1
|
Qiu Y, Lu F, Yang B, Hu X, Zhao Y, Ding M, Yang L, Rong J. A Bread Wheat Line with the Substituted Wild Emmer Chromosome 4A Results in Fragment Deletions of Chromosome 4B and Weak Plants. PLANTS (BASEL, SWITZERLAND) 2025; 14:1134. [PMID: 40219201 PMCID: PMC11991261 DOI: 10.3390/plants14071134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 04/03/2025] [Accepted: 04/03/2025] [Indexed: 04/14/2025]
Abstract
In response to the growing genetic uniformity within wheat populations, developing efficient wheat-alien translocation strategies has become critically important. We observed that several offspring of the common wheat (Triticum aestivum L.)-wild emmer (Triticum turgidum L. var. dicoccoides) chromosome arm substitution line (CASL4AL) exhibited stunted growth, including significantly reduced plant height, spike length, spikelet number, and stem width compared to normal plants. Integrative transcriptomic analyses (RNA-Seq and BSR-Seq) revealed a statistically significant depletion (p < 0.01) of single nucleotide polymorphisms (SNPs) on chromosome 4B in compromised plants. Chromosome association analysis of differentially expressed genes (DEGs, up- or downregulated) revealed that downregulated genes were predominantly located on chromosome 4B. The 1244 downregulated DEGs on Chr4B were employed for Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, and RNA metabolic processes, DNA repair, and transport systems were significantly enriched by GO analysis; however, only the mRNA surveillance pathway was enriched by KEGG enrichment. Molecular marker profiling showed a complete absence of target amplification in the critical 0-155 Mb region of chromosome 4B in all weak plants. Pearson's correlation coefficients confirmed significant associations (p < 0.01) between 4B-specific amplification and weak phenotypes. These results demonstrate that 4B segmental deletions drive weak phenotypes in CASL4AL progeny, and provide experimental evidence for chromosome deletions induced in wild emmer chromosome substitution lines. This study highlights the potential of wild emmer as a valuable tool for generating chromosomal variations in wheat breeding programs.
Collapse
Affiliation(s)
- Yu Qiu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.Q.); (F.L.); (B.Y.); (X.H.); (J.R.)
| | - Fei Lu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.Q.); (F.L.); (B.Y.); (X.H.); (J.R.)
- Institute of Future Agriculture, Northwest A&F University, Yangling 712100, China
| | - Bohao Yang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.Q.); (F.L.); (B.Y.); (X.H.); (J.R.)
| | - Xin Hu
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.Q.); (F.L.); (B.Y.); (X.H.); (J.R.)
| | - Yanhao Zhao
- Tonglu County Agricultural Technology Extension Centre, Hangzhou 311500, China;
| | - Mingquan Ding
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.Q.); (F.L.); (B.Y.); (X.H.); (J.R.)
| | - Lei Yang
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.Q.); (F.L.); (B.Y.); (X.H.); (J.R.)
| | - Junkang Rong
- College of Advanced Agricultural Sciences, Zhejiang A&F University, Hangzhou 311300, China; (Y.Q.); (F.L.); (B.Y.); (X.H.); (J.R.)
| |
Collapse
|
2
|
Grewal S, Yang CY, Krasheninnikova K, Collins J, Wood JMD, Ashling S, Scholefield D, Kaithakottil GG, Swarbreck D, Yao E, Sen TZ, King IP, King J. Chromosome-level haplotype-resolved genome assembly of bread wheat's wild relative Aegilops mutica. Sci Data 2025; 12:438. [PMID: 40082453 PMCID: PMC11906796 DOI: 10.1038/s41597-025-04737-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 02/28/2025] [Indexed: 03/16/2025] Open
Abstract
Bread wheat (Triticum aestivum) is a vital staple crop, with an urgent need for increased production to help feed the world's growing population. Aegilops mutica (2n = 2x = 14; T genome) is a diploid wild relative of wheat carrying valuable agronomic traits resulting in its extensive exploitation for wheat improvement. This paper reports a chromosome-scale, haplotype-resolved genome assembly of Ae. mutica using HiFi reads and Omni-C data. The final lengths for the curated genomes were ~4.65 Gb (haplotype 1) and 4.56 Gb (haplotype 2), featuring a contig N50 of ~4.35 Mb and ~4.60 Mb, respectively. Genome annotation predicted 96,723 gene models and repeats. In summary, the genome assembly of Ae. mutica provides a valuable resource for the wheat breeding community, facilitating faster and more efficient pre-breeding of wheat to enhance food security.
Collapse
Affiliation(s)
- Surbhi Grewal
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK.
| | - Cai-Yun Yang
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | | | - Joanna Collins
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Jonathan M D Wood
- Wellcome Sanger Institute, Wellcome Trust Genome Campus, Hinxton, CB10 1RQ, UK
| | - Stephen Ashling
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Duncan Scholefield
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | | | - David Swarbreck
- Earlham Institute, Norwich Research Park, Norwich, NR4 7UZ, UK
| | - Eric Yao
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
| | - Taner Z Sen
- United States Department of Agriculture-Agricultural Research Service, Western Regional Research Center, Crop Improvement and Genetics Research Unit, 800 Buchanan St., Albany, CA, 94710, USA
- University of California, Department of Bioengineering, Berkeley, CA, 94720, USA
| | - Ian P King
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| | - Julie King
- Wheat Research Centre, School of Biosciences, University of Nottingham, Loughborough, LE12 5RD, UK
| |
Collapse
|
3
|
Qi G, Si Z, Xuan L, Han Z, Hu Y, Fang L, Dai F, Zhang T. Unravelling the genetic basis and regulation networks related to fibre quality improvement using chromosome segment substitution lines in cotton. PLANT BIOTECHNOLOGY JOURNAL 2024; 22:3135-3150. [PMID: 39046162 PMCID: PMC11500987 DOI: 10.1111/pbi.14436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/25/2024]
Abstract
The elucidation of genetic architecture and molecular regulatory networks underlying complex traits remains a significant challenge in life science, largely due to the substantial background effects that arise from epistasis and gene-environment interactions. The chromosome segment substitution line (CSSL) is an ideal material for genetic and molecular dissection of complex traits due to its near-isogenic properties; yet a comprehensive analysis, from the basic identification of substitution segments to advanced regulatory network, is still insufficient. Here, we developed two cotton CSSL populations on the Gossypium hirsutum background, representing wide adaptation and high lint yield, with introgression from G. barbadense, representing superior fibre quality. We sequenced 99 CSSLs that demonstrated significant differences from G. hirsutum in fibre, and characterized 836 dynamic fibre transcriptomes in three crucial developmental stages. We developed a workflow for precise resolution of chromosomal substitution segments; the genome sequencing revealed substitutions collectively representing 87.25% of the G. barbadense genome. Together, the genomic and transcriptomic survey identified 18 novel fibre-quality-related quantitative trait loci with high genetic contributions and the comprehensive landscape of fibre development regulation. Furthermore, analysis determined unique cis-expression patterns in CSSLs to be the driving force for fibre quality alteration; building upon this, the co-expression regulatory network revealed biological relationships among the noted pathways and accurately described the molecular interactions of GhHOX3, GhRDL1 and GhEXPA1 during fibre elongation, along with reliable predictions for their interactions with GhTBA8A5. Our study will enhance more strategic employment of CSSL in crop molecular biology and breeding programmes.
Collapse
Affiliation(s)
- Guoan Qi
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology CitySanyaHainanChina
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Zhanfeng Si
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Lisha Xuan
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Zegang Han
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Yan Hu
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology CitySanyaHainanChina
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Lei Fang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology CitySanyaHainanChina
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Fan Dai
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| | - Tianzhen Zhang
- Hainan Institute of Zhejiang University, Yazhou Bay Science and Technology CitySanyaHainanChina
- The Advanced Seed Institute, College of Agriculture and Biotechnology, Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
4
|
Chen X, Hu X, Li G, Grover CE, You J, Wang R, Liu Z, Qi Z, Luo X, Peng Y, Zhu M, Zhang Y, Lu S, Zhang Y, Lin Z, Wendel JF, Zhang X, Wang M. Genetic Regulatory Perturbation of Gene Expression Impacted by Genomic Introgression in Fiber Development of Allotetraploid Cotton. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401549. [PMID: 39196795 PMCID: PMC11515910 DOI: 10.1002/advs.202401549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 07/23/2024] [Indexed: 08/30/2024]
Abstract
Interspecific genomic introgression is an important evolutionary process with respect to the generation of novel phenotypic diversity and adaptation. A key question is how gene flow perturbs gene expression networks and regulatory interactions. Here, an introgression population of two species of allopolyploid cotton (Gossypium) to delineate the regulatory perturbations of gene expression regarding fiber development accompanying fiber quality change is utilized. De novo assembly of the recipient parent (G. hirsutum Emian22) genome allowed the identification of genomic variation and introgression segments (ISs) in 323 introgression lines (ILs) from the donor parent (G. barbadense 3-79). It documented gene expression dynamics by sequencing 1,284 transcriptomes of developing fibers and characterized genetic regulatory perturbations mediated by genomic introgression using a multi-locus model. Introgression of individual homoeologous genes exhibiting extreme low or high expression bias can lead to a parallel expression bias in their non-introgressed duplicates, implying a shared yet divergent regulatory fate of duplicated genes following allopolyploidy. Additionally, the IL N182 with improved fiber quality is characterized, and the candidate gene GhFLAP1 related to fiber length is validated. This study outlines a framework for understanding introgression-mediated regulatory perturbations in polyploids, and provides insights for targeted breeding of superior upland cotton fiber.
Collapse
Affiliation(s)
- Xinyuan Chen
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Xiubao Hu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Guo Li
- Crop Information Center, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Corrinne E. Grover
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Jiaqi You
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Ruipeng Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Zhenping Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Zhengyang Qi
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Xuanxuan Luo
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yabin Peng
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Mengmeng Zhu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yuqi Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Sifan Lu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Yuan‐ming Zhang
- Crop Information Center, College of Plant Science and TechnologyHuazhong Agricultural UniversityWuhan430070China
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Jonathan F. Wendel
- Department of Ecology, Evolution, and Organismal BiologyIowa State UniversityAmesIA50011USA
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan LaboratoryHuazhong Agricultural UniversityWuhan430070China
| |
Collapse
|
5
|
Heuberger M, Bernasconi Z, Said M, Jung E, Herren G, Widrig V, Šimková H, Keller B, Sánchez-Martín J, Wicker T. Analysis of a global wheat panel reveals a highly diverse introgression landscape and provides evidence for inter-homoeologue chromosomal recombination. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:236. [PMID: 39340575 PMCID: PMC11438656 DOI: 10.1007/s00122-024-04721-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 08/19/2024] [Indexed: 09/30/2024]
Abstract
KEY MESSAGE This study highlights the agronomic potential of rare introgressions, as demonstrated by a major QTL for powdery mildew resistance on chromosome 7D. It further shows evidence for inter-homoeologue recombination in wheat. Agriculturally important genes are often introgressed into crops from closely related donor species or landraces. The gene pool of hexaploid bread wheat (Triticum aestivum) is known to contain numerous such "alien" introgressions. Recently established high-quality reference genome sequences allow prediction of the size, frequency and identity of introgressed chromosome regions. Here, we characterise chromosomal introgressions in bread wheat using exome capture data from the WHEALBI collection. We identified 24,981 putative introgression segments of at least 2 Mb across 434 wheat accessions. Detailed study of the most frequent introgressions identified T. timopheevii or its close relatives as a frequent donor species. Importantly, 118 introgressions of at least 10 Mb were exclusive to single wheat accessions, revealing that large populations need to be studied to assess the total diversity of the wheat pangenome. In one case, a 14 Mb introgression in chromosome 7D, exclusive to cultivar Pamukale, was shown by QTL mapping to harbour a recessive powdery mildew resistance gene. We identified multiple events where distal chromosomal segments of one subgenome were duplicated in the genome and replaced the homoeologous segment in another subgenome. We propose that these examples are the results of inter-homoeologue recombination. Our study produced an extensive catalogue of the wheat introgression landscape, providing a resource for wheat breeding. Of note, the finding that the wheat gene pool contains numerous rare, but potentially important introgressions and chromosomal rearrangements has implications for future breeding.
Collapse
Affiliation(s)
- Matthias Heuberger
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Zoe Bernasconi
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Mahmoud Said
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
- Agricultural Research Centre, Field Crops Research Institute, Giza, Egypt
| | - Esther Jung
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Gerhard Herren
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
| | - Victoria Widrig
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Centre (CIALE), University of Salamanca, Salamanca, Spain
| | - Hana Šimková
- Centre of Plant Structural and Functional Genomics, Institute of Experimental Botany of the Czech Academy of Sciences, Olomouc, Czech Republic
| | - Beat Keller
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| | - Javier Sánchez-Martín
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
- Department of Microbiology and Genetics, Spanish-Portuguese Agricultural Research Centre (CIALE), University of Salamanca, Salamanca, Spain.
| | - Thomas Wicker
- Department of Plant and Microbial Biology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
6
|
Geethanjali S, Kadirvel P, Periyannan S. Wheat improvement through advances in single nucleotide polymorphism (SNP) detection and genotyping with a special emphasis on rust resistance. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:224. [PMID: 39283360 PMCID: PMC11405505 DOI: 10.1007/s00122-024-04730-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 08/24/2024] [Indexed: 09/22/2024]
Abstract
KEY MESSAGE Single nucleotide polymorphism (SNP) markers in wheat and their prospects in breeding with special reference to rust resistance. Single nucleotide polymorphism (SNP)-based markers are increasingly gaining momentum for screening and utilizing vital agronomic traits in wheat. To date, more than 260 million SNPs have been detected in modern cultivars and landraces of wheat. This rapid SNP discovery was made possible through the release of near-complete reference and pan-genome assemblies of wheat and its wild relatives, coupled with whole genome sequencing (WGS) of thousands of wheat accessions. Further, genotyping customized SNP sites were facilitated by a series of arrays (9 to 820Ks), a cost effective substitute WGS. Lately, germplasm-specific SNP arrays have been introduced to characterize novel traits and detect closely linked SNPs for marker-assisted breeding. Subsequently, the kompetitive allele-specific PCR (KASP) assay was introduced for rapid and large-scale screening of specific SNP markers. Moreover, with the advances and reduction in sequencing costs, ample opportunities arise for generating SNPs artificially through mutations and in combination with next-generation sequencing and comparative genomic analyses. In this review, we provide historical developments and prospects of SNP markers in wheat breeding with special reference to rust resistance where over 50 genetic loci have been characterized through SNP markers. Rust resistance is one of the most essential traits for wheat breeding as new strains of the Puccinia fungus, responsible for rust diseases, evolve frequently and globally.
Collapse
Affiliation(s)
- Subramaniam Geethanjali
- Centre for Plant Molecular Biology and Biotechnology, Tamil Nadu Agricultural University, Coimbatore, Tamil Nadu, 641003, India
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia
| | - Palchamy Kadirvel
- Crop Improvement Section, Indian Council of Agricultural Research-Indian Institute of Oilseeds Research, Hyderabad, Telangana, 500030, India
| | - Sambasivam Periyannan
- Centre for Crop Health, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
- School of Agriculture and Environmental Science, University of Southern Queensland, Toowoomba, Queensland, 4350, Australia.
| |
Collapse
|
7
|
King J, Dreisigacker S, Reynolds M, Bandyopadhyay A, Braun HJ, Crespo-Herrera L, Crossa J, Govindan V, Huerta J, Ibba MI, Robles-Zazueta CA, Saint Pierre C, Singh PK, Singh RP, Achary VMM, Bhavani S, Blasch G, Cheng S, Dempewolf H, Flavell RB, Gerard G, Grewal S, Griffiths S, Hawkesford M, He X, Hearne S, Hodson D, Howell P, Jalal Kamali MR, Karwat H, Kilian B, King IP, Kishii M, Kommerell VM, Lagudah E, Lan C, Montesinos-Lopez OA, Nicholson P, Pérez-Rodríguez P, Pinto F, Pixley K, Rebetzke G, Rivera-Amado C, Sansaloni C, Schulthess U, Sharma S, Shewry P, Subbarao G, Tiwari TP, Trethowan R, Uauy C. Wheat genetic resources have avoided disease pandemics, improved food security, and reduced environmental footprints: A review of historical impacts and future opportunities. GLOBAL CHANGE BIOLOGY 2024; 30:e17440. [PMID: 39185562 DOI: 10.1111/gcb.17440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 08/27/2024]
Abstract
The use of plant genetic resources (PGR)-wild relatives, landraces, and isolated breeding gene pools-has had substantial impacts on wheat breeding for resistance to biotic and abiotic stresses, while increasing nutritional value, end-use quality, and grain yield. In the Global South, post-Green Revolution genetic yield gains are generally achieved with minimal additional inputs. As a result, production has increased, and millions of hectares of natural ecosystems have been spared. Without PGR-derived disease resistance, fungicide use would have easily doubled, massively increasing selection pressure for fungicide resistance. It is estimated that in wheat, a billion liters of fungicide application have been avoided just since 2000. This review presents examples of successful use of PGR including the relentless battle against wheat rust epidemics/pandemics, defending against diseases that jump species barriers like blast, biofortification giving nutrient-dense varieties and the use of novel genetic variation for improving polygenic traits like climate resilience. Crop breeding genepools urgently need to be diversified to increase yields across a range of environments (>200 Mha globally), under less predictable weather and biotic stress pressure, while increasing input use efficiency. Given that the ~0.8 m PGR in wheat collections worldwide are relatively untapped and massive impacts of the tiny fraction studied, larger scale screenings and introgression promise solutions to emerging challenges, facilitated by advanced phenomic and genomic tools. The first translocations in wheat to modify rhizosphere microbiome interaction (reducing biological nitrification, reducing greenhouse gases, and increasing nitrogen use efficiency) is a landmark proof of concept. Phenomics and next-generation sequencing have already elucidated exotic haplotypes associated with biotic and complex abiotic traits now mainstreamed in breeding. Big data from decades of global yield trials can elucidate the benefits of PGR across environments. This kind of impact cannot be achieved without widescale sharing of germplasm and other breeding technologies through networks and public-private partnerships in a pre-competitive space.
Collapse
Affiliation(s)
- Julie King
- School of Biosciences, The University of Nottingham, Loughborough, UK
| | - Susanne Dreisigacker
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Matthew Reynolds
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Anindya Bandyopadhyay
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Hans-Joachim Braun
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | | | - Jose Crossa
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- Colegio de Postgraduados, Montecillos, Mexico
| | - Velu Govindan
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Julio Huerta
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), Campo Experimental Valle de México, Texcoco, Mexico
| | - Maria Itria Ibba
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | | | - Carolina Saint Pierre
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Pawan K Singh
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Ravi P Singh
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- Huazhong Agricultural University, Wuhan, Hubei, China
| | - V Mohan Murali Achary
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Sridhar Bhavani
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Gerald Blasch
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Shifeng Cheng
- Chinese Academy of Agricultural Science (AGIS), Shenzhen, China
| | - Hannes Dempewolf
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | | | - Guillermo Gerard
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Surbhi Grewal
- School of Biosciences, The University of Nottingham, Loughborough, UK
| | | | | | - Xinyao He
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Sarah Hearne
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - David Hodson
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Phil Howell
- National Institute of Agricultural Botany (NIAB), Cambridge, UK
| | | | - Hannes Karwat
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | | | - Ian P King
- School of Biosciences, The University of Nottingham, Loughborough, UK
| | - Masahiro Kishii
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | | | - Evans Lagudah
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Caixia Lan
- Huazhong Agricultural University, Wuhan, Hubei, China
| | | | - Paul Nicholson
- John Innes Centre (JIC), Norwich Research Park, Norwich, UK
| | | | - Francisco Pinto
- Department of Plant Sciences, Centre for Crop Systems Analysis, Wageningen University Research, Wageningen, The Netherlands
| | - Kevin Pixley
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Greg Rebetzke
- Commonwealth Scientific and Industrial Research Organization (CSIRO), Agriculture and Food, Canberra, Australian Capital Territory, Australia
| | - Carolina Rivera-Amado
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Carolina Sansaloni
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Urs Schulthess
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
- CIMMYT-China Joint Center for Wheat and Maize Improvement, Henan Agricultural University, Zhengzhou, China
| | | | | | - Guntar Subbarao
- Crop, Livestock and Environment Division, Japan International Research Center for Agricultural Sciences (JIRCAS), Ibaraki, Japan
| | - Thakur Prasad Tiwari
- International Maize and Wheat Improvement Center (CIMMYT) and Affiliates, Texcoco, Mexico
| | - Richard Trethowan
- School of Life and Environmental Sciences, Plant Breeding Institute, Sydney Institute of Agriculture, University of Sydney, Narrabri, New South Wales, Australia
| | - Cristobal Uauy
- John Innes Centre (JIC), Norwich Research Park, Norwich, UK
| |
Collapse
|
8
|
Abdelrahman M, Gorafi YSA, Sulieman S, Jogaiah S, Gupta A, Tsujimoto H, Nguyen HT, Herrera-Estrella L, Tran LSP. Wild grass-derived alleles represent a genetic architecture for the resilience of modern common wheat to stresses. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 119:1685-1702. [PMID: 38935838 DOI: 10.1111/tpj.16887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/28/2024] [Accepted: 06/03/2024] [Indexed: 06/29/2024]
Abstract
This review explores the integration of wild grass-derived alleles into modern bread wheat breeding to tackle the challenges of climate change and increasing food demand. With a focus on synthetic hexaploid wheat, this review highlights the potential of genetic variability in wheat wild relatives, particularly Aegilops tauschii, for improving resilience to multifactorial stresses like drought, heat, and salinity. The evolutionary journey of wheat (Triticum spp.) from diploid to hexaploid species is examined, revealing significant genetic contributions from wild grasses. We also emphasize the importance of understanding incomplete lineage sorting in the genomic evolution of wheat. Grasping this information is crucial as it can guide breeders in selecting the appropriate alleles from the gene pool of wild relatives to incorporate into modern wheat varieties. This approach improves the precision of phylogenetic relationships and increases the overall effectiveness of breeding strategies. This review also addresses the challenges in utilizing the wheat wild genetic resources, such as the linkage drag and cross-compatibility issues. Finally, we culminate the review with future perspectives, advocating for a combined approach of high-throughput phenotyping tools and advanced genomic techniques to comprehensively understand the genetic and regulatory architectures of wheat under stress conditions, paving the way for more precise and efficient breeding strategies.
Collapse
Affiliation(s)
- Mostafa Abdelrahman
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| | - Yasir Serag Alnor Gorafi
- Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kitashirakawa, 606-8502, Kyoto, Japan
| | - Saad Sulieman
- Department of Agronomy, Faculty of Agriculture, University of Khartoum, Khartoum North, 13314, Sudan
| | - Sudisha Jogaiah
- Department of Environmental Science, Central University of Kerala, Periye, Kasaragod, 671316, Kerala, India
| | - Aarti Gupta
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| | - Hisashi Tsujimoto
- Arid Land Research Center, Tottori University, Tottori, 680-0001, Japan
| | - Henry T Nguyen
- Division of Plant Sciences and Technology, University of Missouri, Columbia, 65211, Missouri, USA
| | - Luis Herrera-Estrella
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
- Unidad de Genomica Avanzada, Centro de Investigación y de Estudios Avanzados del Intituto Politécnico Nacional, Irapuato, 36821, Mexico
| | - Lam-Son Phan Tran
- Institute of Genomics for Crop Abiotic Stress Tolerance, Texas Tech University, Lubbock, 79409, Texas, USA
| |
Collapse
|
9
|
Guwela VF, Maliro MF, Broadley MR, Hawkesford MJ, Bokosi JM, Grewal S, Coombes B, Hall A, Yang C, Banda M, Wilson L, King J. The 4T and 7T introgressions from Amblyopyrum muticum and the 5A u introgression from Triticum urartu increases grain zinc and iron concentrations in Malawian wheat backgrounds. FRONTIERS IN PLANT SCIENCE 2024; 15:1346046. [PMID: 39086916 PMCID: PMC11289773 DOI: 10.3389/fpls.2024.1346046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 07/02/2024] [Indexed: 08/02/2024]
Abstract
Micronutrient deficiencies (MNDs) particularly zinc (Zn) and iron (Fe) remain widespread in sub-Saharan Africa (SSA) due to low dietary intake. Wheat is an important source of energy globally, although cultivated wheat is inherently low in grain micronutrient concentrations. Malawian wheat/Am. muticum and Malawian wheat/T. urartu BC1F3 introgression lines, developed by crossing three Malawian wheat varieties (Kenya nyati, Nduna and Kadzibonga) with DH-348 (wheat/Am. muticum) and DH-254 (wheat/T. urartu), were phenotyped for grain Zn and Fe, and associated agronomic traits in Zn-deficient soils, in Malawi. 98% (47) of the BC1F3 introgression lines showed higher Zn above the checks Paragon, Chinese Spring, Kadzibonga, Kenya Nyati and Nduna. 23% (11) of the introgression lines showed a combination of high yields and an increase in grain Zn by 16-30 mg kg -1 above Nduna and Kadzibonga, and 11-25 mg kg -1 above Kenya nyati, Paragon and Chinese Spring. Among the 23%, 64% (7) also showed 8-12 mg kg -1 improvement in grain Fe compared to Nduna and Kenya nyati. Grain Zn concentrations showed a significant positive correlation with grain Fe, whilst grain Zn and Fe negatively and significantly correlated with TKW and grain yield. This work will contribute to the efforts of increasing mineral nutrient density in wheat, specifically targeting countries in the SSA.
Collapse
Affiliation(s)
- Veronica F. Guwela
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- Rothamsted Research, Harpenden, United Kingdom
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Moses F. Maliro
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Martin R. Broadley
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
- Rothamsted Research, Harpenden, United Kingdom
| | | | - James M. Bokosi
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Surbhi Grewal
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Benedict Coombes
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Anthony Hall
- Earlham Institute, Norwich Research Park, Norwich, United Kingdom
| | - Caiyun Yang
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Mike Banda
- Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Lolita Wilson
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Julie King
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| |
Collapse
|
10
|
Han B, Wang X, Sun Y, Kang X, Zhang M, Luo J, Han H, Zhou S, Lu Y, Liu W, Yang X, Li X, Zhang J, Li L. Pre-breeding of spontaneous Robertsonian translocations for density planting architecture by transferring Agropyron cristatum chromosome 1P into wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2024; 137:110. [PMID: 38656338 DOI: 10.1007/s00122-024-04614-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
KEY MESSAGE We developed T1AL·1PS and T1AS·1PL Robertsonian translocations by breakage-fusion mechanism based on wheat-A. cristatum 1P(1A) substitution line with smaller leaf area, shorter plant height, and other excellent agronomic traits Agropyron cristatum, a wild relative of wheat, is a valuable germplasm resource for improving wheat genetic diversity and yield. Our previous study confirmed that the A. cristatum chromosome 1P carries alien genes that reduce plant height and leaf size in wheat. Here, we developed T1AL·1PS and T1AS·1PL Robertsonian translocations (RobTs) by breakage-fusion mechanism based on wheat-A. cristatum 1P (1A) substitution line II-3-1c. Combining molecular markers and cytological analysis, we identified 16 spontaneous RobTs from 911 F2 individuals derived from the cross of Jimai22 and II-3-1c. Fluorescence in situ hybridization (FISH) was applied to detect the fusion structures of the centromeres in wheat and A. cristatum chromosomes. Resequencing results indicated that the chromosomal junction point was located at the physical position of Triticum aestivum chromosome 1A (212.5 Mb) and A. cristatum chromosome 1P (230 Mb). Genomic in situ hybridization (GISH) in pollen mother cells showed that the produced translocation lines could form stable ring bivalent. Introducing chromosome 1PS translocation fragment into wheat significantly increased the number of fertile tillers, grain number per spike, and grain weight and reduced the flag leaf area. However, introducing chromosome 1PL translocation fragment into wheat significantly reduced flag leaf area and plant height with a negative effect on yield components. The pre-breeding of two spontaneous RobTs T1AL·1PS and T1AS·1PL was important for wheat architecture improvement.
Collapse
Affiliation(s)
- Bohui Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiao Wang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yangyang Sun
- Tobacco Research Institute, Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xilu Kang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Meng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jiawen Luo
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Haiming Han
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Shenghui Zhou
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yuqing Lu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Weihua Liu
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xinming Yang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xiuquan Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Jinpeng Zhang
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China.
| | - Lihui Li
- State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
- Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization (MARA), Institute of Crop Sciences, Chinese Academy of Agricultural Sciences (ICS-CAAS), Beijing, 100081, China.
- Zhongyuan Research Center, Chinese Academy of Agricultural Sciences (CAAS), Xinxiang, 453519, Henan, China.
| |
Collapse
|
11
|
Li H, Zhu L, Fan R, Li Z, Liu Y, Shaheen A, Nie F, Li C, Liu X, Li Y, Liu W, Yang Y, Guo T, Zhu Y, Bu M, Li C, Liang H, Bai S, Ma F, Guo G, Zhang Z, Huang J, Zhou Y, Song CP. A platform for whole-genome speed introgression from Aegilops tauschii to wheat for breeding future crops. Nat Protoc 2024; 19:281-312. [PMID: 38017137 DOI: 10.1038/s41596-023-00922-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 09/28/2023] [Indexed: 11/30/2023]
Abstract
Breeding new and sustainable crop cultivars of high yields and desirable traits has been a major challenge for ensuring food security for the growing global human population. For polyploid crops such as wheat, introducing genetic variation from wild relatives of its subgenomes is a key strategy to improve the quality of their breeding pools. Over the past decades, considerable progress has been made in speed breeding, genome sequencing, high-throughput phenotyping and genomics-assisted breeding, which now allows us to realize whole-genome introgression from wild relatives to modern crops. Here, we present a standardized protocol to rapidly introgress the entire genome of Aegilops tauschii, the progenitor of the D subgenome of bread wheat, into elite wheat backgrounds. This protocol integrates multiple modern high-throughput technologies and includes three major phases: development of synthetic octaploid wheat, generation of hexaploid A. tauschii-wheat introgression lines (A-WIs) and homozygosis of the generated A-WIs. Our approach readily generates stable introgression lines in 2 y, thus greatly accelerating the generation of A-WIs and the introduction of desirable genes from A. tauschii to wheat cultivars. These A-WIs are valuable for wheat-breeding programs and functional gene discovery. The current protocol can be easily modified and used for introgressing the genomes of wild relatives to other polyploid crops.
Collapse
Affiliation(s)
- Hao Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Lele Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Ruixiao Fan
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Zheng Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yifan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Aaqib Shaheen
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Fang Nie
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Can Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Xuqin Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yuanyuan Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Wenjuan Liu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yingying Yang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Tutu Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Yu Zhu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Mengchen Bu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Chenglin Li
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Huihui Liang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Shenglong Bai
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Feifei Ma
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
| | - Guanghui Guo
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Zhen Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, College of Agriculture, Henan University, Kaifeng, China
| | - Jinling Huang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China
- Department of Biology, East Carolina University, Greenville, NC, USA
| | - Yun Zhou
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, China.
| |
Collapse
|
12
|
Wang Z, Miao L, Chen Y, Peng H, Ni Z, Sun Q, Guo W. Deciphering the evolution and complexity of wheat germplasm from a genomic perspective. J Genet Genomics 2023; 50:846-860. [PMID: 37611848 DOI: 10.1016/j.jgg.2023.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 07/29/2023] [Accepted: 08/09/2023] [Indexed: 08/25/2023]
Abstract
Bread wheat provides an essential fraction of the daily calorific intake for humanity. Due to its huge and complex genome, progress in studying on the wheat genome is substantially trailed behind those of the other two major crops, rice and maize, for at least a decade. With rapid advances in genome assembling and reduced cost of high-throughput sequencing, emerging de novo genome assemblies of wheat and whole-genome sequencing data are leading to a paradigm shift in wheat research. Here, we review recent progress in dissecting the complex genome and germplasm evolution of wheat since the release of the first high-quality wheat genome. New insights have been gained in the evolution of wheat germplasm during domestication and modern breeding progress, genomic variations at multiple scales contributing to the diversity of wheat germplasm, and complex transcriptional and epigenetic regulations of functional genes in polyploid wheat. Genomics databases and bioinformatics tools meeting the urgent needs of wheat genomics research are also summarized. The ever-increasing omics data, along with advanced tools and well-structured databases, are expected to accelerate deciphering the germplasm and gene resources in wheat for future breeding advances.
Collapse
Affiliation(s)
- Zihao Wang
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Lingfeng Miao
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Yongming Chen
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Zhongfu Ni
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Qixin Sun
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China
| | - Weilong Guo
- Frontiers Science Center for Molecular Design Breeding, Key Laboratory of Crop Heterosis and Utilization, Beijing Key Laboratory of Crop Genetic Improvement, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Li H, Zhang P, Luo M, Hoque M, Chakraborty S, Brooks B, Li J, Singh S, Forest K, Binney A, Zhang L, Mather D, Ayliffe M. Introgression of the bread wheat D genome encoded Lr34/Yr18/Sr57/Pm38/Ltn1 adult plant resistance gene into Triticum turgidum (durum wheat). TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:226. [PMID: 37847385 PMCID: PMC10581953 DOI: 10.1007/s00122-023-04466-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
KEY MESSAGE Lack of function of a D-genome adult plant resistance gene upon introgression into durum wheat. The wheat Lr34/Yr18/Sr57/Pm38/Ltn1 adult plant resistance gene (Lr34), located on chromosome arm 7DS, provides broad spectrum, partial, adult plant resistance to leaf rust, stripe rust, stem rust and powdery mildew. It has been used extensively in hexaploid bread wheat (AABBDD) and conferred durable resistance for many decades. These same diseases also occur on cultivated tetraploid durum wheat and emmer wheat but transfer of D genome sequences to those subspecies is restricted due to very limited intergenomic recombination. Herein we have introgressed the Lr34 gene into chromosome 7A of durum wheat. Durum chromosome substitution line Langdon 7D(7A) was crossed to Cappelli ph1c, a mutant derivative of durum cultivar Cappelli homozygous for a deletion of the chromosome pairing locus Ph1. Screening of BC1F2 plants and their progeny by KASP and PCR markers, 90 K SNP genotyping and cytology identified 7A chromosomes containing small chromosome 7D fragments encoding Lr34. However, in contrast to previous transgenesis experiments in durum wheat, resistance to wheat stripe rust was not observed in either Cappelli/Langdon 7D(7A) or Bansi durum plants carrying this Lr34 encoding segment due to low levels of Lr34 gene expression. KEY MESSAGE
Collapse
Affiliation(s)
- Hongyu Li
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Ming Luo
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Mohammad Hoque
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Soma Chakraborty
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Brenton Brooks
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia
| | - Jianbo Li
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Smriti Singh
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Kerrie Forest
- Agriculture Victoria, Department of Energy, Environment and Climate Action, AgriBio Centre for AgriBioscience, 5 Ring Rd, Bundoora, VIC, 3083, Australia
| | - Allan Binney
- School of Agriculture, Food & Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Lianquan Zhang
- Triticeae Research Institute, Sichuan Agricultural University, 211 Huimin Road, Wenjiang, Chengdu, 611130, Sichuan, China
| | - Diane Mather
- School of Agriculture, Food & Wine, The University of Adelaide, PMB 1, Glen Osmond, SA, 5064, Australia
| | - Michael Ayliffe
- CSIRO Agriculture and Food, Clunies Ross Street, GPO Box 1700, Canberra, ACT, 2601, Australia.
| |
Collapse
|
14
|
Yang Y, You C, Wang N, Wu M, Le Y, Wang M, Zhang X, Yu Y, Lin Z. Gossypium mustelinum genome and an introgression population enrich interspecific genetics and breeding in cotton. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2023; 136:130. [PMID: 37199762 DOI: 10.1007/s00122-023-04379-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Accepted: 05/05/2023] [Indexed: 05/19/2023]
Abstract
KEY MESSAGE Genomic and genetic resources of G. mustelinum were effective for identifying genes for qualitative and quantitative traits. Gossypium mustelinum represents the earliest diverging evolutionary lineage of polyploid Gossypium, representing a rich gene pool for numerous desirable traits lost in cotton cultivars. Accurate information of the genomic features and the genetic architecture of objective traits are essential for the discovery and utilization of G. mustelinum genes. Here, we presented a chromosome-level genome assembly of G. mustelinum and developed an introgression population of the G. mustelinum in the background of G. hirsutum that contained 264 lines. We precisely delimited the boundaries of the 1,662 introgression segments with the help of G. mustelinum genome assembly, and 87% of crossover regions (COs) were less than 5 Kb. Genes for fuzzless and green fuzz were discovered, and a total of 14 stable QTLs were identified with 12 novel QTLs across four independent environments. A new fiber length QTL, qUHML/SFC-A11, was confined to a 177-Kb region, and GmOPB4 and GmGUAT11 were considered as the putative candidate genes as potential negative regulator for fiber length. We presented a genomic and genetic resource of G. mustelinum, which we demonstrated that it was efficient for identifying genes for qualitative and quantitative traits. Our study built a valuable foundation for cotton genetics and breeding.
Collapse
Affiliation(s)
- Yang Yang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Institute of Nuclear and Biotechnology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Crop Biotechnology/The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Urumqi, 830091, Xinjiang, China
| | - Chunyuan You
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
- Cotton Research Institute, Shihezi Academy of Agriculture Science, Shihezi, 832000, Xinjiang, China
| | - Nian Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Mi Wu
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yu Le
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Maojun Wang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Xianlong Zhang
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | - Yu Yu
- Cotton Research Institute, Xinjiang Academy of Agriculture and Reclamation Science, Shihezi, 832000, Xinjiang, China.
| | - Zhongxu Lin
- National Key Laboratory of Crop Genetic Improvement, College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China.
| |
Collapse
|
15
|
Molero G, Coombes B, Joynson R, Pinto F, Piñera-Chávez FJ, Rivera-Amado C, Hall A, Reynolds MP. Exotic alleles contribute to heat tolerance in wheat under field conditions. Commun Biol 2023; 6:21. [PMID: 36624201 PMCID: PMC9829678 DOI: 10.1038/s42003-022-04325-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 11/30/2022] [Indexed: 01/11/2023] Open
Abstract
Global warming poses a major threat to food security and necessitates the development of crop varieties that are resilient to future climatic instability. By evaluating 149 spring wheat lines in the field under yield potential and heat stressed conditions, we demonstrate how strategic integration of exotic material significantly increases yield under heat stress compared to elite lines, with no significant yield penalty under favourable conditions. Genetic analyses reveal three exotic-derived genetic loci underlying this heat tolerance which together increase yield by over 50% and reduce canopy temperature by approximately 2 °C. We identified an Ae. tauschii introgression underlying the most significant of these associations and extracted the introgressed Ae. tauschii genes, revealing candidates for further dissection. Incorporating these exotic alleles into breeding programmes could serve as a pre-emptive strategy to produce high yielding wheat cultivars that are resilient to the effects of future climatic uncertainty.
Collapse
Affiliation(s)
- Gemma Molero
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, 56237, Mexico
- KWS Momont Recherche, 59246 Mons-en-Pévèle, Hauts-de-France, France
| | | | - Ryan Joynson
- The Earlham Institute, Norwich, NR4 7UZ, UK
- Limagrain Europe, Clermont-Ferrand, France
| | - Francisco Pinto
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, 56237, Mexico
| | | | | | | | - Matthew P Reynolds
- International Maize and Wheat Improvement Center (CIMMYT), Texcoco, 56237, Mexico.
| |
Collapse
|