absorption activity, an elite allele SCM3Chugoku117 for stronger culms, and the typical aromatic gene badh2-E2 for fragrance in QG10. These results not only help us to better elucidate the genetic mechanisms underlying excellent agronomic traits in QG10 but also have wide-ranging implications for genomics-assisted breeding in early-matured fragrant japonica rice.
Collapse
Affiliation(s)
- Shukun Jiang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Xijuan Zhang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Xianli Yang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Chuanzeng Liu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Lizhi Wang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| | - Bo Ma
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Yi Miao
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Jifang Hu
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Kefei Tan
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Yuxian Wang
- Qiqihar Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
- Northeast Branch of National Salt-Alkali Tolerant Rice Technology Innovation Center, Harbin, China
| | - Hui Jiang
- Keshan Branch of Heilongjiang Academy of Agricultural Sciences, Qiqihar, China
| | - Junhe Wang
- Heilongjiang Provincial Key Laboratory of Crop Physiology and Ecology in Cold Region, Heilongjiang Provincial Engineering Technology Research Center of Crop Cold Damage, Harbin, China
- Crop Cultivation and Tillage Institute of Heilongjiang Academy of Agricultural Sciences, Harbin, China
| |
Collapse
|
32
|
Molecular bases of rice grain size and quality for optimized productivity. Sci Bull (Beijing) 2023; 68:314-350. [PMID: 36710151 DOI: 10.1016/j.scib.2023.01.026] [Citation(s) in RCA: 104] [Impact Index Per Article: 52.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 01/19/2023]
Abstract
The accomplishment of further optimization of crop productivity in grain yield and quality is a great challenge. Grain size is one of the crucial determinants of rice yield and quality; all of these traits are typical quantitative traits controlled by multiple genes. Research advances have revealed several molecular and developmental pathways that govern these traits of agronomical importance. This review provides a comprehensive summary of these pathways, including those mediated by G-protein, the ubiquitin-proteasome system, mitogen-activated protein kinase, phytohormone, transcriptional regulators, and storage product biosynthesis and accumulation. We also generalize the excellent precedents for rice variety improvement of grain size and quality, which utilize newly developed gene editing and conventional gene pyramiding capabilities. In addition, we discuss the rational and accurate breeding strategies, with the aim of better applying molecular design to breed high-yield and superior-quality varieties.
Collapse
|
33
|
Imran M, Shafiq S, Tang X. CRISPR-Cas9-mediated editing of BADH2 gene triggered fragrance revolution in rice. PHYSIOLOGIA PLANTARUM 2023; 175:e13871. [PMID: 36748269 DOI: 10.1111/ppl.13871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 12/26/2022] [Accepted: 02/01/2023] [Indexed: 06/18/2023]
Abstract
Fragrance is one of the most important quality traits for breeding in rice. The natural aroma substance 2-acetyl-1-pyrroline (2-AP) is a key fragrance compound among over 200 volatiles identified in fragrant rice. In addition to rice, there are other plant species that contain a germplasm that naturally produces a fragrant aroma. These other plant species all have lower activity levels of the enzyme BETAINE ALDEHYDE DEHYDROGENASE 2 (BADH2). Therefore, improving fragrance efficiency has been a focus of intensive research. Recent studies have engineered BADH2 gene, which is responsible for fragrance trait in non-fragrant cultivars of rice, using CRISPR-Cas9. Although engineering rice BADH2 can be useful for upregulating 2-AP, there are still a lot of restrictions on how it can be applied in practice. In this review article, we discuss the recent developments in BADH2 editing and propose potential future strategies to effectively target BADH2 for transcriptional regulation, with the goal of producing a better fragrance.
Collapse
Affiliation(s)
- Muhammad Imran
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
- Yingdong College of Biology and Agriculture, Shaoguan University, Shaoguan, China
| | - Sarfraz Shafiq
- Department of Anatomy and Cell Biology, University of Western Ontario, London, Ontario, Canada
| | - Xiangru Tang
- Department of Crop Science and Technology, College of Agriculture, South China Agricultural University, Guangzhou, China
- Scientific Observing and Experimental Station of Crop Cultivation in South China, Ministry of Agriculture, Guangzhou, China
| |
Collapse
|
34
|
Kumar D, Yadav A, Ahmad R, Dwivedi UN, Yadav K. CRISPR-Based Genome Editing for Nutrient Enrichment in Crops: A Promising Approach Toward Global Food Security. Front Genet 2022; 13:932859. [PMID: 35910203 PMCID: PMC9329789 DOI: 10.3389/fgene.2022.932859] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 06/08/2022] [Indexed: 12/21/2022] Open
Abstract
The global malnutrition burden imparts long-term developmental, economic, social, and medical consequences to individuals, communities, and countries. The current developments in biotechnology have infused biofortification in several food crops to fight malnutrition. However, these methods are not sustainable and suffer from several limitations, which are being solved by the CRISPR-Cas-based system of genome editing. The pin-pointed approach of CRISPR-based genome editing has made it a top-notch method due to targeted gene editing, thus making it free from ethical issues faced by transgenic crops. The CRISPR-Cas genome-editing tool has been extensively used in crop improvement programs due to its more straightforward design, low methodology cost, high efficiency, good reproducibility, and quick cycle. The system is now being utilized in the biofortification of cereal crops such as rice, wheat, barley, and maize, including vegetable crops such as potato and tomato. The CRISPR-Cas-based crop genome editing has been utilized in imparting/producing qualitative enhancement in aroma, shelf life, sweetness, and quantitative improvement in starch, protein, gamma-aminobutyric acid (GABA), oleic acid, anthocyanin, phytic acid, gluten, and steroidal glycoalkaloid contents. Some varieties have even been modified to become disease and stress-resistant. Thus, the present review critically discusses CRISPR-Cas genome editing-based biofortification of crops for imparting nutraceutical properties.
Collapse
Affiliation(s)
- Dileep Kumar
- Department of Biochemistry, University of Lucknow, Lucknow, India
| | - Anurag Yadav
- Department of Microbiology, College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agriculture University, Banaskantha, India
| | - Rumana Ahmad
- Department of Biochemistry, Era Medical University and Hospital, Lucknow, India
| | | | - Kusum Yadav
- Department of Biochemistry, University of Lucknow, Lucknow, India
| |
Collapse
|
35
|
Sreenivasulu N, Zhang C, Tiozon RN, Liu Q. Post-genomics revolution in the design of premium quality rice in a high-yielding background to meet consumer demands in the 21st century. PLANT COMMUNICATIONS 2022; 3:100271. [PMID: 35576153 PMCID: PMC9251384 DOI: 10.1016/j.xplc.2021.100271] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 05/14/2023]
Abstract
The eating and cooking quality (ECQ) of rice is critical for determining its economic value in the marketplace and promoting consumer acceptance. It has therefore been of paramount importance in rice breeding programs. Here, we highlight advances in genetic studies of ECQ and discuss prospects for further enhancement of ECQ in rice. Innovations in gene- and genome-editing techniques have enabled improvements in rice ECQ. Significant genes and quantitative trait loci (QTLs) have been shown to regulate starch composition, thereby affecting amylose content and thermal and pasting properties. A limited number of genes/QTLs have been identified for other ECQ properties such as protein content and aroma. Marker-assisted breeding has identified rare alleles in diverse genetic resources that are associated with superior ECQ properties. The post-genomics-driven information summarized in this review is relevant for augmenting current breeding strategies to meet consumer preferences and growing population demands.
Collapse
Affiliation(s)
- Nese Sreenivasulu
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines.
| | - Changquan Zhang
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China
| | - Rhowell N Tiozon
- Consumer Driven Grain Quality and Nutrition Unit, Rice Breeding and Innovation Platform, International Rice Research Institute, Los Baños 4030, Philippines; Max Planck Institute of Molecular Plant Physiology, Am Mühlenberg 1, 14476 Potsdam-Golm, Germany
| | - Qiaoquan Liu
- Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, College of Agriculture, Yangzhou University, Yangzhou 225009, China; Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Jiangsu Key Laboratory of Crop Genetics and Physiology, Yangzhou University, Yangzhou 225009, China.
| |
Collapse
|
36
|
Qian L, Jin H, Yang Q, Zhu L, Yu X, Fu X, Zhao M, Yuan F. A Sequence Variation in GmBADH2 Enhances Soybean Aroma and Is a Functional Marker for Improving Soybean Flavor. Int J Mol Sci 2022; 23:4116. [PMID: 35456933 PMCID: PMC9030070 DOI: 10.3390/ijms23084116] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/25/2022] [Accepted: 04/03/2022] [Indexed: 12/10/2022] Open
Abstract
The vegetable soybean (Glycine max L. Merr.) plant is commonly consumed in Southeast Asian countries because of its nutritional value and desirable taste. A "pandan-like" aroma is an important value-added quality trait that is rarely found in commercial vegetable soybean varieties. In this study, three novel aromatic soybean cultivars with a fragrant volatile compound were isolated. We confirmed that the aroma of these cultivars is due to the potent volatile compound 2-acetyl-1-pyrroline (2AP) that was previously identified in soybean. A sequence comparison of GmBADH1/2 (encoding an aminoaldehyde dehydrogenase) between aromatic and non-aromatic soybean varieties revealed a mutation with 10 SNPs and an 11-nucleotide deletion in exon 1 of GmBADH2 in Quxian No. 1 and Xiangdou. Additionally, a 2-bp deletion was detected in exon 10 of GmBADH2 in ZK1754. The mutations resulted in a frame shift and the introduction of premature stop codons. Moreover, genetic analyses indicated that the aromatic trait in these three varieties was inherited according to a single recessive gene model. These results suggested that a mutated GmBADH2 may be responsible for the aroma of these three aromatic soybean cultivars. The expression and function of GmBADH2 in aromatic soybean seeds were confirmed by qRT-PCR and CRISPR/Cas9. A functional marker developed on the basis of the mutated GmBADH2 sequence in Quxian No. 1 and Xiangdou was validated in an F2 population. A perfect association between the marker genotypes and aroma phenotypes implied that GmBADH2 is a major aroma-conferring gene. The results of this study are potentially useful for an in-depth analysis of the molecular basis of 2-AP formation in soybean and the marker-assisted breeding of aromatic vegetable soybean cultivars.
Collapse
Affiliation(s)
- Linlin Qian
- Hangzhou Sub-Center of National Soybean Improvement, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.Q.); (H.J.); (Q.Y.); (L.Z.); (X.Y.); (X.F.)
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- The National and Local Joint Engineering Research Center for Bio-Manufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Hangxia Jin
- Hangzhou Sub-Center of National Soybean Improvement, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.Q.); (H.J.); (Q.Y.); (L.Z.); (X.Y.); (X.F.)
- Zhejiang Key Laboratory of Digital Dry Land Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qinghua Yang
- Hangzhou Sub-Center of National Soybean Improvement, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.Q.); (H.J.); (Q.Y.); (L.Z.); (X.Y.); (X.F.)
- Key Laboratory of Information Traceability for Agricultural Products, Ministry of Agriculture and Rural Affairs of China, Hangzhou 310021, China
- Zhejiang Key Laboratory of Digital Dry Land Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Longming Zhu
- Hangzhou Sub-Center of National Soybean Improvement, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.Q.); (H.J.); (Q.Y.); (L.Z.); (X.Y.); (X.F.)
- Zhejiang Key Laboratory of Digital Dry Land Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xiaomin Yu
- Hangzhou Sub-Center of National Soybean Improvement, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.Q.); (H.J.); (Q.Y.); (L.Z.); (X.Y.); (X.F.)
- Zhejiang Key Laboratory of Digital Dry Land Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xujun Fu
- Hangzhou Sub-Center of National Soybean Improvement, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.Q.); (H.J.); (Q.Y.); (L.Z.); (X.Y.); (X.F.)
- Zhejiang Key Laboratory of Digital Dry Land Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Man Zhao
- The National and Local Joint Engineering Research Center for Bio-Manufacturing of Chiral Chemicals, College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310014, China;
| | - Fengjie Yuan
- Hangzhou Sub-Center of National Soybean Improvement, Institute of Crop and Nuclear Technology Utilization, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; (L.Q.); (H.J.); (Q.Y.); (L.Z.); (X.Y.); (X.F.)
- Zhejiang Key Laboratory of Digital Dry Land Crops, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
37
|
Li P, Chen YH, Lu J, Zhang CQ, Liu QQ, Li QF. Genes and Their Molecular Functions Determining Seed Structure, Components, and Quality of Rice. RICE (NEW YORK, N.Y.) 2022; 15:18. [PMID: 35303197 PMCID: PMC8933604 DOI: 10.1186/s12284-022-00562-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 03/01/2022] [Indexed: 05/14/2023]
Abstract
With the improvement of people's living standards and rice trade worldwide, the demand for high-quality rice is increasing. Therefore, breeding high quality rice is critical to meet the market demand. However, progress in improving rice grain quality lags far behind that of rice yield. This might be because of the complexity of rice grain quality research, and the lack of consensus definition and evaluation standards for high quality rice. In general, the main components of rice grain quality are milling quality (MQ), appearance quality (AQ), eating and cooking quality (ECQ), and nutritional quality (NQ). Importantly, all these quality traits are determined directly or indirectly by the structure and composition of the rice seeds. Structurally, rice seeds mainly comprise the spikelet hull, seed coat, aleurone layer, embryo, and endosperm. Among them, the size of spikelet hull is the key determinant of rice grain size, which usually affects rice AQ, MQ, and ECQ. The endosperm, mainly composed of starch and protein, is the major edible part of the rice seed. Therefore, the content, constitution, and physicochemical properties of starch and protein are crucial for multiple rice grain quality traits. Moreover, the other substances, such as lipids, minerals, vitamins, and phytochemicals, included in different parts of the rice seed, also contribute significantly to rice grain quality, especially the NQ. Rice seed growth and development are precisely controlled by many genes; therefore, cloning and dissecting these quality-related genes will enhance our knowledge of rice grain quality and will assist with the breeding of high quality rice. This review focuses on summarizing the recent progress on cloning key genes and their functions in regulating rice seed structure and composition, and their corresponding contributions to rice grain quality. This information will facilitate and advance future high quality rice breeding programs.
Collapse
Affiliation(s)
- Pei Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Yu-Hao Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Jun Lu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Chang-Quan Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China
| | - Qiao-Quan Liu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| | - Qian-Feng Li
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Jiangsu Key Laboratory of Crop Genetics and Physiology/State Key Laboratory of Hybrid Rice, College of Agriculture, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
- Co-Innovation Center for Modern Production Technology of Grain Crops of Jiangsu Province/Key Laboratory of Plant Functional Genomics of the Ministry of Education, Yangzhou University, Yangzhou, 225009, Jiangsu, China.
| |
Collapse
|
38
|
Yang Y, Xu C, Shen Z, Yan C. Crop Quality Improvement Through Genome Editing Strategy. Front Genome Ed 2022; 3:819687. [PMID: 35174353 PMCID: PMC8841430 DOI: 10.3389/fgeed.2021.819687] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 12/30/2021] [Indexed: 11/13/2022] Open
Abstract
Good quality of crops has always been the most concerning aspect for breeders and consumers. However, crop quality is a complex trait affected by both the genetic systems and environmental factors, thus, it is difficult to improve through traditional breeding strategies. Recently, the CRISPR/Cas9 genome editing system, enabling efficiently targeted modification, has revolutionized the field of quality improvement in most crops. In this review, we briefly review the various genome editing ability of the CRISPR/Cas9 system, such as gene knockout, knock-in or replacement, base editing, prime editing, and gene expression regulation. In addition, we highlight the advances in crop quality improvement applying the CRISPR/Cas9 system in four main aspects: macronutrients, micronutrients, anti-nutritional factors and others. Finally, the potential challenges and future perspectives of genome editing in crop quality improvement is also discussed.
Collapse
Affiliation(s)
- Yihao Yang
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| | - Chenda Xu
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Ziyan Shen
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
| | - Changjie Yan
- Jiangsu Key Laboratory of Crop Genetics and Physiology/Key Laboratory of Plant Functional Genomics of the Ministry of Education/Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding, Yangzhou, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou, China
- Department of Crop Genetics and Breeding, Agricultural College of Yangzhou University, Yangzhou, China
| |
Collapse
|
39
|
Sharma SK, Gupta OP, Pathaw N, Sharma D, Maibam A, Sharma P, Sanasam J, Karkute SG, Kumar S, Bhattacharjee B. CRISPR-Cas-Led Revolution in Diagnosis and Management of Emerging Plant Viruses: New Avenues Toward Food and Nutritional Security. Front Nutr 2022; 8:751512. [PMID: 34977113 PMCID: PMC8716883 DOI: 10.3389/fnut.2021.751512] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/31/2021] [Indexed: 12/14/2022] Open
Abstract
Plant viruses pose a serious threat to agricultural production systems worldwide. The world's population is expected to reach the 10-billion mark by 2057. Under the scenario of declining cultivable land and challenges posed by rapidly emerging and re-emerging plant pathogens, conventional strategies could not accomplish the target of keeping pace with increasing global food demand. Gene-editing techniques have recently come up as promising options to enable precise changes in genomes with greater efficiency to achieve the target of higher crop productivity. Of genome engineering tools, clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated (Cas) proteins have gained much popularity, owing to their simplicity, reproducibility, and applicability in a wide range of species. Also, the application of different Cas proteins, such as Cas12a, Cas13a, and Cas9 nucleases, has enabled the development of more robust strategies for the engineering of antiviral mechanisms in many plant species. Recent studies have revealed the use of various CRISPR-Cas systems to either directly target a viral gene or modify a host genome to develop viral resistance in plants. This review provides a comprehensive record of the use of the CRISPR-Cas system in the development of antiviral resistance in plants and discusses its applications in the overall enhancement of productivity and nutritional landscape of cultivated plant species. Furthermore, the utility of this technique for the detection of various plant viruses could enable affordable and precise in-field or on-site detection. The futuristic potential of CRISPR-Cas technologies and possible challenges with their use and application are highlighted. Finally, the future of CRISPR-Cas in sustainable management of viral diseases, and its practical utility and regulatory guidelines in different parts of the globe are discussed systematically.
Collapse
Affiliation(s)
| | - Om Prakash Gupta
- Division of Quality & Basic Science, ICAR-Indian Institute of Wheat and Barley Research, Karnal, India
| | - Neeta Pathaw
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Devender Sharma
- Crop Improvement Division, ICAR-Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, India
| | - Albert Maibam
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Parul Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, India
| | - Jyotsana Sanasam
- ICAR Research Complex for NEH Region, Manipur Centre, Imphal, India
| | - Suhas Gorakh Karkute
- Division of Crop Improvement, ICAR-Indian Institute of Vegetable Research, Varanasi, India
| | - Sandeep Kumar
- Department of Plant Pathology, Odisha University of Agriculture & Technology, Bhubaneswar, India
| | | |
Collapse
|